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Bilayer surfaces composed of oppositely oriented monolayers furnish another

mechanism for shielding tail groups. These occur in a variety of forms including

planar lamellae, spherical vesicles, and variants of the bicontinuous topology [2].

Bilayers of biological surfactants, called phospholipids, are also known to be of

fundamental importance to the structure and function of cell walls [5, 6].

Typical length scales for these microstructures are so small that local interac-

tions due to changes in the alignment of the amphiphilic molecules have a pro-

nounced influence on surface morphology. Cosserat surface theory has been the

preferred continuum model, since surfactant systems do not exist in bulk. Local

effects associated with alignment are represented by assigning elastic resistance to

the configurations of a director field representing molecular orientation. Variants of

this model have been developed by Helfrich [7], Ericksen [8], Jenkins [9], and

Krishnaswamy [10]. The general theory accounts for surface strain, director exten-

sion, and director tilt, the latter being associated with misalignment of the director

and the surface normal. However, there is a preference in the physical-chemistry

and cell-biology literatures for a simpler model based on surface geometry alone [7,

11]. This is justified by the belief that local Van der Waal’s and electrostatic forces

tend to act in such a way as to suppress misalignment and maintain roughly fixed

tail lengths, particularly in bilayers [7, 12].

In this work I discuss a purely mechanical Cosserat theory incorporating lo-

cal constraints on the director field. The film is assumed to be a material surface

consisting of a fixed set of mass particles. Two essentially equivalent models are

envisaged according to whether or not films are presumed to possess material sym-

metry. In the affirmative case an appropriate concept of fluidity is introduced based

on ideas of Noll [13] and their adaptation to material surfaces by Murdoch &

Cohen [14]. The relevant Legendre-Hadamard inequality for energy-minimizing

equilibria is obtained and used to motivate a simple proposal for the description of

bilayer response.

2. Equilibrium of elastic films

I use the nonlinear Kirchhoff-Love theory of shells to obtain a simple model

for material fluid-film equilibria. The Kirchhoff-Love shell may be interpreted as

a one-director Cosserat surface [15] with the director field constrained to coincide

with the local orientation field. For amphiphilic bilayer films, the director can be

thought of as a line segment formed by two hydrophobic molecular tails connecting

opposed hydrophilic heads, each located at a lateral interface with the adjoining

bulk fluid. The constraint is intended to represent the suppression of director tilt and

extension or contraction in accordance with the generally accepted phenomenology.

The basic theory has been developed in a variety of ways. Traditionally, varia-

tional principles were used to obtain the field equations and Kirchhoff edge condi-

tions [9, 16–19]. Naghdi [15] advanced an alternative approach based on a set of

balance, invariance, and constitutive postulates distinct from those for a Cosserat

shell. I [20] recently obtained the Kirchhoff-Love theory from Naghdi’s postu-

lates for Cosserat surfaces together with local constraints on the director field and



its gradient. The same theory may also be obtained by regarding the shell as an

elastic surface with an energy per unit mass that responds to the first and second

gradients of a map from a parameter plane to a surface in 3-space. The second

gradient contributes both a curvature and a metric gradient. If the influence of the

latter is suppressed the Kirchhoff-Love theory can be recovered via a variational

argument [21].

The well-known equilibrium equations for elastic Kirchhoff-Love shells are

summarized here using the notation of [20]. Thus, let r(θα) be the Euclidean posi-

tion of a particle x with convected coordinates θα; α = 1, 2, on a surface ω. In this

work I am mainly concerned with the local equations of the theory and therefore

freely exploit the local equivalence of surfaces and parametrized surfaces. Wher-

ever global equations are discussed it will be assumed that the relevant patch of

surface either admits of a single coordinate chart or that it can be covered by the

union of such patches.

Local equilibrium of forces may be expressed concisely as

Tα
;α + ρf = 0, (2.1)

where ρ is the mass of the film measured per unit area of ω, f is the distributed

force per unit mass, Tα are stress vectors that contribute to the tractions transmitted

across material curves, and the semi-colon is used to denote the surface covariant

derivative using the metric of the coordinates induced by r(θα) [20]. The stress

vectors are given by

Tα = Nα + Sαn, (2.2)

where Nα are constitutively determined tangential vector fields, Sα is a contravariant

vector field to be specified, and

n = 1
2
εαβaα × aβ (2.3)

is the local orientation of ω. Here, aα = r,α are the tangent vectors induced by the

coordinates, commas denoting partial derivatives, εαβ = a−1/2eαβ is the permuta-

tion tensor density, eαβ (= eαβ) is the unit alternator (e12 = +1), and a = det(aαβ)

where aαβ = aα · aβ is the induced metric, non-negative definite in general and

assumed here to be positive definite. It is well known that the surface divergence

in (2.1) may be written Tα
;α = a−1/2(a1/2Tα),α , allowing one to avoid Christoffel

symbols.

The constitutively determinate term in (2.2) is expressible in the form [20]

Nα = Nβαaβ , (2.4)

with

Nβα = σ βα + bβ
µMµα, (2.5)

where

σ βα = ρ

(

∂9

∂aαβ

+ ∂9

∂aβα

)

, Mβα = ρ

2

(

∂9

∂bαβ

+ ∂9

∂bβα

)

, (2.6)



and bαβ = n · r,αβ are the symmetric coefficients of the second fundamental form

on ω. The sign convention for Mβα differs from that commonly used in shell theory

[15, 20], and the mixed components bα
β in (2.5) are related to bαβ through bαβ =

aαλb
λ
β . Further, the coordinate-dependent function 9(aαβ , bαβ) is the Galilean-

invariant energy per unit mass of the film. I temporarily suppress the dependence of

9 on the particle x. The form of this function is such that its values are independent

of the coordinate system as the energy is required to be an absolute scalar field [15,

Section 13].

The local mass conservation law is

ρ0 = Jρ, where J = (a/A)1/2; (2.7)

A and ρ0 are the values of a and ρ respectively on a fixed reference surface �.

Many writers study the response of fluid films subject to the two-dimensional

incompressibility constraint J = 1. This implies that deformations preserve surface

area, and may be added to the list of constraints already imposed to obtain the local

Kirchhoff-Love response functions from those of the Cosserat theory, as explained

in [20]. The procedure used in that work yields equations identical to those obtained

by using the formal Lagrange multiplier rule

9 = 9̄(aαβ , bαβ) − γ /ρ, (2.8)

in (2.6), where 9̄ is a constitutive function and γ (θα) is a constitutively indetermi-

nate scalar field.

In the absence of distributed couples the normal components of (2.2) are given

by

Sα = −M
αβ

;β . (2.9)

From the viewpoint of the constrained Cosserat theory, this follows from a director

balance law which furnishes the values of the constitutively-indeterminate vector

field Sα a posteriori [20].

In the present version of the theory, the moment-of-momentum balance is

satisfied as an identity in accordance with conventional finite elasticity theory.

Naghdi [15, 22] used this balance law to determine the skew part of the coefficient

matrix in (2.4).

The foregoing equations are well known in principle but rarely stated in forms

that illuminate the underlying physics. In interpreting the various terms, it is helpful

to relate them to the tractions and moments transmitted across material curves. To

this end let θα(s) be an arclength parametrization of such a curve on ω and let τ be

the unit tangent in the direction of increasing s. Then, ν = τ × n is the rightward

unit normal as the curve is traversed in the same direction. This has components

να = εαβτβ where τα = dθα/ds are the components of τ and εαβ = a1/2eαβ are the

covariant components of the permutation tensor density. The traction transmitted

by the material on the right to the material on the left is then given by [20]

t = Tανα − (Mβανατβn)′, (2.10)



where τα = aαβτβ and the prime denotes the derivative with respect to s. This

furnishes the force per unit arclength. One then uses (2.2) to interpret Sανα as a

transverse shear traction across the curve. The moment per unit length is [20]

m = r × t − Mτ , where M = Mβανβνα (2.11)

is the bending couple.

Global forms of the equations for a simply-connected region r ⊂ ω are obtained

by using Stokes’ theorem in the form
∫

r

Tα
;αda =

∫

∂r

Tαναds (2.12)

together with (2.1) and (2.10). The resulting force balance is [20]
∫

r

ρfda +
∫

∂r

tds +
∑

gi = 0, (2.13)

where

g = Mβα[νατβ ]n (2.14)

is the force acting at a vertex of ∂r if the latter is piecewise smooth with a finite

number of points where τ and ν are discontinuous; the sum ranges over all the

vertices; and the notation [·] is used to denote the forward jump as a vertex is

traversed in the sense of increasing s. Equation (2.13) is derived by regarding

the second term on the right in (2.10) as a distributional derivative. Further, a

straightforward but involved calculation [20] yields the global identity
∫

r

ρr × fda +
∫

∂r

mds +
∑

ri × gi = 0, (2.15)

which may be regarded as the specialization to equilibrium of the moment-of-

momentum balance.

Most treatments [9, 17] of the Kirchhoff-Love equations are based on stationary-

or minimum-energy considerations in the spirit of Kirchhoff’s original work [16]. I

record here an energy functional which is rendered stationary by films coexisting in

equilibrium with bulk fluids in a gravity field. This energy is used in the discussion

of necessary conditions for minimizing states in Section 7. It is sufficient for this

purpose to confine attention to local compactly supported variations defined on a

closed connected region R consisting of the bulk fluids and a number of films.

These films consist either of compact (closed) surfaces contained entirely within

the interior of R, or of surfaces that intersect ∂R along certain curves. In the latter

case I avoid the complicated and irrelevant boundary terms associated with the

film traction and moment by considering variations that vanish together with their

gradients on ∂R.

The appropriate energy functional is

E[y, r] =
∑

i

∫

vi

[8(̺(y))+ gk · y]̺dv +
∑

j

∫

ωj

ρ9da, (2.16)



where vi and ωj respectively are the volumes and surfaces occupied by the bulk

fluids and films in R, 8 is the energy of a bulk fluid phase per unit mass, ̺(y) is the

associated mass density, gk is the gravitational body force per unit mass (with k a

fixed unit vector), and y is the spatial position of a bulk-fluid particle. The weights

of the films are presumed negligible and the indices have been suppressed in the

integrands to avoid cumbersome notation.

That equilibria render this energy stationary under the stated conditions may

be verified by evaluating the Gâteaux differential of E[yε, rε] with respect to a

parameter ε at the value ε = 0 (say) associated with the equilibrium state. Here, yε

and rε are the parametrized positions of particles of the bulk fluids and the films

respectively. I refer to [23, 24] for details of the lengthy formal argument. In these

works the elastic surface is regarded as being convected by the deformations of

the medium with which it coexists, but the conclusions drawn remain valid under a

weaker restriction appropriate to the system at hand. In particular, the differential of

the bulk energy may be transformed to an expression involving surface integrals of

the fluxes P u · n̂ over the boundaries of the bulk phases, where P = ̺2d8/d̺ is the

pressure, n̂ is the exterior unit normal to the boundary of a typical phase, and u = ẏ

is the variation of y, the superposed dot denoting the ε-derivative of yε at ε = 0

[23]. A typical film ω constitutes part of the boundary between two such phases,

each of which contributes a distinct flux, the associated normals having opposite

senses. If n is the orientation field on ω, the net flux is [P u] · n, the bracket denoting

jumps as ω is traversed in the direction of n. For systems with monolayer or bilayer

amphiphilic films, I assume that the bulk phases do not penetrate the films as the

alternative would entail contact between water molecules and the water-repellent

hydrophobic tail groups of the surfactant molecules. This implies that u± ·n = v · n

where v = ṙ is the variation of r on ω and u± are the limits of u on either side.

Thus [u] · n = 0 on ω and the net flux reduces to [P ]v · n. The stated equilibrium

equations then follow from the fundamental lemma whether or not the film is a

material surface with respect to the surrounding fluid as the tangential components

of v need not be related to the tangential components of u±.

To summarize, (2.16) is stationary at ε = 0 if and only if (2.1) is satisfied on

each film with ρf = pn, where p = −[P ], together with

grad P = −̺gk (2.17)

in each of the bulk phases [23], where grad(·) is the gradient with respect to y.

A standard formal argument yields the same results in the presence of two- or

three-dimensional incompressibility constraints provided (2.8) and

8(̺) = −P̂ (X)/̺ (2.18)

are used in (2.16) as appropriate, where P̂ is constitutively indeterminate,

̺ = ̺0(X)/ det (Gradχ(X)), (2.19)

χ(X) is a one-to-one deformation function of a bulk phase with values y and fixed

domain, ̺0(X) is the fixed density at particle X, Grad(·) is the gradient with respect

to X, and P = P̂ (χ−1(y)) [25, 26].



The difference between the functional (2.16) and any other that is rendered

stationary by the local equilibrium equations involves null-Lagrangians that do not

affect the conclusions of Section 7. These have been characterized by Ball [27] in

a general context that incorporates the present model.

3. Constitutive Theory

In the foregoing I have mentioned only those concepts that are fundamental to

the equilibrium of material surfaces under the stated hypotheses. In particular I have

not discussed any material symmetry properties that fluid films may possess, since

it appears to me that it is possible to pursue alternative developments according

to whether or not films are assumed to possess such symmetry at the outset. Both

are subsumed under elasticity. These concepts have been confused throughout the

large literature on fluid films. The confusion appears to stem from the widespread

tacit belief that material symmetry is equivalent to Galilean invariance. Further,

from Jenkins’ work [9] and from the analysis presented here, there emerges the

fortuitous fact that films with fluid-like material symmetry have response functions

that are formally the same as those of the alternative class.

Following Noll [13], the idea that material bodies possess symmetry is nor-

mally phrased in terms of restrictions on the energy 9 associated with invariance of

response under maps from some fixed local configuration to another. This generates

an abstract symmetry group for the material manifold, which may then be used to

obtain, via Noll’s rule, the symmetry group relative to any fixed local configuration.

Noll’s theory has been adapted to material surfaces by Murdoch & Cohen [14]. In

this setting it becomes apparent that his concept is distinct from that of coordinate

form invariance, according to which 9, regarded as a function of tensor compo-

nents, is the same function of the components obtained by certain distinguished

coordinate transformations. Form invariance is regarded as the primitive notion of

symmetry in Naghdi’s work on shells [15] and in Rivlin’s formulation of finite

elasticity theory [28].

I define fluidity in the framework of the Murdoch-Cohen theory in Section 4 and

proceed to obtain a canonical energy function 9 for films that possess symmetry. In

general the energy is defined on the body manifold, which in turn is parametrized by

a global coordinate chart θα. In other words, a one-to-one correspondence may be

established between each point x of the (simply-connected) body manifold and fixed

values of the pair of coordinates on a rectangular grid. Isometric immersions of this

manifold into 3-space may then be described by the local surface parametrizations

r(θα). To ensure that the energy is a scalar field on the body manifold, it is necessary

that the form of the function 9 depend on the parametrization in such a way that

its values do not.

One way to accommodate this requirement and the notion of fixed configuration

embodied in the Noll-Murdoch-Cohen theory is to assume that

9(aαβ , bαβ) = 9̂(C, κ), (3.1)



where 9̂ is a coordinate-independent function,

C = aαβAα ⊗ Aβ (3.2)

is the invertible symmetric surface strain tensor, and

κ = bαβAα ⊗ Aβ (3.3)

is the symmetric relative curvature tensor. This is the viewpoint adopted in most

works on elastic surfaces. In these definitions Aα are dual vectors to the induced

tangent vectors Aα = x,α at the particle x, where x(θα) is the local parametrization

of a reference surface �. Given the parametrization, these tensors, together with

9̂, are functions of the matrices aαβ and bαβ as suggested by the notation of (3.1).

Murdoch & Cohen introduced a primitive notion of material surface that

includes (3.1) as a special case. In their work the local constitutive response is

defined by Galilean-invariant functions of

F = aα ⊗ Aα (3.4)

and its gradient. This maps the tangent space of � to that of ω at x. For hyperelastic

surfaces, their constitutive equations follow from (3.1) if dependence on strain

gradient is suppressed.

The notion that elastic bodies possess symmetry of one kind or another is so

widespread that it seems to be regarded as fundamental. In this work I regard it

simply as a constitutive assumption. What is fundamental is the requirement that

the energy 9 be a scalar field on the body manifold, and there are other ways to

ensure this. For example, one notion entirely compatible with the general theory

of material surfaces is that 9 is sensitive only to the local configuration of the film

in a neighborhood of x rather than to the kinematical variables that describe its

deformations.

A similar premise underlies the conventional theory of single-phase liquid-

crystal equilibria [29], in which a director field defining the crystalline orientation

is described by the Euler equations associated with an energy that depends on the

local values of the director and its spatial gradient. There is no dependence on the

kinematics of director deformation or on the deformation of the fluid medium. In-

deed the director configurations are deemed to be independent of the deformations

of the fluid in the commonly accepted formulations [29, 30]. The canonical form of

the energy function is then deduced from Galilean invariance and any additional re-

strictions deemed to be relevant in particular circumstances, but these are unrelated

to symmetry in Noll’s sense.

For films, one may base such a theory on the premise that the energy per unit

mass is a function of the surface density ρ and the symmetric surface curvature

tensor

b = bαβaα ⊗ aβ = −n,α ⊗ aα, (3.5)

where the aα are the duals to the aα on the tangent planes of ω. The energy then

responds only to the local shape and density of ω. Galilean invariance requires

that it be unaffected by the replacement of b with QbQt for all b in its domain,



where Q is orthogonal and the superscript t is used to denote transposition. Here

I take this domain to consist of all ordered pairs of positive scalars and symmetric

surface tensors defined on the tangent space of ω at the particle in question. For the

invariance condition to make sense it is then necessary to restrict Q such that aα

and Qaα span the same vector space. This restriction entails no loss of generality

since the rotational invariance of the energy implies that, at a given particle, the

tangent space obtained by rotating ω may be identified with the tangent space to ω

itself insofar as the constitutive response is concerned [14]. The Q appearing in the

invariance condition should then be interpreted as the projection onto the tangent

space of an arbitrary three-dimensional rotation. As such it is a two-dimensional

rotation if the three-dimensional rotation preserves the local orientation of ω and

a two-dimensional orthogonal transformation in the general case. This form of the

invariance condition is equivalent to that adopted by Moeckel [31, Section 6(c)]

in his thermodynamical theory of interfaces.

Galilean invariance is thus tantamount to the invariance of the energy, re-

garded as a function of a symmetric two-dimensional tensor, under arbitrary two-

dimensional orthogonal transformations. For this it is necessary and sufficient that

the energy be expressible in the form [32]

9(aαβ , bαβ) = F(ρ, H, K), (3.6)

where

H = 1
2

tr b, K = det b (3.7)

are the mean and Gaussian curvatures of ω respectively. This in turn may be ex-

pressed as a function of the matrices aαβ and bαβ , as indicated, by using the local

mass conservation law (2.7) and the formulae

H = 1
2
aαβbαβ and K = 1

2
εαβελµbαλbβµ, (3.8)

where (aαβ) = (aαβ)−1 is the dual metric, εαβ = a−1/2eαβ and a = det(aαβ).

Therefore this alternative constitutive formulation, essentially equivalent to that

introduced by Blinowski [33], also furnishes a model for material surfaces. It is

similar in some respects to a theory proposed by Faetti & Virga [34] for liquid

crystals with surface energy, provided that the fluid orientation is aligned locally

with the surface normal. Related theories had been proposed earlier by Jenkins &

Barrat [35] and Ericksen [36].

4. Films with material symmetry

Material symmetry theory for surfaces is not settled. This appears to be due

to the difference between form invariance with respect to distinguished coordinate

transformations and Noll’s invariance of response under distinguished compositions

of maps. This distinction is easily overlooked in the conventional theory of simple

materials as the two concepts then lead to mathematically identical problems. For

plate and shell theories, a number of alternative proposals have been advanced,



some incorporating elements of Noll’s approach [14, 37, 38]. Among them, I

find that of Murdoch & Cohen [14] to be the most satisfactory extension of

Noll’s concept. This is based on the notion that local configurations of the body

are to be regarded as the restrictions to surfaces of diffeomorphisms of 3-space.

Symmetries are associated with local maps among fixed surfaces that leave the

energy invariant in a given diffeomorphism. The implications of this idea for elastic

surface-substrate interactions have been examined in [24]. I present a brief summary

of the Murdoch-Cohen theory here, with adaptations tailored to the narrower class

of material surfaces considered.

Preliminary to this, I examine certain local properties of maps between two

fixed surfaces � and �∗, with local parametrizations x(θα) and x∗(θα) respectively,

occupied by the same material body. Thus, let φ(X) be a C2 orientation-preserving

diffeomorphism of 3-space to itself defined on an open neighborhood of a material

point x with coordinates θα. Let N∗ ⊂ �∗ be the intersection of this neighborhood

with �∗, and suppose x = φ(x∗) for x∗ ∈ N∗. Then, N = φ(N∗) ⊂ � is the

intersection of the same set of material points with �.

If A∗
α and Aα are the tangent vectors induced by θα on �∗ and � at x, then

Aα = (∇φ)A∗
α and Aα,β = (∇∇φ)[A∗

α ⊗ A∗
β ] + (∇φ)A∗

α,β , (4.1)

where ∇φ and ∇∇φ are the first and second gradients of φ(X) evaluated at x ∈ N∗.
The operation in the second expression is defined, using Cartesian notation, by

(∇∇φ)[u ⊗ v] = (∂2φi/∂XA∂XB)uAvBei, (4.2)

with {ei} an orthonormal basis for 3-space.

In the remainder of this section I assume the tangent spaces to the various

surfaces occupied by the body to coincide at the particle x. Galilean invariance

implies that this entails no loss of generality in the characterization of constitutive

response [14]. With this adjustment (4.1)1 is then equivalent to

Aα = HA∗
α = H λ

·αA∗
λ, (4.3)

where

H = Aα ⊗ A∗α = Hα
·βA∗

α ⊗ A∗β , Hα
·β = A∗α · (∇φ)A∗

β , (4.4)

and the A∗α are dual to A∗
α. The properties of φ ensure that H is an invertible linear

transformation from the tangent space to itself. Accordingly, there is a tensor R of

the same type such that Rt = H−1, and it is straightforward to show that

Aα = RA∗α. (4.5)

Let N be the orientation of � at x. Then,

µαβN = Aα × Aβ , (4.6)



where µαβ = A1/2eαβ is the associated permutation tensor density. I combine this

with a similar formula for the orientation N∗ of �∗ and use (4.3) with µ∗
λγ H λ

·αH
γ
·β =

(det H)µ∗
αβ to derive

µαβN = (det H)µ∗
αβN∗. (4.7)

This result and A/A∗ = (det H)2, which follows from (4.3), yield

det H = ±(A/A∗)1/2

according as N = ±N∗. In particular, det R (= 1/ det H) is positive if and only if

� and �∗ have the same orientation; otherwise it is negative.

Let B be the curvature tensor of � at x. Then B = BαβAα ⊗ Aβ , where Bαβ =
N · Aα,β . Let B∗, defined similarly, be the curvature tensor of �∗ at the same particle.

The relationship between the two curvatures may be inferred from (4.1)1,2, (4.5)

and the fact that ∇φ maps the tangent space to itself:

R−1BR−t = (N · ∇∇φ[Aα ⊗ Aβ ])Aα ⊗ Aβ + (N · (∇φ)N∗)B∗, (4.8)

wherein the first term on the right has the same value regardless of which set of

tangent bases is used.

Consider a configuration ω of the film parametrized locally by r(θα), and let C,

κ and C∗, κ∗ be the strains and curvatures of ω relative to � and �∗ respectively.

Since the first and second fundamental forms on ω are determined by its parametric

representation, it follows from (3.2), (3.3) and (4.5) that

C = RC∗Rt and κ = Rκ∗Rt . (4.9)

The energy per unit mass is presumed to be a property of the body in a given

state. As such, its values at x are not dependent on the reference surface used to

compute them. In the notation of (3.1),

9̂∗(C∗, κ∗) = 9̂(C, κ) = 9̂(RC∗Rt , Rκ∗Rt ), (4.10)

where 9̂ and 9̂∗ are constitutive functions defined on � and �∗.
Consider another diffeomorphism ξ(X) of the same kind as φ but with the

property that r = ξ(x) for x ∈ N. This induces at x a strain

C = ((∇ξ)Aα · (∇ξ)Aβ)Aα ⊗ Aβ (4.11)

relative to � and a relative curvature obtained with the aid of the formula

κ = F tbF, (4.12)

which follows from (3.3)–(3.5). With the tangent spaces aligned at x, F plays the

same role in the local map from � to ω as that played by H in the map from �∗ to

�. Accordingly, (4.8) and (4.12) give

κ = (n · ∇∇ξ [Aα ⊗ Aβ ])Aα ⊗ Aβ + (n · (∇ξ)N)B, (4.13)



where n is the orientation of ω at x. For definiteness, and (by Galilean invari-

ance) without loss of generality [14], I choose the orientations of the reference and

distorted surfaces to coincide at x. Thus, n = N in (4.13).

To characterize the relationship between N and N∗ due to symmetry, it is

necessary to determine the strain C̄ and curvature κ̄ relative to �∗ induced at x by

r∗ = ξ(x∗) for x∗ ∈ N∗. These are given by the obvious modifications to (4.11)

and (4.13) in which n∗ = N∗. The values of ∇ξ and ∇∇ξ are the same in both sets

of formulas, and it follows easily that the strains are also equal, but κ̄ and κ differ

in a manner that depends on the relative orientations of N∗ and N :

C̄ = C, κ̄ =
{

κ + (N · (∇ξ)N)(B∗ − B); det R > 0,

− κ + (N · (∇ξ)N)(B∗ + B); det R < 0.

}

, (4.14)

wherein B and B∗ are connected by the map φ(X) through (4.8).

Following Noll [13], Murdoch & Cohen [14] regard N and N∗ as being

related by symmetry if they respond identically to the same ξ(X). Then, 9̂(C, κ) =
9∗(C̄, κ̄), which, when combined with (4.10), yields

9̂(C, κ) = 9̂(RC̄R
t
, Rκ̄Rt ). (4.15)

This is identically satisfied for all C and κ in the domain of 9̂ if φ is the identity

map with ∇∇φ = 0 and ∇φ = I, the unit tensor for 3-space, and R the projection

of I onto the tangent space at x (det R = 1, N∗ = N, B∗ = B). However, it is

not at all certain that there exist other maps φ with the required properties for

arbitrary surfaces. General surfaces may therefore be expected to have only trivial

symmetry. Particular surfaces with non-trivial symmetries specific to solid films

have been studied in [24].

Murdoch & Cohen have shown that the pairs (R, B∗ ± B) satisfying (4.15),

with the sign chosen in accordance with (4.14), are elements of a group. Thus,

arguments used in conventional elasticity may be used here to restrict the entries

R to unimodular (surface) tensors (det R = ± 1).

The structure of amphiphilic bilayers and the high degree of in-plane mobility

observed in equilibrium states suggest a definition of fluidity analogous to that of

Noll [13] for conventional bulk fluids. Thus, suppose the embedding geometry of

N∗ ⊂ �∗ is that of a plane, so that B∗ = 0 at x. For such N∗, I define fluidity

by the requirement that (4.15) be satisfied for all affine φ(X) (∇∇φ ≡ 0) with the

properties that ∇φ is proper unimodular (det ∇φ = + 1) and maps the subspaces

T and span{N} to themselves, where T is the common tangent space at x. The

induced surface tensor R fulfills the requirement |det R| =1, and (4.8) implies that

N is related to N∗ by symmetry only if B = 0. Accordingly, (4.14)2 simplifies to

κ̄ = ± κ and (4.15) becomes

9̂(C, κ) = 9̂(RCRt , ±R κRt ); det R = ± 1. (4.16)

This definition of fluidity is meant to reflect the small-scale three-dimensional

structure of bilayers in configurations in which the interfaces between the bilayer

and the bulk fluid are parallel planes, as depicted, for example, in [5, Figure 1.1]



and in [12, Figure 4.2]. Its implications for response in arbitrary configurations are

of primary interest here.

To obtain the canonical form of the energy function, I note that surface rota-

tions (R−1 = Rt , det R = +1) are admitted by the definition. The appropriate

specialization of (4.16) is satisfied for all such R if and only if 9̂ is expressible as

a function of the elements of the hemitropic function basis [32]:

I = {tr C, det C, tr κ, det κ, tr (Cκ), tr (Cκµ)}, (4.17)

where µ = µαβAα ⊗ Aβ . Invariance under arbitrary proper-unimodular transfor-

mations implies that the energy is expressible as a function of all independent

invariants formed from the list (4.17) that are also proper-unimodular invariants.

That this class of functions is the most general one to fulfill the stated requirement

follows from the fact that invariance under the larger set of transformations implies

invariance under the smaller set. Thus, while any such function is necessarily ex-

pressible in terms of the elements of the set I , it cannot be an arbitrary function of

these elements.

The obvious candidates for inclusion are det C and det κ . Another invariant

having the required property is

σ = (tr C)(trκ) − tr (Cκ). (4.18)

To prove this I use the Cayley–Hamilton theorem for arbitrary symmetric surface

tensors A:

Ã = (tr A)1 − A, (4.19)

where Ã is the adjugate of A and 1 is the unit tensor for the fixed tangent space at

x. Thus,

σ = tr (C̃κ) = tr (Cκ̃). (4.20)

Since C is presumed invertible, the first alternative gives σ = (det C) tr (C−1κ), in

which the second factor is invariant under the replacements C → RCRt and κ →
RκRt for all invertible surface tensors R. The result then follows by the unimodular

invariance of det C. I have not succeeded in generating additional independent

proper-unimodular invariants from the set I and thus conjecture that the three

discussed comprise the maximal set.

It is easily demonstrated that det C = J 2. Granted the truth of the conjecture, it

is thus necessary that

9̂(C, κ) = G(J (C), σ (C, κ), κ(κ); x);
J (C)

.= (det C)1/2, σ (C, κ)
.= tr (C̃κ), κ(κ)

.= det κ,
(4.21)

where G is scalar valued and parametric dependence on the particle is indicated

explicitly. Conversely, if (4.21) holds, then, since κ and σ are even and odd functions

of κ respectively, (4.16) is satisfied for all unimodular R (det R = ± 1) provided

that G is an even function of σ . Each of these generates a proper-unimodular ∇φ



through ∇φ = R−t±N ⊗ N, with the sign chosen as appropriate. This in turn is

the general form of ∇φ compatible with the definition of fluidity and so the bilayer

is fluid if and only if (4.21) holds with σ replaced by |σ |.
A monolayer film may be viewed as half a bilayer. For these an appropriate

definition of fluidity is obtained from that for bilayers by restricting φ so as to

preserve the local orientation of the surface. In this case the second branch of

(4.16) is not applicable and the necessary and sufficient condition for fluidity is

again given by (4.21), but without the requirement that G be an even function of σ.

To determine the response functions relative to arbitrary local reference config-

urations, I re-write (4.21) in the form

9̂λ(Cλ, κλ) = Gλ(Jλ, σλ, κλ; x); Jλ = J (Cλ),

σλ = σ(Cλ, κλ), κλ = κ(κλ),
(4.22)

where the subscript λ is used to identify the reference configuration. With ω fixed,

the transformation from λ to an another local reference configuration, µ say, yields

the composition formula Jλ = JµD(x), where Jµ = J (Cµ) and D(x) is the

positive square root of the determinant of the strain of µ relative to λ at x. Next,

I observe that κ is related to κ in the same way that the Gaussian curvature K is

related to b (cf. (3.7) and (3.8)). Thus,

κ = 1
2
µαβµλµbαλbβµ = J 2K, (4.23)

and so κλ = κµD2, where κµ = κ(κµ). The function σ may likewise be expressed

in terms of the mean curvature H by using (3.3) and C−1 = aαβAα ⊗Aβ in (4.20).

Comparison of the result with (3.8)1 gives

σ = 2J 2H. (4.24)

Hence, σλ = σµD2, where σµ = σ(Cµ, κµ).

If 9̂µ is the response function with µ as reference, then

9̂µ(Cµ, κµ) = 9̂λ(Cλ, κλ), (4.25)

and (4.22) furnishes

9̂µ = Gµ(Jµ, σµ, κµ; x), (4.26)

where

Gµ(Jµ, σµ, κµ; x) = Gλ(JµD(x), σµD2(x), κµD2(x); x). (4.27)

This holds without restrictions on the embedding geometry of µ or its tangent space.

Equation (4.21) therefore implies that the response relative to any local reference

configuration is sensitive to the strain and relative curvature through the associated

values of J, σ and κ.



5. Alternative formulations

Jenkins [9] claimed that (3.6) is the necessary and sufficient condition for a

material film with symmetry to qualify as fluid by a standard which, though concep-

tually different from that used here, nevertheless imposes the same mathematical

restrictions on the energy. To my knowledge he is the only writer on the subject of

films to have investigated the consequences of fluidity as a restriction associated

with material symmetry rather than with Galilean invariance. His analysis com-

bines the elements of coordinate form invariance as advocated by Naghdi [15]

with the well-known procedure used in Noll’s theory of simple elastic materials

to derive the canonical constitutive equation for the energy in compressible bulk

fluids. The latter procedure was also used by Cohen & Wang [39] to obtain the

general strain-energy function for fluid membranes with symmetry. Detailed criti-

cism of this procedure in the context of compressible bulk-fluid response has been

given by Rivlin & Smith [40]. However, in that theory, as in the present theory of

fluid films, the logical errors in the analysis do not invalidate the conclusions.

Jenkins’ model is based on a constitutive framework whose Galilean-invariant

specialization is equivalent to (3.1). To model fluidity, he assumes the invariance of

the energy per unit mass under coordinate transformations with unimodular matri-

ces of partial derivatives; this he represents by (4.3) with |det H| = 1. For Galilean-

invariant energies, his concept of symmetry, which involves no restrictions on the

local embedding geometry of the reference surface, is then equivalent to (4.16), but

with the plus sign used in the argument of the right-hand side for general unimodu-

lar R. This minor discrepancy is of no consequence here since Jenkins’ argument is

based on proper-unimodular transformations; (4.21) was likewise derived by using

the corresponding branch of (4.16). Accordingly, the problem of deriving reduced

forms of the energy that are necessary and sufficient for fluidity is essentially the

same in both theories, granted the Galilean invariance of the energy.

To pursue the question, I note that the tensor F defined by (3.4) possesses a

determinant if the tangent spaces of the reference and distorted surfaces coincide at

x, this then being equal to ±J. Then, H = J−1/2F is a proper-unimodular surface

tensor if the surfaces also have the same orientation. It furnishes the basis for

Jenkins’ discussion of necessary and sufficient conditions for fluidity, in which the

response function is not presumed to be Galilean invariant a priori. In the present

context this choice corresponds to R = J 1/2F−t , which I use with (4.12) and the

relevant branch of (4.16) to obtain the apparent necessary condition

9̂(C, κ) = 9̂(J1, Jb)
.= 6(J, b), say, (5.1)

where 1 is the fixed unit tensor for the considered tangent space and the relation

C = FtF has been used. The fluid film thus possesses flexural resistance by virtue

of the dependence of its energy on the curvature b. That (4.21) is consistent with

this conclusion follows from (3.7), (4.23) and (4.24). No further conclusions can be

drawn from (4.16) and (5.1) since b is independent of the reference configuration.

Thus, to conclude that (5.1) is equivalent to (3.6) it would appear to be necessary to

subject the function 6 to the further requirement of Galilean invariance. Of course,

this reasoning cannot be correct since 6 furnishes the values of a Galilean-invariant



function by definition, and, as such, is automatically invariant. The logical error,

as noted by Rivlin & Smith in a similar context, may be traced to the failure

to recognize that, in the discussion of necessary conditions for (4.16), R must be

regarded as a fixed tensor if this equation is to be meaningful. Here, the error leads to

the paradoxical conclusion that a Galilean-invariant energy is necessarily a function

of a tensor which is sensitive to superposed rigid rotations.

To correct the argument, I replace F by F′ = a′
α ⊗ Aα, the gradient of the map

from � to a fixed surface ω′ that coincides with ω in a particular (but arbitrary)

deformation. F′ is equal to F for this deformation, but, unlike F, is unaffected by

further deformation of the film or by superposed rigid motion. The use of the fixed

proper-unimodular tensor R′=
√

J ′(F′)−t in (4.16), where J ′ = det F′, then yields

the necessary condition

9̂(C, κ) = 9̂(J ′1′, J ′b′) (5.2)

in place of (5.1), where 1′ = aαβa′α ⊗ a′β , b′ = bαβa′α ⊗ a′β and the a′α are dual

to a′
α. These are just the strain and curvature of ω relative to ω′, the values of C

and κ with ω′ as reference. As such they are equal to 1 and b in the considered

deformation, but are unaffected by superposed rigid motion. That (5.2) fails to

furnish a sufficient condition for the first branch of (4.16) to be satisfied may be

demonstrated by choosing R = R̄R
′

with R̄ proper unimodular. Then, from (5.2),

the relevant branch of (4.16) is seen to be equivalent to

9̂(J ′1′, J ′b′) = 9̂(J ′R̄1
′
R̄t , J ′R̄b

′
R̄t ) (5.3)

for arbitrary proper-unimodular R̄. This representation problem has the same so-

lution as that for 9̂(C, κ) since the values of the functions J (·), σ (·, ·) and κ(·),
defined in (4.21), remain unaltered if � is replaced by ω′.

The more recent work of Krishnaswamy [10], which contains an extensive

discussion and evaluation of the empirical literature on the phenomenology of

biological bilayer response, is based on Naghdi’s [15] version of the Kirchhoff-

Love theory together with what appears to be a hybrid constitutive assumption

incorporating elements of the present models for films with and without a priori

material symmetry. This study is perhaps the most comprehensive to date on the

mechanics of biological fluid films and related structures. In it Krishnaswamy

discusses unimodular transformations in relation to material symmetry but does

not use them to obtain restrictions on response functions. His assumptions are

apparently equivalent to those used to obtain (3.6), subject to the further requirement

that the energy be a form-invariant function of the reference curvature with respect to

affine coordinate transformations having arbitrary orthogonal coefficient matrices.

In the notation of the present work this additional restriction is equivalent to the

requirement that the energy be invariant under replacement of B with RBRt , where

R is an arbitrary orthogonal surface tensor. However, even if B is included explicitly

as a parameter in the constitutive function, it does not seem possible to reconcile

this assumption with the present theory unless restrictions are imposed on those

surfaces that can be related by symmetry. To show this I note, with reference to



(4.8), that Nanson’s formula, which may be deduced directly from (4.1) and (4.6),

yields

N = (A∗/A)1/2(adj ∇φ)N∗, (5.4)

where adj(·) is the adjugate. From this and (4.8) it is evident that B |= RB∗Rt in

general. Affine rotations are among those maps for which A∗ = A in accordance

with the restriction to unimodular R; for these it follows that (∇φ)N∗ = N, and,

therefore, that B = RB∗Rt , but there is no reason to suppose that such maps fur-

nish symmetry transformations for arbitrarily curved surfaces. Consistency with

the present work is restored in the specialization to locally plane surfaces associ-

ated with the foregoing definition of fluidity, but Krishnaswamy’s theory is then

equivalent to the alternative model discussed in Section 3.

The propensity to identify the primitive concept of fluidity with isotropic re-

sponse functions of b (cf. (3.6)) at the outset appears to have its roots in the work of

some investigators [e.g., 7, 41, 42] who adapted the quadratic strain-energy function

of Kirchhoff’s classical (isotropic) linear plate bending theory to model biological

fluid films with bending resistance. This practice remains widespread in the cur-

rent literature on the phenomenology of surfactant systems [1, 2, 43]. There the

energy is usually expressed as a linear combination of K and (2H)2, which may be

consistently confused with the isotropic invariants det κ and (trκ)2 respectively in

the applications envisaged for the original theory. However, when these variables

are confused in the extension to finite deformations, such a formalism maintains

its relevance to fluidity in the sense of Noll only because the variables used are

then unimodular invariants. The general issue is further complicated by the fact

that solid-like response has been associated with films in highly condensed gel

phases that exhibit long-range order as distinct from the high degree of in-plane

mobility associated with fluid phases [2, 44]. For these it is probable that a variant

of the present symmetry theory based on orthogonal R is relevant, the transition to

fluidity then being associated with response functions belonging to the class (3.6),

or, equivalently, with a spontaneous enlargement of the symmetry group for the

function (3.1), the latter being perhaps the more logically appealing framework.

For bulk continua, the issue of symmetry as it relates to phase transition has been

elucidated by Rajagopal [45].

6. Model equations

Explicit component forms of the equilibrium equations for films belonging to

the class (3.6) were derived by Jenkins [9] using a variational method. Formally,

this class subsumes (4.21) and thus Jenkins’ equations incorporate those for fluid

films with symmetry. To show this I use (4.23), (4.24) and the local conservation

of mass to write (4.22) in the form

9 = G′
λ(ρ, H, K; ρλ(x), x)

.= G′′
λ(ρ, H, K; x), (6.1)

where ρλ is the density at particle x in the reference configuration λ. From (4.22) it

follows that the energy per unit mass at x may be regarded as a function of ρ, H and



K for any choice of reference configuration; in particular, relative to configuration

µ,

9 = G′
µ(ρ, H, K; ρµ(x), x)

.= G′′
µ(ρ, H, K; x), (6.2)

where

G′
µ(ρ, H, K; ρµ(x), x)

.= G′
λ(ρ, H, K; ρµ(x)D(x), x). (6.3)

Thus, it may be viewed as a member of the class of functions F in equation (3.6),

in which parametric dependence on x is permitted.

In the remainder of this section I obtain reduced equilibrium equations from

the formulae of Sections 2 and 3. In light of Jenkins’ analysis I will be brief. The

reduction is facilitated by the fact that the divergence of the adjugate of the curvature

tensor vanishes. To demonstrate this, let b̃αβ be the contravariant components of

the adjugate of the symmetric surface tensor b. Using (3.8)2, taking account of the

skew-symmetry of εαβ , and regarding b12 and b21 as being independent, I obtain

b̃αβ = ∂K

∂bαβ

= εαλεβγ bλγ . (6.4)

The Mainardi–Codazzi equations

εαλbγ λ;α = 0, (6.5)

the symmetry of bλγ , and the identity ε
αβ

;γ = 0 then yield

b̃
αβ

;α ≡ 0, (6.6)

as claimed. In view of this result it is advantageous to write the curvature in terms

of its adjugate in expressions for the response functions. The appropriate formula

follows from (6.4) and Naghdi’s treatise [15, equations (A.2.22) and (A.2.23)], or,

directly from the Cayley–Hamilton theorem:

bαβ = 2Haαβ − b̃αβ . (6.7)

Here, bαβ are the contravariant components of b.

To derive explicit forms of the response functions, it is necessary to evaluate the

derivatives of ρ, H, and K with respect to aαβ and bαβ , regarded as independent

matrices. Further, the off-diagonal entries of each of these matrices are regarded as

being independent in accordance with (2.6). For example, if a = det(aαβ), then

∂a

∂aαβ

= aaαβ , (6.8)

and combining this with (2.7) gives

∂ρ

∂aαβ

= −ρ

2
aαβ and

∂ρ

∂bαβ

= 0. (6.9)



From (3.8)1, the derivatives of H are

∂H

∂aαβ

= −1

2
bαβ and

∂H

∂bαβ

= 1

2
aαβ , (6.10)

the first of these having been obtained with the aid of the formula

∂aλµ

∂aαβ

= ελαεµβ − aλµaαβ , (6.11)

which follows by differentiating aλµ = ελαεµβaαβ , with a12 and a21 regarded as

being independent, and using (6.8). Finally, the derivatives of K are given by (6.4)

and

∂K

∂aαβ

= −Kaαβ , (6.12)

which follows from (4.23) and (6.8).

The response functions (2.6) are now easily shown to be

σ βα = −ρ(ρFρ + 2KFK + 2HFH )aβα + ρFH b̃βα

and

Mβα = ρ( 1
2
FH aβα + FK b̃βα),

(6.13)

where (6.7) has been used, the subscripts denote partial derivatives, and the symme-

tries of aαβ and b̃αβ have been used to condense the final results. Equations (6.13)

may be combined with (2.5) and

bβ
µb̃µα = Kaβα (6.14)

to derive

Nβα = −ρ(ρFρ + KFK + HFH )aβα + 1
2
ρFH b̃βα, (6.15)

which is symmetric in the present theory.

Expressions for tractions and bending couples may be derived by substituting

the foregoing formulae into (2.10) and (2.11).

I obtain explicit equilibrium equations by projecting (2.1) onto the tangent and

normal spaces of ω at x and using the Weingarten and Gauss equations

n,α = −bβ
αaβ and aα;β = bαβn. (6.16)

Thus,

N
βα

;α − Sαbβ
α = 0, Sα

;α + Nβαbβα + p = 0, (6.17)

where, from (2.8), (6.8) and (6.13)2,

−Sα = ( 1
2
ρFH ),µaαµ + (ρFK),µb̃αµ. (6.18)



The foregoing formulae may be used to reduce (6.17)2 to the final form

p = ( 1
2
ρFH );αβaαβ + (ρFK);αβ b̃αβ + 2Hρ(ρFρ + KFK) + ρ(2H 2 − K)FH .

(6.19)

This coincides with its counterpart in Jenkins’ work, which contains a minor ty-

pographical error.

The tangential equations (6.17)1 reduce, after some effort, to

aβα[(ρ2Fρ),α + ρ(FKK,α + FH H,α)] = 0, (6.20)

which is equivalent to the vanishing of the expression in brackets by virtue of the

definiteness of the metric. In the classical theory of capillarity in which FK and FH

vanish identically, this yields the well-known result that the surface pressure ρ2Fρ

is uniform. In the general case, (6.20) is equivalent to

(ρFρ),α + Fρρ,α + FKK,α + FH H,α = 0, (6.21)

which in turn may be written

(ρFρ + F),α = ∂F/∂θα, (6.22)

where the right-hand side is associated with the explicit dependence of F on x. This

result was obtained by Jenkins for homogeneous films with no such dependence,

and in that context furnishes an integral of the equations which generates a one-

parameter relationship among ρ,H and K . For films with material symmetry, (6.1)–

(6.3) imply that homogeneity, if it exists, is a property of the reference configuration.

Homogeneity is not preserved under transformations from one to another, unless

they are density preserving or D(x) is constant.

In the general case, (6.22) is integrable in any simply-connected region of the

surface if and only if eαβIα,β = 0, where eαβ is the unit alternator and Iα = ∂F/∂θα

is the inhomogeneity. Exceptionally, (6.22) is satisfied identically by solutions of

the classical theory without restrictions on the inhomogeneity. In any event, (6.19)

and the integrability condition for (6.22) furnish an underdetermined system for

the components of the three-vector field r(θα). Thus, as in the classical theories

of capillary and bulk-fluid equilibria, the equilibrium equations do not suffice to

determine the locations of material particles. This is in accord with the intuitive

idea of fluidity.

Finally, I note that all the equations of this section remain valid in the presence of

the two-dimensional incompressibility constraint provided F(ρ, H, K) is replaced

by

F = F̄ (H, K) − γ /ρ, (6.23)

where F̄ is a constitutive function and γ = ρ2Fρ is the constitutively-indeterminate

surface pressure (cf. (2.8)).



7. Energy minimizers

I obtain the quasiconvexity condition and related algebraic inequalities asso-

ciated with necessary conditions for energy minimizers. Although the minimum

energy test is inconclusive with respect to the dynamical stability of equilibria, it

nevertheless furnishes a formal necessary condition for asymptotic stability if the

associated dynamics are strictly dissipative [46, 47]. Granted this it is then also

necessary that stable equilibria furnish non-negative values of the second variation

of the energy. Thus, as in Section 2, let superposed dots denote derivatives with

respect to a parameter ε that labels configurations, evaluated at the equilibrium state

ε = 0. The second variation of the energy functional (2.16) may then be written

Ë =
∑

i

∫

Vi

(Ü + ̺0gk · χ̈)dV +
∑

j

∫

�j

ẄdA, (7.1)

where Vi and �j are fixed reference configurations of the bulk fluids and the films,

and U = ̺08 and W = ρ09 are the bulk and film energies per unit reference

volume and area respectively. The first of these is a function of the bulk fluid

deformation function χ(X;ε), as discussed in Section 2; the second, a function of

the metric and curvature induced by the parametrization r(θα; ε).

The second variation at an equilibrium state is a homogeneous quadratic func-

tional of the first-order derivatives χ̇ and ṙ. Using this state as reference, I write

Ë =
∑

i

∫

vi

A(grad u)dv +
∑

j

∫

ωj

B(ȧαβ , ḃαβ)da, (7.2)

where u(y) = χ̇ ,

ȧαβ = aα · v,β + aβ · v,α, ḃαβ = n · v;αβ (7.3)

where v(θα) = ṙ, and the covariant derivative is based on the metric induced by

r(θα) at ε = 0 [24]. Further, A(·) and B(·, ·) are homogeneous quadratic functions

involving the second derivatives of U and W with respect to their arguments. Equa-

tion (7.2) applies whether or not the two- or three-dimensional incompressibility

constraints are operative [25, 26].

To obtain the quasiconvexity condition I consider variations of the form

u(y) = curl w(y); w(y) = δ3ŵ(z(y)), and v(θα) = δ2v̂(η(θα)), (7.4)

where

z(y) = δ−1(y − r0) and η(θα) = z(r(θα)). (7.5)

Here, δ is a positive number and the functions ŵ(·), v̂(·) have compact support in

a three-dimensional region D containing a point r0 on one of the films, ω0 say. I

assume δ to be small enough that the intersection of D with any other film is empty.



Since u(y) is solenoidal, it automatically satisfies the variational form of the

incompressibility constraint in the bulk fluid. Further, the requirement that there be

no flux of fluid across the film (Section 2) implies that

u · n |ω0
= v · n

.= v(θα), (7.6)

where n is the local orientation field on ω0. If the film is incompressible in the sense

that local surface area is preserved, then the surface divergence of v vanishes [23],

and the representation v = vαaα + vn yields

vα
;α = 2Hv, (7.7)

where H is the mean curvature of ω0.

Local normal coordinates [15] may be used with (7.4)1 to reduce (7.6) to the

form

εαβwβ;α = v, (7.8)

where wβ(θα) = aβ · w |ω0
and v vanishes on the curve c = ∂D ∩ ω0. With v

prescribed, the existence of a covariant vector field satisfying this equation may be

proved by writing εαβwβ = aαβφ,β , which has a unique solution wα. Then, for a

given parametrization of ω0, (7.8) reduces to a second-order linear elliptic equation

for φ. For sufficiently smooth Dirichlet data on c the existence of a unique solution

follows from [48, Theorem 21(I)]. Unfortunately such a scheme does not yield the

existence of vα satisfying (7.7) for incompressible films. For example, setting vα =
aαβφ,β , I again obtain a linear elliptic equation for φ, but the additional requirement

that vα vanish on c entails the simultaneous specification of homogeneous Dirichlet

and Neumann data for φ. Exceptionally, if ω0 is a minimal surface (H ≡ 0) in a

neighborhood of r0, then vα may be any divergence-free vector field that vanishes

on c. Alternatively, one may specify a vector field vα which vanishes together with

its divergence on c and use (7.7) to calculate v at points where H |= 0, but in the

absence of detailed information about the surface ω0 it may not be feasible to ensure

that v then possesses the properties required to generate the Legendre-Hadamard

condition from the quasiconvexity inequality. This is due to the fact that it is the

component of v normal to the tangent plane at r0, rather than v, that is relevant, as

shown below.

Let ∇(·) and ∇ × (·) denote the gradient and curl with respect to z. Then,

u(y) = δ2∇ × ŵ(z), grad u(y) = δ∇(∇ × ŵ),

v,α = δ(∇v̂)aα and v,αβ = (∇∇v̂)[aα ⊗ aβ ] + δ(∇v̂)aα,β .
(7.9)

Now, let uα be smooth extensions of the coordinates θα onto the plane tangent to ω0

at r0. I take these to be affine coordinates such that ∂η/∂uα = åα, the superposed

circle identifying the values of functions at r0. Thus, ∂2η/∂uα∂uβ = 0, and it

follows that

(∇∇v̂)[åα ⊗ åβ ] = v̂,αβ , (7.10)

where, here and henceforth, commas denote derivatives with respect to uα.



I change variables in accordance with (7.5)1 and use (7.3), (7.9) and (7.10).

Holding D fixed, I divide the second-variation inequality by δ2 and pass to the

limit to obtain the quasiconvexity condition for the film:

Bαβλµ

∫

ω∗
w,αβw,λµda ≧ 0, (7.11)

where w = n̊ · v̂, ω∗ is the intersection of D with the tangent plane of ω0 at r0, and

Bαβλµ = ρ
∂29

∂bαβ∂bλµ

(7.12)

is evaluated at r0 in the configuration ω0. The symmetries inherent in this tensor

ensure that (7.11) is equivalent to the inequality obtained by replacing the integrand

with w,αβw̄,λµ, where w is now complex-valued and w̄ is its conjugate. The result-

ing inequality is in standard form for generating the relevant Legendre-Hadamard

condition (e.g., [49, pp. 229–231]). For w, I choose

w(uα) = aφ(uβ) exp[iτ (ςαuα)], (7.13)

where a, τ(> 0) and ςα are real constants and φ is a real C∞ function supported

in ω∗. Then,

w,αβw̄,λµ = a2φ2ςαςβςλςµ + O(τ−1), (7.14)

and passing to the limit τ → ∞ in (7.11) yields the necessary condition

Bαβλµςαςβςλςµ ≧ 0 (7.15)

for all ςα. I conjecture that this condition is also necessary in the presence of the

two-dimensional incompressibility constraint. A similar inequality was obtained

by Hilgers & Pipkin [21] for elastic plates isolated from other media.

For fluid films the associated restriction on minimizing states follows by using

(3.6), (6.4) and (6.10) to reduce (7.15) to the form

1
4
FHH + 2xFHK + x2FKK ≧ 0 where x = b̃αβςαςβ . (7.16)

In this expression the first-order derivative of F with respect to H does not appear

because H is a linear function of the matrix bαβ; the first-order derivative with

respect to K does not appear because the second derivatives of K with respect to

this matrix involve the permutation tensor density in such a way as to make no

contribution to (7.15).

For incompressible films (cf. (6.23)), several forms of the function F̄ (H, K)

compatible with (7.16) have been proposed. Among them, Helfrich’s function [7]

ρF̄ = α(H − H0)
2 + βK, with α > 0, (7.17)

has been the most widely applied and studied. The spontaneous curvature H0 is a

parameter introduced to render the energy an non-even function of the curvature

tensor. The resulting formulation is thought to furnish an appropriate model for



monolayer films such as those associated with oil-in-water or water-in-oil emul-

sions [1]. Bilayer response is recovered by setting H0 = 0. Some writers model

morphological phase transformations by allowing H0 to depend on amphiphile

concentration, which in turn is the principal factor influencing local film chemistry

[50].

Existence theory for the local equilibrium equations based on Helfrich’s func-

tion and related functions has been discussed by Nitsche [51]. However, from the

viewpoint of variational theory, Helfrich’s model is deficient in the sense that the

energy of a given film is generally not bounded below. This is easily seen with

reference to compact orientable films by applying the Gauss-Bonnet formula

∫

ω

Kda = 4π(1 − g), (7.18)

where g is the genus [52]. For β > 0, the second term in (7.17) contributes a term

to the total film energy that decreases without bound as g increases. The same term

contributes only a fixed constant to the energy in the presence of the topological

constraints imposed by some writers [7, 11].

A simple alternative model for bilayers, as yet unexplored, may be based on

the assumption that F̄ is a function of K depending parametrically on temperature

and amphiphile concentration. At fixed concentration and temperature, the graph

of such a function might exhibit local minima at K > 0, = 0, and < 0. These

correspond to points of convexity of the energy in accordance with (7.16). The

first alternative promotes the formation of spherical vesicles interspersed in the

bulk fluid; the second, developable surfaces, including the cylindrical and lamellar

phases; and the third, the bicontinuous phases associated with compact orientable

surfaces having large genus [3, 4]. In the latter case the minimizing value of K

cannot be achieved at all points of the film as there are no surfaces in 3-space

with constant negative Gaussian curvature [53]. Nevertheless it is appropriate to

conjecture that configurations with high genus are promoted by a sufficiently deep

and wide energy-well spanning an interval of the domain of F̄ in which K < 0.

The structure of the energy-wells might depend on concentration and temperature

in such a way as to favor some of these structures over others in accordance with

the observed phase behavior of the particular system at hand.
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