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Abstract

We introduce and discuss the possible dynamics of groups of indistinguishable
agents, which are interacting according to their relative positions, with the aim
of deriving hydrodynamic equations. These models are developed to mimic the
collective motion of groups of species such as bird flocks, fish schools, herds of
quadrupeds or bacteria colonies. Our starting model for these interactions is the
Povzner equation [24], which describes a dilute gas in which binary collisions of
elastic spheres depend of their relative positions. Following the Cucker and Smale
model [10], we will consider binary interactions between agents that are dissipative
collisions in which the coefficient of restitution depends on their relative distance.
Under the assumption of weak dissipation, it is shown that the Povzner equation
is modified through a correction in the form of a nonlinear friction type operator.
Using this correction we formally obtain from the Povzner equation in a direct way
a fluid dynamic description of a system of weakly interacting agents interacting
in a dissipative way, with a coefficient of restitution that depends on their relative
distance.
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1 Introduction

The aim of this paper is to discuss some questions connected with the modeling of the
evolution of groups of agents, whose interactions depend on their relative positions. In
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the pertinent literature, these models have been developed to mimic the collective mo-
tion of groups of species such as such as bird flocks, fish schools, herds of quadrupeds or
bacteria colonies [5, 13, 16, 22, 23, 28], that are supposed to obey the same interaction
rules, without the presence of a leader. Once initialized with a certain velocity distrib-
ution, these groups develop particular profiles with time, like flocking of birds, in which
all birds fly with the same velocity close each other. Among other approaches, these
groups can be described at a mesoscopic level using concepts borrowed from classical
statistical mechanics, in particular, the methods of the kinetic theory of rarefied gases
[17, 7]. In discrete models of flocking [10, 11] it clearly appears that the formation of
flocking structures strongly depends of the loss of kinetic energy. This property remains
true at a continuous level, where the loss of kinetic energy is used to describe the long
time behavior of the kinetic equation [17, 7]. At a kinetic level, this establishes a link
between the collective motion of groups of species and granular gases. In granular gases,
the dissipation of kinetic energy causes in fact a number of non-trivial properties, such
as the formation of clusters and other spatial structures [15, 14, 20], non-Maxwellian
velocity distribution and anomalous diffusion.

While the use of the Boltzmann equation to obtain descriptions of the dynamics of
granular gases has proven successful, one must remember that deterministic numerical
simulations of the Boltzmann equations are prohibitively expensive. One may obtain
approximate solutions by the Direct Simulation Monte Carlo method, but even here
the computational cost is very high. In most applications, in fact, rapid granular flows
are described at the macroscopic level by means of equations for fluid dynamics, mod-
ified to account for dissipation due to collisions among particles. In some applications
use has been made of phenomenological equations of motion that account for particle
dissipation in granular matter, without resorting to the description afforded by kinetic
theory. Haff’s mean field approach [18], which follows the pioneering Bagnold’s work
[2, 3], can serve as an example of such a description. In recent years, kinetic theoretical
approaches, based on the inelastic Boltzmann or Enskog Boltzmann equations have
been developed [25, 6], both providing hydrodynamic descriptions, the latter even to
Burnett order.

The hydrodynamic description of a granular gas is well–understood in pres-
ence of weak dissipation [27]. Weakly dissipative granular gases with variable
restitution coefficient, can be described by introducing a correction to the clas-
sical Boltzmann collision operator. This correction is represented by a nonlinear
friction type operator, with a kernel which depends of the variable restitution
coefficient. This representation allows one to obtain a formal derivation of hy-
drodynamic equations for weakly dissipative granular gases, by carrying out the
classical Maxwellian closure of the conservation equations

We will adopt the same strategy here. The main difference between granular
gas molecules and groups of agents is that in the former case, molecules typi-
cally interact within the distance of a diameter, while in the latter case, agents
interact at any distance (long–range interactions). In all the other aspects, col-
lisions are very similar. In a granular gas binary collision, mass and momentum
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are conserved, while the energy is dissipated (the dissipation depending of the
relative velocity). In a binary interaction of birds, following the well-known in-
teraction model proposed by Cucker and Smale [10, 11], mass and momentum
are conserved, while the energy is dissipated (the dissipation depending of the
relative positions). More precise hypotheses will be made in the next section,
where previous models will be checked in some detail.

In the physical space R3 the connection between solutions of the Euler equa-
tions for compressible fluids, and the solutions of an equation describing the
dynamics of a system of particles undergoing elastic collisions at a stochastic
distance has been elaborated some years ago by Lachowicz and Pulvirenti [19].
There, it was discovered that the underlying kinetic equation able to represent the
one-particle dynamics as the number of particles tends to infinity is the Povzner
equation [24], which was originally introduced by Povzner for purely mathemat-
ical reasons, considering an averaging process for the pair collisions. In Povzner
equation, in fact, the unit vector which determines the postcollisional velocities
depends of the relative positions of particles.

We will briefly present the result of [19] in Section 2, where also Povzner
equation will be described in some detail. Corrections to the Povzner collision
operator which take into account dissipation will be the main contribution con-
cerning the flocking modeling. The passage to fluid dynamics will be described in
Section 3, where the corrections to the classical Euler equations derived from the
dissipative correction to the Povzner equation will be dealt with. A description
of the possible steady states of these Euler equations, and their connection with
the flocking phenomenon will conclude our analysis. Some numerical simulations
in the one-dimensional case will be presented in Section 4.

2 The flocking dynamics of a bird population

2.1 The dynamics of a stochastic particle system

In [19] Lachowicz and Pulvirenti established an interesting connection between
solutions of the Euler equations for compressible fluids, and the solutions of an
equation describing the dynamics of a system of particles undergoing elastic col-
lisions at random distances. More precisely, they consider density, velocity and
temperature fields ρ(x, t), u(x, t) and T (x, t) which constitute a (smooth) solution
of the system of Euler equations (up to some time t0 before the appearance of
the first singularity), and construct a local Maxwellian function M whose mean
density, velocity and temperature are given by ρ, u and T , respectively, [9],

M (x, v, t) =
ρ(x, t)

(2πT (x, t))3/2
exp

(
−(v − u(x, t))2

2T (x, t)

)
. (1)
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They also consider a system of N particles located at the points x1, x2, . . . , xN

on a domain of R3, which move freely unless a pair of them undergo an elastic
collision, expressed by the formula

v′i = vi − ((vi − vj) · nij)nij , v′j = vj + ((vi − vj) · nij)nij. (2)

where the unit vector nij is given by

nij =
xi − xj

|xi − xj| . (3)

As usual, v′i and v′j denote the outgoing velocities, where the incoming velocities
are given by vi and vj, provided that (vi − vj) · nij < 0. Each binary colli-
sion takes place according to a stochastic law. The collision times for each pair
i and j of particles are independent Poisson processes with intensity given by
ϕ(xi, xj, vi, vj)|(vi − vj) · nij|, and ϕ is given by

ϕ(xi, xj, vi, vj) =
3

Nδ3

1

ε
χ(|xi − xj| ≤ δ)χ(|vi − vj| ≤ θ), (4)

where ε is a measure of the mean free path and χ(I) is the characteristic function
of the set I.

The evolution of the system of particles is described by the N -particle dis-
tribution function fN(x1, v1 . . . , xN , vN , t) which gives the probability density for
finding the N particles in the points x1, · · · , xN with velocities v1, · · · , vN at time
t ≥ 0. Let the s-particle distribution functions be defined by the marginals

fN,s(x1, v1 . . . , xs, vs) =

∫
fN(x1, v1 . . . , xN , vN)dxs+1 dvs+1 · · · dxN dvN .

Then, under some additional hypotheses on the regularity of the solutions to the
Euler equations in the time interval [0, t0], it is proven in [19] that for all σ > 0
there exist ε0(σ), δ0(σ, ε), θ0(σ, ε, δ) and N0(σ, ε, δ, θ) such that if ε ≤ ε0, δ ≤ δ0,
θ ≥ θ0 and N ≥ N0,

sup
t∈[0,t0]

‖M − fN,1‖ < σ,

where fN,1 is the 1-particle marginal corresponding to the N -particle distribution
function fN(x1, v1 . . . , xN , vN , t), with initial conditions

fN,s(x1, v1 . . . , xs, vs, t = 0) =
s∏

j=1

M (0; xj, vj).

The analysis of [19] shows that, as the number of particles tends to infinity, the
1-particle marginal fN,1 = f satisfies the (elastic) Povzner equation [24]. This
kinetic equation was introduced by Povzner in 1962 through a modification of
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the Boltzmann collision operator consisting in a averaging process for the pair
collisions. The modified Povzner collision operator looks as follows

QP (f, f)(x, v) =

∫

R3

dy

∫

R3

dwB(x−y, v−w) (f(x, v∗)f(y, w∗)− f(x, v)f(y, w)) .

(5)
In (5) B is a smooth collision kernel, while (v∗, w∗) are the pre-collision velocities
of the so–called inverse collision, which generate the pair (v, w). The relationship
between the pair (v, w) and the post-collision velocities (v∗, w∗) is expressed by

v∗ = (I − A(x− y))v + A(x− y)w, (6a)

w∗ = A(x− y)v + (I − A(x− y))w, (6b)

where A is a 3 × 3 matrix and I the identity matrix. In Povzner equation the
matrix A is such that momentum and energy are preserved in the collision. The
conservation of energy (v∗)2 + (w∗)2 = v2 + w2 yields straightforwardly

2(A− I)A(v − w) = 0, for all v, w ∈ R3,

or
A2 = A.

In what follows we choose the matrix A to be rank of rank 1 and expressed with
respect to the unit vector n = n(x− y) = x−y

|x−y| as

A(x− y) = n · n>.

Consequently,

v∗ = v− (v−w) ·n(x− y)n(x− y), w∗ = w +(v−w) ·n(x− y)n(x− y). (7)

Note that the main difference between the classical Boltzmann equation and the
Povzner one is that the positions of the particles enter into the interaction rule,
so that the collision is non-local. From a mathematical point of view, Povzner
equation was introduced to overcome one of the main difficulties in solving the
classical Boltzmann equation, where binary collisions between particles happen
at the same point x = y. The non-local character of the interaction, which is
evident from the presence of products of type f(v, x)f(w, y) into the collision
operator (5), is such that, while the binary collision is elastic, and so preserves
both momentum and energy, in Povzner equation only the mass is a collision
invariant, while, as it happens in the Enskog equation [12], the momentum and
the energy are not collision invariants. Maybe for this reason, Povzner equation
has been usually ignored by the physicists, while only few mathematical papers
deal with it [1, 8, 19].
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Going back to the result of [19], it was proven that, in presence of a stochastic
law for binary interactions, if the particles are initially identically and indepen-
dently distributed according to a distribution density F = F (x, v), then at later
times they are identically and independently distributed according to a solution
of a kinetic equation with collision integral given by the Povzner operator (5),
with initial datum fo = F , and rate function

B(x− y, v − w) =
1

2δ3

1

ε
χ(|x− y| < δ)χ(|v − w| < θ) |(v − w) · n| ,

where δ and θ are positive constants, and χ(E) denotes the characteristic function
of the set E ⊆ R3. Note that, at least formally, the Boltzmann equation for the
hard sphere model is obtained from the Povzner equation for θ = +∞ by making
δ tend to zero

QP (f, f)(x, v) → QB(f, f)(x, v),

where

QB(f, f)(x, v) =
1

2ε

∫

R3

dw

∫

S2

dn|(v − w) · n| (f(x, v∗)f(x,w∗)− f(x, v)f(x,w)) .

(8)

2.2 A dissipative correction

In [10, 11], Cucker and Smale proposed a model to describe a population of N
agents, which, while interacting according to their relative positions, are develop-
ing particular profiles with time, like flocking of birds, in which all birds fly with
the same velocity close each other. In [10], the main hypothesis which justifies
the long–time behavior of the population is that every bird adjusts its velocity
by adding to it a weighted average of the differences of its velocity with those of
the other birds. That is, given a population of k birds, at time t ∈ IN , and for
i-th bird,

vi(t + 1)− vi(t) =
k∑

j=1

aij (vj(t)− vi(t)) . (9)

where the weights aij quantify the way the birds influence each other. In [10] it
is assumed that this influence is a function of the distance between birds, namely

aij =
K

(λ + |xi − xj|2)β
(10)

for some fixed K, λ > 0 and β ≥ 0.
Condition (9) can be conveniently rephrased in a different way [7]. Suppose

that we have a population comprising two birds, say i and j. Then, if their
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velocities are modified according to (9),

vi(t + 1) = (1− aij)vi(t) + aijvj(t), (11a)

vj(t + 1) = aijvi(t) + (1− aij)vj(t), (11b)

the momentum is preserved after the interaction, so that

vi(t + 1) + vj(t + 1) = vi(t) + vj(t),

but the energy increases or decreases according to the value of aij

v2
i (t + 1) + v2

j (t + 1) = v2
i (t) + v2

j (t)− 2aij (1− aij) (v1 − vj)
2. (12)

If aij < 1, the energy is dissipated. Note that in this case the relative velocity
decreases, since

|vi(t + 1)− vj(t + 1)| = |1− 2aij||vi(t)− vj(t)| < |vi(t)− vj(t)|, (13)

and the velocities of the two birds tend towards the mean velocity (vi + vj)/2.
In the general case of a population of k birds, the binary law (11) is taken

into account together with the assumption that the i-th bird modifies its velocity
giving the same weight to all the other velocities. In consequence of this,

vi(t + 1) =
1

k

k∑
j=1

{(1− aij)vi(t) + aijvj(t)} , (14)

that is a different way to write formula (9).
The stochastic dynamics of particles introduced in [19] is perfectly adaptable

to the context of a population of species. Substituting birds for particles, and
changing in (4) the interaction intensity ϕ, accordingly, allows to obtain a rea-
sonable model to describe the time-space evolution of a population of birds, and,
at the same time it establishes an interesting connection with the fluid dynamic
picture (Euler equations), in the presence of a large population.

To adapt the particle system by Lachowicz and Pulvirenti to the present
context, we need however to introduce various modifications. The first one is
related to the fact that, since the flocking phenomena are heavily dependent on
dissipation, the elastic interaction considered in [19] has to be suitably modified
to account for dissipation.

Second, the interaction rules (11) considered according to the Cucker–Smale
model, while dissipative and able to reproduce the flocking phenomenon, do not
represent a dissipative correction of an elastic collision of type (2). In fact, the
limit when aij are zero in (11) does not produce an elastic collision, but a collision
in which birds simply do not exchange their velocities. This is related to the fact
that the interaction rule given by (11) is such that the relative position influences
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the interactions only through the modulus of the distance, while the angles formed
by the relative position and the respective velocities do not play any role.

To overcome this unpleasant effect, a different more sophisticated interaction
can be considered, such that agents tend to dissipate their relative velocity along
the relative direction. This mathematical constraint agrees with the reasonable
assumption that birds which are approaching tend to diminish their relative veloc-
ity along their relative positions, and the same happens in the opposite situation
where they are going away.

We assume that the microscopic dynamics of two agents (x, v) and (y, w)
is governed by the interaction coefficient 0 < e(|x − y|) < 1 which relates the
components of the agents velocities along before and after an interaction. The
post interaction velocities (v∗, w∗) are such that

(v∗ − w∗) · x− y

|x− y| = −e(|x− y|) (v − w) · x− y

|x− y| . (15)

Thanks to (15), and assuming the conservation of momentum, one finds the
change of velocity for the interacting agents as

v∗ = v − 1

2
(1 + e)((v − w) · n)n , w∗ = w +

1

2
(1 + e)((v − w) · n)n, (16)

where n = n(x−y) = (x−y)/|x−y|. A Povzner–type (conservative) interaction,
that coincides with (2) is obtained for e = 1. For dissipative interactions e
decreases with increasing degree of dissipation.

W
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Figure 1: Illustration of the Cucker-Smale-Povzner-type interaction rule, where
a particle located in x with velocity v averages its velocity with a particle located
in y with velocity w, according to (16).

The choice
e(|x− y|) = 1− γa(|x− y|), (17)

where a(|x− y|) is given like in (10) by

a(|x− y|) =
K

(λ + |x− y|2)β
, (18)

is consistent with the Cucker–Smale approach. Note that the constant γ has to
be chosen so that e(|x− y|) < 1.
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2.3 Boltzmann–like model for dissipative interactions

According to the rule (16), the one-particle distribution function f(x, v, t) consid-
ered by Lachowicz and Pulvirenti [19], in presence of a large population (N →∞)
satisfies a Povzner–type equation for dissipative interactions, which reads [4]

∂f

∂t
+ v · ∇xf = Q̄P (f, f)(x, v, t), (19)

where Q̄P is now a dissipative collision operator, which describes the change in
the density function due to creation and annihilation of agents velocities in binary
interactions

Q̄P (f, f)(x, v) =

1

ε

∫

R3

dy

∫

R3

dwB (Γ(|x− y|)f(x, v∗)f(y, w∗)− f(x, v)f(y, w)) . (20)

Like in Povzner equation, in (20) the velocities (v∗, w∗) are the pre-interaction
velocities. The factor Γ in the gain term appears from the Jacobian of the trans-
formation dv∗dw∗ into dvdw. For a restitution coefficient which depends only
on positions, like in (17), Γ(|x− y|) = e(|x− y|)−1. Finally, B(τ) represents the
collision rate function, which gives the probability that a collision between agents
happen at a distance τ . We recall that the model considered by Lachowicz and
Pulvirenti [19] leads to B = B(x − y, v − w) = χ(|x − y| < δ)/(δ3)|(v − w) · n|.
We also stress that, differently from (5), we do not assume that the collision rate
function depends on the term |(v − w) · n|, which is not considered here.

To avoid the presence of the function Γ, and to study approximations to the
Povzner operator (20) it is extremely convenient to write the operator (20) in
weak form. More precisely, let us define with 〈 · , · 〉 the inner product in L1(R3).
For all smooth functions ψ(v), it holds

〈ψ , Q̄P (f, f)(x, v)〉 =

∫

R3

ψ(v)Q̄P (f, f)(x, v) dv

=
1

ε

∫

R3

∫

R3

∫

R3

B(|x− y|) (ψ(v∗)− ψ(v)) f(x, v)f(y, w)dv dw dy

Let (v′, w′) be the post-interaction velocities in a Povzner elastic interaction with
(v, w) as incoming velocities. Denoting by q the relative velocity, q = v − w,

v′ = v − (q · n)n , w′ = w + (q · n)n. (21)

As before, the unit vector is n = n(x − y) = x−y
|x−y| . Using (16) and (21) one

obtains

v∗ = v′ +
1

2
(1− e)(q · n)n , w∗ = w′ − 1

2
(1− e)(q · n)n. (22)
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If we assume that the coefficient of restitution has the form (17), then

v∗ − v′ = γa(|x− y|)(q · n)n. (23)

Let us consider a Taylor expansion of ψ(v∗) around v′. Thanks to (23) we get

ψ(v∗) = ψ(v′) + γa(|x− y|)∇ψ(v′) · (q · n)n +

1

2
γ2a(|x− y|)2

∑
i,j

∂2ψ(v′)
∂v′i∂v′j

(q · n)2ninj + . . . (24)

If the interactions are nearly elastic, so that γ << 1, we can truncate the expan-
sion (24) after the first–order term. Inserting (24) into (21) gives

〈ψ , Q̄P (f, f)〉 ≈ 1

ε

∫

R3

∫

R3

∫

R3

B(|x− y|) (ψ(v′)− ψ(v)

+γ∇ψ(v′) · a(|x− y|)(q · n)n) f(x, v)f(y, w)dv dw dy

= 〈ψ , QP (f, f)〉 + γ〈ψ , I (f, f)〉 . (25)

It is a simple matter to recognize that in (25) QP (f, f) is a Povzner collision
operator of the type (5), since the post-interaction velocity v′ into (25) is obtained
from the pre-interaction velocities (v, w) through the elastic interaction (21).

Let us now study in more detail the second contribution to the inner product
(25). First of all, let us set

b(|x− y|) = B(|x− y)|)a(|x− y|). (26)

Using the properties of the transformation (21), we obtain

〈ψ , I (f, f)〉
=

1

ε

∫

R3

∫

R3

∫

R3

∇ψ(v′) · n b(|x− y|)(q · n)f(x, v, t)f(y, w, t)dv dw dy

= −1

ε

∫

R3

∫

R3

∫

R3

∇ψ(v) · n b(|x− y|)(q · n)f(x, v′, t)f(y, w′, t)dv dw dy

=
1

ε

∫

R3

dv ψ(v)divv

(∫

R3

∫

R3

n b(|x− y|)(q · n)f(x, v′, t)f(y, w′, t)dw dy

)
.(27)

In fact, the transformation dv dw into dv′ dw′ given by (21) is such that q′ · n =
−q · n, while its Jacobian is equal to unity.
The last equality follows from the divergence theorem. The second contribution
to the inner product (25) defines the dissipative interaction operator

I (f, f)(x, v, t) =
1

ε
divv

(∫

R3

∫

R3

n(q · n)b (|x− y|) f(x, v′, t)f(y, w′, t)dw dy

)
.

(28)
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Finally, for nearly elastic interactions, with a restitution coefficient satisfying
(17), the dissipative Povzner equation can be modeled at the leading order as

(
∂f

∂t
+ v · ∇xf

)
(x, v, t) = QP (f, f)(x, v, t) + γI (f, f)(x, v, t), (29)

where QP is inspired by the classical elastic Povzner collision operator, and I
is a dissipative nonlinear friction operator which is based on elastic interactions
between agents.

Remark 2.1 The model kinetic equation obtained here as a first-order correction
to an elastic Povzner–type equation is valid, at least formally, for weakly dissipa-
tive interactions, i.e., when the value of γ is sufficiently small. Other moderately
dissipative regimes would require the inclusion of higher order terms in the expan-
sion (24). In particular, the second–order term in this expansion gives a diffusive
correction to the Povzner equation. The analysis done in this section is close to
the analogous one done for the Boltzmann equation for granular dissipative gases
[27]. This last problem has been studied systematically both from a numerical
and theoretical point of view (cfr. [27] and the references therein). Even if nu-
merical computations for the full three–dimensional Boltzmann equation are still
missing, in a closely related problem it has been shown numerically in [21] that
for a one-dimensional (in the velocity space) dissipative Boltzmann equation the
results relative to the full equation are in good agreement with those relative to
the equation with a first–order correction, even in regimes of moderate inelas-
ticity. The same analysis showed that higher–order corrections (of order bigger
than two) introduce problems in the numerical spectral approximation, without
essential improvements in the accuracy of the solution. This suggests that also in
presence of agents interactions the first–order correction gives a reasonably good
approximation to the dissipative Povzner equation.

Remark 2.2 The dissipative correction (28) to the elastic Povzner equation ap-
pears very similar to the corresponding one obtained in [17] as the mean field
limit of the Cucker–Smale model. Also, the Povzner–like model introduced in [7]
is apparently close to the one considered in this paper. These models, which are
based on the Cucker–Smale interaction (11), however are not consistent with the
elastic description of the system introduced in [19]. In fact, the continuous-time
version of the Cucker–Smale interaction (11),

v∗ = (1− γa)v + γaw, w∗ = av + (1− γa)w,

leads to v∗ = v and w∗ = w as γ → 0. Consequently, the limit γ → 0 gives a
dynamics in which all particles in the system move freely without interactions.
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3 Passage to fluid dynamics

3.1 Exact computations

The main purpose of this short section is to study in some detail the main prop-
erties of the nonlinear friction operator I . Choosing ψ = 1 in (27) shows that

〈1 , I (f, f)(x, t)〉

=
1

ε

∫

Rd

divv

(∫

R3

∫

R3

n(q · n)b (|x− y|) f(x, v′, t)f(y, w′, t)dw dy

)
dv = 0,

(30)
so that the mass is a collision invariant. Choosing now ψ = vi in (27), and using
the first equality, owing to the fact that ∇ψ(v′) · n = ni we obtain

〈v , I (f, f)(x, t)〉 =
1

ε

∫

R3

∫

R3

∫

R3

n b(|x− y|)(q · n)f(x, v, t)f(y, w, t)dv dw dy

=
1

ε

∫

R3

n b(|x− y|) (u(x, t)− u(y, t)) · n ρ(x, t)ρ(y, t)dy. (31)

In (31), ρ(x, t) and u(x, t) denote as usual the local mass density and bulk velocity,
that is

ρ(x, t) =

∫

R3

f(x, v, t) dv, u(x, t) =
1

ρ(x, t)

∫

R3

vf(x, v, t) dv. (32)

Note that, in agreement with the analogous property of Povzner equation, the
mean velocity is not a local collision invariant, while by symmetry

∫

R3

〈v , I (f, f)(x, t)〉 dx = 0. (33)

Finally, taking ψ = v2/2 into (27), and using the identity v′ · n = w · n we obtain

〈v2/2 , I (f, f)(x.t)〉
=

1

ε

∫

R3

∫

R3

∫

R3

w · n b(|x− y|)((v − w) · n)f(x, v, t)f(y, w, t)dv dw dy

=
1

ε

∫

R3

b(|x− y|)ρ(x, t)ρ(y, t) n · u(x, t) n · u(y, t)dy

− 1

ε
ρ(x, t)

∫

R3

∫

R3

b(|x− y|)|w · n|2f(y, w, t) dw dy. (34)

We remark that, while equality (31) is expressed in terms of macroscopic quanti-
ties, the same is not true for equality (34), where one can not in general express
the last integral in terms of macroscopic quantities. This is possible at least when
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the density f(x, v, t) is isotropic in the velocity variable, f(x, v, t) = f(x, |v|, t).
In this case, in fact

∫

R3

|v · n|2f(x, v, t) dv =
1

3

∫

R3

|v|2f(x, v, t) dv,

and ∫

R3

|v|2f(x, v, t) dv = ρ(x, t)|u(x, t)|2 + 2ρ(x, t)e(x, t). (35)

In (35), e(x, t) is the internal energy per unit mass, given by

e(x, t) =
3

2
T (x, t) =

1

2ρ(x, t)

∫

R3

|v − u(x, t)|2f(x, v, t) dv. (36)

A second useful representation can be obtained, owing to the second line
equality in (27),

〈v2/2 , I (f, f)(x, t)〉
= −1

ε

∫

R3

∫

R3

∫

R3

v · n b(|x− y|)((v − w) · n)f(x, v′, t)f(y, w′, t)dv dw dy.(37)

In this case, since the change of variables v ↔ w, and, at the same time x ↔ y
gives v′ ↔ w′ and n ↔ −n

∫

R3

〈v2/2 , I (f, f)(x, t)〉 dx

= − 1

2ε

∫

R3

∫

R3

∫

R3

∫

R3

b(|x− y|)((v − w) · n)2f(x, v′, t)f(y, w′, t)dv dw dx dy < 0.

(38)

Hence, the nonlinear friction operator is globally dissipative.
To close this section, we remark that, since the Maxwellian function M =

M (x, v, t) defined in (1) is isotropic in the velocity variable, hence

∫

R3

〈v2/2 , I (M ,M )(x, t)〉 dx

=
1

ε

∫

R3

b(|x−y|)ρ(x, t)ρ(y, t)

[
n · u(x, t) n · u(y, t)−

(
1

3
|u(y, t)|2 + T (y, t)

)]
dy.

(39)

3.2 Hydrodynamic limit and the Euler equations.

The goal of this section is to derive, in some particular regimes, a fluid dynamic
description of the population of agents. In analogy with the basic concepts of
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kinetic theory of gases [9], a fluid dynamic description of the population requires
that agents could be treated as point particles. If a population of small birds
is considered, their typical dimension is of the order of few centimeters. Conse-
quently, a reasonable unit length for studying the flocking phenomenon has to be
at least of the order of 105 centimeters. Also, it is evident that mean free path
of the phenomenon (the average distance birds travel between interactions with
other birds of the population) can be assumed of the same order of the typical
dimension of birds, namely of order 10−5 with respect to the typical unit length.
Within these assumptions, which result in choosing the parameters δ ∼= ε ¿ 1,
the analysis of [19] follows. The consequent fluid dynamic description that can
be obtained from the Povzner–type equation is able to describe the flocking phe-
nomenon at least in presence of well behaved interaction functions. First, the
collision rate B(τ) in the collision integral (5), which is here a long-range inter-
action rate function, has to take into account (for small values of the parameter
δ) mainly interactions which happen at a small distance. Second, the influence
function a(τ) has to maintain all properties of the function (18), including the
polynomial decay at infinity, independently of δ.

Among others, a choice of interactions functions which satisfies all these re-
quirements is the following

B(|x− y|) = Bδ(|x− y|) =
1

δ3

(
1 +

|x− y|2
δ2

)−(1+ν)

, (40)

where ν > 1/2 , and

a(|x− y|) = aδ(|x− y|) =
1

δ2ν−1

K (δ2 + |x− y|2)1+ν

(λ + |x− y|2)1+β
. (41)

with β > ν. The previous choices are heavily justified from the modeling point
of view. The interaction kernel Bδ in (40), that is integrable on R3, takes into
account also long-range interactions between agents, even if the interactions are
more frequent if the distance between agents is small, and this property improves
as soon as δ → 0. This is clearly related to the fact that in a dense group of
agents a single agent modifies its velocity mainly according to the nearest agents
(in reality, the dimension of the agents allow to see only the nearest ones).
As far as the Cucker and Smale type influence function aδ(|x− y|) is concerned,
it decays at a rate |x − y|2(β−ν) independently of δ, while, for a fixed distance
between agents, it increases as soon as δ decreases. This last property is related
to the fact that, the energy dissipation in a single interaction has to increase in
correspondence to a dense population to avoid possible impacts.
Note that, under these assumptions

b(|x− y|) = Bδ(|x− y|)aδ(|x− y|) =
K

(λ + |x− y|2)β+1
. (42)
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is independent of δ, while

Bδ(|x− y|)a2
δ(|x− y|) ≤ C

δ2ν−1
. (43)

Since the constant γ in (17) has to be chosen so that e(|x−y|) < 1, this condition
implies that γ ≤ Dδ2ν−1, where D = λ1+β/(Kδ2+2ν). Consequently, the higher
order term in the expansion (24), which behaves like γ2Bδa

2
δ remains uniformly

small. In this case we can formally derive the fluid dynamics equations in the
regime of small dissipative interactions.

Let us make use of the splitting method, very popular in the numerical ap-
proach to the Boltzmann equation. To solve the complete dissipative Boltzmann–
Povzner equation (19), at each time step we consider sequentially the elastic
Boltzmann–Povzner equation

∂f

∂t
+ v · ∇xf = QP (f, f)(x, v, t), (44)

and the dissipative correction

∂f

∂t
=

γ

ε
I (f, f)(x, v, t). (45)

Thanks to the result of Lachowicz and Pulvirenti [19] we know that the solution
to (44) is well approximated by a Maxwellian function M whose moments satisfy
the Euler equations. Substituting this Maxwellian function in equation (45), the
right–hand side can be evaluated exactly using (31) and (38). Hence, when γ
and ε are of the same order, so that γ/ε → λ, with λ > 0 constant, we obtain
that, for large values of N and small values of ε the stochastic system is well
approximated by the following system of Euler equations for density ρ(x, t), bulk
velocity u(x, t) and temperature T (x, t)

∂ρ

∂t
+ div(ρu) = 0,

∂

∂t
(ρui) + div(ρuui + ρTei) = λAi(ρ, u)(x, t),

∂

∂t

(
ρ(

2

3
T +

1

2
u2)

)
+ div

(
ρu(

1

2
u2 +

5

2
T )

)
= λB(ρ, u, T )(x, t). (46)

In (46) ei is the component of the unit vector e in the i-th direction,

A (ρ, u)(x, t) =

∫

R3

n b(|x− y|) (u(x, t)− u(y, t)) · n ρ(x, t)ρ(y, t)dy, (47)

and
B(ρ, u, T )(x, t) =

15



=

∫

R3

b(|x− y|)ρ(x, t)ρ(y, t)

[
n · u(x, t) n · u(y, t)−

(
1

3
|u(y, t)|2 + T (y, t)

)]
dy.

(48)

Remark 3.1 In [17], starting from the kinetic model obtained as the mean field
limit of the Cucker and Smale model, Ha and Tadmor tried to introduce a set of
hydrodynamical equations, which are given in the form of a system of Euler-type
equations, with correction terms which are very similar to the A and B terms
considered here. Their equations, however, constitute a system for the thirteen
moments, one obtains evaluating the evolution of mass, momentum and energy,
so that the system is not closed.

Remark 3.2 The procedure we used to recover the system of Euler equations
(46) is based on several truncations and asymptotics of the true Povzner-type
equation (19). While the final result is largely formal, nevertheless the main
steps of this procedure can be justified. In particular, the truncation of Taylor’s
formula (24) after the first–order term does not affect Euler equations in all cases
in which the coefficient γ2Bδa

2
δ = o(γ) uniformly with respect to the position

variable. In this case, in fact, γ2Bδa
2
δ/ε = o(γ)/ε → 0 if γ/ε → λ, and we lose

the contribution of this term in the Euler system. Note that the choice of the
interaction term a(|x − y|) of the type considered by Cucker and Smale (decay
of order β), implies a weaker interaction term at the level of Euler equations. In
these equations the interaction term b(|x− y|) decays at the order β + 1.

Remark 3.3 A different choice of the interaction parameters leads to different
correction terms in the Euler equations. In particular, leaving the interaction
function a(|x− y|) unchanged, i.e., without any dependence on δ to compensate
the vanishing of Bδ for δ → 0, implies that the correction terms A and B collapse
into the analogous ones obtained for a granular gas [27]. In this case

Aδ(ρ, u)(x, t) =

∫

R3

nBδ(|x−y|)a(|x−y|) (u(x, t)− u(y, t))·n ρ(x, t)ρ(y, t)dy → 0

(49)
as δ tends to 0, while

Bδ(ρ, u, T )(x, t) → −4

3
ρ2(x, t)T (x, t). (50)

3.3 Long-time solutions

The presence of the corrections to the classical Euler equations, allows to classify
some possible steady solutions of system (46). Let Ω be a bounded subset of R3.
Then, it is immediate to conclude that

ρ(x) = 0, if x ∈ R3 \ Ω,

16



and
u(x) = ū, ρ(x) = ρ̄(x) if x ∈ Ω

imply A (ρ, u)(x) = 0. Moreover, under the same hypotheses on ρ and u,

B(ρ, u, T ) = 0 if x ∈ R3 \ Ω,

and

B(ρ, u, T ) = −ρ̄(x)

∫

R3

b(|x− y|)ρ̄(y)T (y) dy if x ∈ Ω.

Therefore, ρ(x) = ρ̄(x), u(x) = ū, T (x) = 0 in Ω implies B(ρ, u, T ) = 0. Then,
the condition

div(ρ̄(x)ū) = 0 if x ∈ Ω (51)

is enough to guarantee that ρ(x) = ρ̄(x), u(x) = ū, T (x) = 0 in Ω and ρ(x) =
0 ∈ R3 \ Ω is a steady solution of the Euler equations. Note that condition
(51) only implies that ρ̄(x) is constant along the direction of the constant mean
velocity ū. Last, let us remark that

∫

R3

B(ρ, u, T )(x, t) dx

=

∫

R3

∫

R3

b(|x−y|)ρ(x, t)ρ(y, t)

[
n · u(x, t) n · u(y, t)−

(
1

3
|u(y, t)|2 + T (y, t)

)]
dy dx

=

∫

R3

∫

R3

b(|x−y|)ρ(x, t)ρ(y, t)

[
n · u(x, t) n · u(y, t)−

(
1

3
|u(x, t)|2 + T (x, t)

)]
dy dx

= −
∫

R3

∫

R3

b(|x−y|)ρ(x, t)ρ(y, t)
[
T (x, t) + T (y, t) + (n · u(x, t)− n · u(y, t))2] dy dx.

(52)
Therefore, integrating with respect to the x-variable the third equation in (46)
we get

d

dt

∫

R3

(
ρ(

2

3
T +

1

2
u2)

)
(x, t) dx =

∫

R3

B(ρ, u, T )(x, t) dx < 0. (53)

Hence the functional

F(t) =

∫

R3

(
ρ(

2

3
T +

1

2
u2)

)
(x, t) dx (54)

is a Lyapunov (energy) functional for system (46). Moreover, the entropy pro-
duction

E(t) = −
∫

R3

B(ρ, u, T )(x, t) dx > 0, (55)

Considering now that E(t) = 0 if and only if either both T (x) = 0 and u(x) = ū,
or ρ(x) = 0, starting with a configuration which is compactly supported, the
solution to system (46) would be forced both to remain compactly supported in
space and to converge towards one of the steady states characterized above.
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4 Numerical experiments

In this section we would like to illustrate the properties of the system (46) in a
simple one dimensional situation. Actually, we were expecting that the contribu-
tions of the right-hand side operators A and B could produce a regularization
and stabilization effect, especially for the expected dissipative properties of B,
but while developing the numerical experiments we realized that the presence of
these additional terms in the Euler equations imposed us a much more conser-
vative approach, with the need of very small time steps, resulting in a rather
high computational cost. This tendency to instable behavior currently prevents
us to consider 2D simulations which need ad hoc new methods for addressing the
system (46), and are a matter of current investigation.

We considered the problem on a bounded interval Ω = [0, 1], by imposing
additionally periodic boundary conditions. We used a ENO scheme for the ap-
proximation of fluxes in the space discretization and a third-order Runge-Kutta
method for the time discretization, see [26] for an introduction. Interestingly,
the results seem to be less oscillatory when we use lower order approximation in
the ENO scheme, so eventually we used just the first order approximation. We
tried an approach both with and without transformation to the characteristic
variables, and the option without transformation gives more stable results. The
integral operators A and B on the right-hand side are approximated by a simple
first order quadrature formula, in order to limit the computational costs. We
considered a 100 grid point discretization in space and a rather conservative time
step ∆t = 10−6 in order to ensure the stability of the scheme for longer time
before blow-up; note that for the Euler equations with homogenous right-hand
side (i.e., setting A = 0 and B = 0), we can use ∆t = 10−3 with the same
scheme and therefore the source of possible instabilities are necessarily related
to the particular form of the right-hand side. For our experiment reported in
Figure 2 and Figure 3 we considered initial data ρ0(x) = ρ(x, 0) being a Gaussian
centered at 0.5, the initial velocity u0(x) = u(x, 0) = − sin(2πx), and the initial
temperature T0(x) = T (x, 0) = 1. Note that in this case ū = 0, hence, if a
steady state is reached, the velocity should be zero as well as the temperature,
as conjectured in Section 3.3. The parameter β, measuring the strength of the
interaction a(|x− y|), is chosen β = 0.1.

The evolution starts with the initial density concentrated around x = 0.5
which first splits apart, then it merges at x = 0 and x = 1 (periodically), then
again in x = 0.5, and so on. The height of the peak at x = 0.5 is growing at
(almost) every new merging. Periodically the peak becomes so concentrated that
the gradient blows up, and eventually the numerics breaks down. Therefore we
believe that the last part of the numerical simulation is not completely stable and
reliable. Nevertheless, this numerical test confirms the dissipative nature of the
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Figure 2: We illustrate respectively in (a) the density ρ(x, t), in (b) the velocity
u(x, t), and in (c) the temperature T (x, t) at time t = 0 (top) and after t = 3100
time-units of the numerical simulation (bottom).

system (46) since the total energy of the system decreases in time, in particular,
both velocity and temperature are tending to 0, see Figure 2 and Figure 3, as
expected in Section 3.3.

5 Conclusions

In this paper we derived Euler–type equations for a population of agents mu-
tually interacting at a kinetic level in such a way that their mutual velocities
are dissipated along the joining line position. The underlying kinetic model is
the Povzner equation [24], which describes long–range elastic collisions between
molecules lying in different positions in space, suitably corrected to take into
account the dissipation. Owing to the pioneering result of Lachowicz and Pul-
virenti [19], one can resort to the standard fractional step method to obtain the
modified system of Euler equations, in which new correction terms are present
into the equations for velocity and energy. These corrections are highly nonlocal,
and their strength depends of the interaction function introduced by Cucker and
Smale [10]. From a formal point of view, it is easily seen that the evolution of
macroscopic quantities is driven by the dissipation of energy, which forces the
evolution of the system towards a configuration in which the mean velocity is
constant, and the internal energy vanishes. It would be certainly interesting to
render this behavior rigorous. Numerical simulations show indeed that this is the
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Figure 3: We illustrate the time decay of the maximal velocity, i.e., U(t) :=
maxx∈Ω |u(x, t)|.

case.
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