

AN ABSTRACT OF THE THESIS OF

Patrick Neill for the degree of Master of Science in Computer Science presented

on June 5, 2008.

Title: Fluid Flow on Interacting, Deformable Surfaces

Abstract approved:

Eugene Zhang

Fluid simulation is an interesting research problem with a wide range of

applications including mechanical engineering, special effects in movies and

games, and scientific simulation. Due to the complex nature of typical fluid flow

equations, there are circumstances where a full volumetric fluid simulation may

not be necessary to generate the desired effect. Fluid flow on surfaces, such as in

the case of rain-drops or moving rivers, can be solved more effectively by using a

surface simplification to the normally expensive 3D Navier-Stokes equations. We

present such a system in which the user can guide fluid flow on surfaces that are

not only deforming, but also colliding with other surfaces in an environment. We

also describe a technique for rendering the fluid on surfaces as a height field,

which allows nearly volumetric effects to be achieved through a computationally

less expensive surface simulation. Such a framework, we believe, can be extended

to allow interactive control and visualization of surface flows carving into surfaces.

c©Copyright by Patrick Neill
June 5, 2008

All Rights Reserved

Fluid Flow on Interacting, Deformable Surfaces

by

Patrick Neill

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented June 5, 2008
Commencement June 2009

Master of Science thesis of Patrick Neill presented on June 5, 2008.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electric Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Patrick Neill, Author

ACKNOWLEDGEMENTS

I would like to thank all the students in the Graphics Lab at Oregon State

University for assisting in my excellent education over the years. I would

especially like to thank Eugene Zhang for all the thorough discussions we had as

we worked through the material presented in this thesis. To Ron Metoyer for

getting me into research as an undergraduate, and to Mike Bailey for his

never-ending enthusiam for everything graphics related. Two years is too short of

a time to be working with such great people!

TABLE OF CONTENTS

Page

1 Introduction 1

2 Literature Review 6

2.1 Conventional Fluid Dynamics . 6

2.2 Surface-based Fluid Dynamics . 7

2.3 Deformation in Computer Graphics 9

3 Background 11

3.1 Fluid Dynamics . 11
3.1.1 Navier-Stokes Equations . 11
3.1.2 Domain Discretization . 14
3.1.3 Advection . 16
3.1.4 Diffusion . 18
3.1.5 Projection . 19
3.1.6 Boundary Conditions . 23
3.1.7 Numerical Considerations 24

3.2 Surface Deformation . 26

4 Fluid Flow on Interacting Deformable Surfaces 29

4.1 Fluid Dynamics on Surfaces . 29
4.1.1 Parallel Transport . 33
4.1.2 Surface Interpolation Using Parallel Transport 36
4.1.3 Particle Advection on Surfaces 37
4.1.4 Diffusion on Surfaces . 41
4.1.5 Projection on Surfaces . 42
4.1.6 Numerical Considerations 42

4.2 Surface Deformation . 44
4.2.1 Incorporating Physics . 45
4.2.2 Fluid-Deformation Interaction 46

5 Results 48

5.1 User-Interaction . 48
5.1.1 Fluid Control . 48

TABLE OF CONTENTS (Continued)

Page

5.1.2 Deformation Control . 49

5.2 Visualizations . 50
5.2.1 Vector Field . 52
5.2.2 OpenGL . 52
5.2.3 POV-Ray Post-Process . 55

6 Conclusion 57

6.1 Future Work . 57
6.1.1 Height-field Description of Surface-Fluid 57
6.1.2 Fluid-Deformation Coupling 58
6.1.3 2D-3D Fluid Transferance 58
6.1.4 CPU Multicore . 59
6.1.5 GPU Implementation . 60

6.2 Final Thoughts . 60

Bibliography 61

LIST OF FIGURES

Figure Page

1.1 A planar simulation of fluid dynamics (Source: Author). 2

1.2 Fluid flowing on a deformable surface. Even though the fluid ap-
pears volumetric, fluid flow is directly computed on the triangular
surface. 4

3.1 The collocated grid (left) suffers from non-trivial null-spaces, which
are avoided by using a staggered grid representation (right). 15

3.2 Example of Semi-Lagrangian advection. The starting vector field
(left) is traced backwards in time from each node (middle), and
velocities are transported to the starting nodes resulting in an ad-
vected velocity field (right). 17

3.3 Meshless shape matching linear deformation (top) versus quadratic
deformation (bottom). 28

4.1 Velocities, u, are stored on vertices while pressure values, p, are
stored on the barycenter of triangles (left). Local coordinate frames
with corresponding tangential velocities are shown in red for vertices
j, k, and l (right). 30

4.2 An intuitive globally assigned direction of south on a sphere leaves
singular points at the poles, where the direction south becomes am-
biguous and difficult to deal with. 32

4.3 The vector Vp-Vq represents the geodesic that the red vector is
transported on (left). The vectors in the tangent planes are rotated
according to the angle differences between the geodesic and the x-
axis (right). 34

4.4 The one-ring neighborhood of a vertex is parameterized onto a unit
disc, where we evaluate which triangle contains the velocity. 39

4.5 Forces due to direct impacts intuitively create divergence forces on
the tangential velocity field, which are quickly eliminated during
pressure projection. Angular forces caused by rotations create curl
forces which are suitable for incompressibility. 47

5.1 The controls available to the user during the Open-GL visualization. 49

LIST OF FIGURES (Continued)

Figure Page

5.2 Fluid flow on the motionless rigid Bunny surface, where the user is
interactively adding density to the low-quality visualization. 50

5.3 A deformation force is applied to a bunny with the words FLOW
textured on. 50

5.4 Vectors representing velocities at a given vertex are shown in blue. . 51

5.5 Deforming shapes with fluids flowing on their surfaces collide. . . . 52

5.6 Surface geometry being displaced negatively (left) and positively
(right) by an advected and diffused height value. 53

5.7 Timing in seconds per frame averaged over 100 frames on Intel Core
2 Duo 3.0Ghz with NVIDIA 8800GT. 54

5.8 The torus and bunny collide! . 54

5.9 Torus and Sphere surfaces are displaced according to an advected
height scalar and rendered in a post-processing step through POV-
Ray. 55

DEDICATION

To my family for supporting and inspiring me, and to Sierra for patiently

listening to me when I became especially excited about a math topic.

Chapter 1 – Introduction

The physical simulation of fluid is a difficult problem! Näive implementations of

fluid simulation can be programmed in under a day. In stark contrast, a highly

accurate and accelerated fluid simulator can be the topic of research and devel-

opment for years. Implementing this type of simulation requires a wide breadth

of knowledge. For example, an in-depth understanding of differential equations

describing the physical motion of fluid is a problem a physicist or mechanical en-

gineer can handle. Careful numerical considerations are also required in order to

ensure numerical error doesn’t propagate exponentially through the simulation;

topics mathematicians are suited for. A computer scientist, on the other hand, is

best equipped to handle the rendering, visualization, acceleration, and control of

the fluid.

The focus of this thesis is to provide a background and material study on a

specific sub-problem in fluid dynamics: fluid flow on deforming, colliding surfaces.

The majority of fluid simulators operate on either a planar or volumetric domain,

i.e. in two or three dimensions. An example of a two dimensional simulation is

shown in Figure 1.1. Space is discretized according to finite differencing methods,

which are used to solve the differential equations describing the fluid flow. Addi-

tional constructs such as particle tracing or higher order interpolation methods are

also defined in order to assist with accuracy and efficiency. The work we present in

2

Figure 1.1: A planar simulation of fluid dynamics (Source: Author).

this thesis deals with fluid flow on deforming surfaces. We feel that restricting the

domain of computation to a surface will achieve attractive properties for certian

special effects especially suited to that domain. As primary motivation for our

research, many physically interesting fluid phenomena can be intuitively simplified

to a deforming, surface-like representation. Examples of such physical behavior

are large-scale oceans and other slow fluid flows, rain-drops flowing down surfaces,

paintings on flexible surfaces, and dynamically flow-like deformations.

Fluid flow on surfaces may also present an attractive, relatively inexpensive

alternative to computing full volumetric simulations. Volumetric simulations of

fluids, while producing a wide range of fluid-like effects, traditionally suffer from

a lack of control and interactivity. There is also the difficult question of how to

deal with the complex interface between a voxelized volume and non ’grid’ aligned

geometry. A planar simulation, on the other hand, offers the user an interactive

3

environment to design and control fluid flow. Planar simulations, however, are too

restricted to be used in environments where underlying computational domains

are non-planar. Fluid flow on surfaces may offer a compromise between the planar

and volume case, achieving effects that are not achievable in planar simulations,

or effects that require complex interface handling in volumes. Fluid flow on a

dynamic, deforming medium also presents an interesting physical and numerical

challenge. How does the deformation effect the flow of the fluid? How does the

flow of the fluid effect the deformation of the surface? What are the numerical

issues associated with a dynamically changing computational domain?

The set of problems related to the flow of a fluid on deformable surfaces is

not simple. One has to deal with an irregular discretization over the surface. To

emphasize interactivity, the collection of partial differential equations of Navier-

Stokes have to also be solved over the surface in a fraction of a second. Adding

deformation into the system causes the differential properties of the surface to

dynamically change, which prevents important pre-computation present in other

fluid simulators. One also has to deal with the ambiguity associated with vectors

lying in different tangent planes, a classic differential geometry problem of lack-

ing global parameterizations. Since the surface is embedded in three dimensions,

surface-to-surface interaction in the form of collisions or transference of fluid is an-

other topic the system needs to address. Functionalities that allow the control and

design of fluid and deformation also need to be implemented. This thesis discusses

how to couple these features together in a comprehensive, interactive framework.

An example of an image generated by this system is shown in Figure 1.2.

4

Figure 1.2: Fluid flowing on a deformable surface. Even though the fluid appears
volumetric, fluid flow is directly computed on the triangular surface.

Therefore, this thesis presents the following contributions.

1. A unified framework and a system for the simulation of fluid flows on de-

formable and interacting surfaces. To the best of our knowledge, this is the

first time such a system has been developed.

2. At the core of this system is a numerical fluid solver that not only is stable

during surface deformation, but also supports efficient computation such as

performing diffusion, Helmholtz-Hodge decomposition, and Semi-Lagrangian

advection on surfaces.

3. We discuss vital ideas such as geodesic polar maps and parallel transport

from classical differential geometry and apply them to the solution of fluid

flow on surfaces.

5

4. We provide a set of functionalities that allows the user to design and con-

trol not only the density and velocity of the fluid but also the motion and

deformation of the underlying surface.

5. We present various visualization techniques which assist in the control and

design of the fluid and deformation of the surface. As a proof-of-concept

for emulating volumetric surface fluids, a high quality post-process rendering

step is also presented which gives the illusion of volumetric flow on surfaces.

6

Chapter 2 – Literature Review

2.1 Conventional Fluid Dynamics

Solving various forms of the Navier-Stokes equations has been a thoroughly re-

searched problem. Foster and Metaxas [13] provide a finite-differencing approach

with explicit integration steps to simulate gas motion in a volume. Their use of

explicit integration introduces numerical instability during advection and diffusion

for large time steps. Later Stam [43] showed that through the use of implicit

integration for diffusion and semi-Lagrangian advection, the previous time-step

constraint can be eliminated at the cost of introducing numerical dissipation typ-

ically present in implicit numerical methods.

Ensuring fluid incompressibility is typically done through Helmholtz-Hodge

Decomposition. Restricting the computational domain to a regular grid of same-

sized cells makes Helmholtz-Hodge decomposition and semi-Lagrangian tracing

easy to define. It is much more difficult for triangular or tetrahedral meshes due

to irregular tessellation. Polthier and Preuss [28, 29] define Helmholtz-Hodge

decomposition of discrete vector fields on arbitrary surfaces. Their work was later

extended by Tong et al. [49] to irregular 3D tetrahedral volumes. Our model of

Helmholtz-Hodge Decomposition on surfaces follows the work found in [49] in a

straightforward fashion.

7

Evolving the front of a fluid accurately requires precise tracking and correction

to achieve realistic fluid-to-air interactions. Massless marker particles are typically

used with an implicit surface representation in order to achieve a high order of

numerical accuracy [12, 9]. Losasso et al. [24] provide an effective way of handling

multiple front interactions between fluids of different compositions. Intelligent

particle placement algorithms also help with preserving certain features of the

fluid like vortices [36, 14]. By combining a height field underneath the surface

with a full volumetric simulation near the surface front, Irving et al. [17] are able

to concentrate computational time on regions most visible by the user. Resolving

the interface between dynamically moving objects and fluids was recently addressed

by Carlson et al. [6].

2.2 Surface-based Fluid Dynamics

Work describing fluid flow on surfaces has been less covered than volumetric simu-

lations. The primary problem with fluid flow on arbitrary surfaces is that the semi-

Lagrangian advection and diffusion are more difficult to define. Stam [44] originally

proposed the use of Catmull-Clark subdivision surfaces in order to transform the

Navier-Stokes equations to a parameterized domain where all tangent planes are

continuous. This effectively eliminated the ambiguity associated with vectors de-

fined on different tangent planes, allowing tracing and diffusion to occur identically

to the planar case. The use of the Catmull-Clark subdivision surfaces allowed the

Navier-Stokes equations to be solved on a surface, but not without noticeable ar-

8

tifacts due to the distortion introduced by surface parameterization, and the extra

cost incurred by working in such representations. While their technique did much

to reduce distortions through the use of a deformation metric, artifacts were still

present, specifically on the boundaries between patches.

Shi and Yu [37] presented an idea of solving the Navier-Stokes equations directly

on the mesh without the use of special surfaces. The paper makes use of Geodescic

Polar maps, used also by [54, 30, 22, 59], to transport vectors defined on vertices to

incident triangles. Shi and Yu [37] also presented an interesting advection method,

where the curved mesh is essentially rotated into a flat planar representation in

the direction of the tracing.

Wang et al. also presented a framework similar to ours, but used a general-

ized version of the Shallow Wave Equations instead of Navier-Stokes [52]. Their

work used a completely implicit integration scheme, ignored velocity advection

and diffusion, and incorporated external forces, surface tension, and rigid body

interactions from earlier work.

Fluid design and control is important to animators who would rather deal with

the high level control rather than low level variable tweaking. Patrick Witting

presents an approach on incorporating fluid dynamics into a tradional animation

environment [55]. McNamara et al. [25] make use of the adjoint method and

emphasize control over the fluid surface through minimizing objective functions.

Shi and Yu discuss controlling smoke with objects [38], and creating force fields to

influence the fluid into certain shapes or animations [39].

9

2.3 Deformation in Computer Graphics

The field of deformation can be classified into a few different categories, each

with distinct benefits and disadvantages. Since deformation is not the primary

contribution of this thesis, interested readers can refer to [27] for a more complete

introduction to the field.

Non-physically based methods focus on controlling and designing qualities

about the object, and emphasize the preservation of certain features of the sur-

face or volume while the shape is undergoing deformation. Some existing tech-

niques [51, 15] that preserve volume and provide control mechanisms that make

deformation design simpler. An intuitive deformation controller based on Inverse

Kinematics is presented in [46]. A technique that preserves surface features such as

distance-preserving or angle-preserving while the model undergoes shape interpo-

lation or extrapolation is presented in [20]. Finally, animated deformation transfer

between two vaguely related animationed shapes is demonstrated by Sumner et

al. [45].

Performance based methods focus on acquiring a plausible, not necessarily

physically based deformation in real-time. Primary applications include interactive

applications such as games or educational tools. Typically these techniques are also

merited by their ease of implementation when compared to other classes of meth-

ods. Mass-spring systems found in common literature simulate deformation-like

behavior at real-time speeds. They do, however, suffer from numerical instabil-

ity and generally non-plausible deformations. By combining the intuition gained

10

from mass-spring systems with a process known as shape matching, Matthias et

al. and Rivers et al. [26, 34] eliminate numerical instability and incorporate non-

linear deformations in a real-time, easily-controllable framework. [19] provides an

interesting approach where deformations of a model are described by a hierarchical

tree structure, with physical forces being applied to the bounding geometry rather

than the actual model.

Physically based methods usually use a finite element method in which the

model undergoing deformation is volumetrically discretized into tetrahedra. Phys-

ical descriptions of the deformation are usually coupled with volume preservation

constraints solved by energy minimization to generate the most physically realistic,

albeit slowest, class of deformations. Fundamental literature on elastic deforma-

tions based on finite differencing and finite elements is described in [47]. Finite

element methods for representing different types of deformations are seen in [18, 3].

When large deformations occur, the model may become inverted due to extreme

forces or numerical error accumulation. Irving et al. [16] demonstrate a finite el-

ement method which can handle such mesh inversions. Finally, Wu et al. [56]

show that nonlinear finite element methods can be computed interactively, if the

simulation concentrates on features which are identified by progessive meshing.

11

Chapter 3 – Background

3.1 Fluid Dynamics

The background of knowledge required in computational fluid dynamics is indeed

large. There are a variety of methods available, each with advantages and dis-

advantages. For the sake of clarity and conciseness, I will only present simple

solutions to the required equations. A short introduction to fluid dynamics on an

evenly discretized domain is presented here.

3.1.1 Navier-Stokes Equations

To be able to simulate how an incompressible constant density fluid flow changes

over time, we will need equations describing the differential behavior of the system.

There are a collection of Partial Differential Equations(PDEs), known commonly

as the Navier-Stokes equations, which describe this behavior over time:

∂~u

∂t
+ (~u · ∇)~u +

1

ρ
∇P = ν∇ · ∇~u + ~f (3.1)

∇ · ~u = 0 (3.2)

Each term has a fairly intuitive solution, at least for the purposes of this thesis.

A good starting point is to first deal with each term individually. ~u represents the

12

velocity of the fluid, so ∂~u
∂t

represents the change in the fluid’s velocity over time.

This term is what we will be eventually using to advance our simulation during

each time-step.

The second term, (~u ·∇)~u, is usually called advection, transport, or convection.

The form of this equation is a bit of an abuse of notation (what is the dot product

with the gradient operator anyways?), but will be explained in Section 3.1.3. Com-

bining this term with the first term gives us ∂~u
∂t

+ (~u · ∇)~u, which is usually called

the material derivative, convective term, Lagrangian, Stokes, or particle derivative.

1
ρ
∇P represents the forces that high pressure regions of the fluid exert on low

pressure regions. P represents the potential of these forces, while ρ represents the

density of the fluid or gas. Incompressible fluids aggressively attempt to maintain

constant pressure, as is implied in the name. Visually, this manifests itself as forces

applied to the fluid that force the conservation of mass and momentum. We will

be using this term in order to correct the velocity field so that mass or energy,

ideally, is not introduced or taken away from the simulation. Due to numerical

issues, enforcing the conservation of mass turns out to be a rather tricky task. This

step is typically called pressure projection, and is discussed in Section 3.1.5.

The diffusion term, ν∇ · ∇~u, is a term usually left out in most fluid simulators.

The constant ν, called the kinematic viscosity, is defined as the dynamic viscosity

divided by the density of the fluid, or µ/ρ. The term ∇ · ∇, also written as ∇2 or

∆, is known as the Laplacian or Laplace operator and represents the tendency of

fluid flow at a point to move at the same speed as the fluid around it. Think of it

as an averaging, or smoothing operator. A high viscosity correlates to a fluid like

13

oil or molasses, while a low viscosity allows for fluids like water or air. Diffusion

will be discussed in Section 3.1.4.

The last term, ~f , represents all external forces to the fluid like user input, or

gravity.

We will now look at how to solve Equation 3.1. The key to the equation

is incompressibility (Equation 3.2) and to utilize a technique called splitting in

which we handle each component in the PDE separately in an iterative manner.

Assuming we have functions named advect for advection, diffuse for diffusion, and

project for pressure projection, a basic pipeline for finding ut+1 from an initial

vector field ut might look like:

1. ua = advect(ut)

2. ud = diffuse(ua)

3. uf = ud + f t

4. ut+1 = project(uf)

Advection, diffusion, and incorporating external forces can be solved directly by

numerical algorithms. To solve for the pressure projection found in step 4, a slight

modification to the Navier-Stokes equations must be made which will be shown in

Section 3.1.5.

We will now discuss numerical methods for solving each step of the pipeline.

14

3.1.2 Domain Discretization

How we decide to discretize the domain of computation has wide-ranging implica-

tions. An excellent explanation of domain discretization is found in [5], which is

paraphrased and extended upon here.

For simplicity purposes, let’s first assume we are working in a plane with an

regular grid-like discretization. This type of spatial discretization and solution is

called an Eulerian framework. A Lagrangian framework, on the other hand, would

have us using particle tracing, but the definition of a derivative becomes non-

trivial. In an Eulerian description, all information can be stored in the center of a

grid cell. This is typically called a collocated grid due to all of the information

being stored in one location. For a given scalar q in cell i, qi, the description of

the derivative in a single spatial dimension x using a central differencing scheme

becomes:

(
∂q

∂x
)i =

qi+1 − qi−1

2∆x
(3.3)

This equation, using a Taylor Series expansion and simplifying, is accurate to the

second order. While the level of accuracy seems acceptable, a more serious problem

exists: the sample point qi is not considered in the computation of the difference.

Imagine a scenario that tries to find if the first derivative of a given function are

zero, i.e. determine if a function is constant. [5] uses the example qi = (−1)i. As

long as qi−1 is equal to qi+1, (∂q
∂x

)i will show a constant difference at qi no matter

what qi actually is! This comes down to the null-space of equation 3.3 containing

15

Figure 3.1: The collocated grid (left) suffers from non-trivial null-spaces, which
are avoided by using a staggered grid representation (right).

more functions than simply the ones evaluating to zero.

The solution to this is to use a staggered grid, also known as a Marker-

and-Cell (MAC) grid. In this situation, quantities are stored on the edges of a

cell as well as in the center. See Figure 3.1 for more information. The description

of a derivative computed at the center of a cell, when a quantity q is stored on the

edges of a cell is therefore:

(
∂q

∂x
)i =

qi+1/2 − qi−1/2

∆x
(3.4)

This formulation is also accurate to the second order, and avoids the differencing

issue of equation 3.3. For convenience purposes, we store fluid velocity ~u on cell

edges, and pressure values p on cell centers. The extension to three dimensions is

relatively straightforward.

16

3.1.3 Advection

At first glance, the equation representing advection can be solved, for example,

through typical finite central differencing methods as described in the previous

section. In the case of advection, advecting a vector quantity ~u gives us:

∂~u

∂t
+ (~u · ∇)~u = 0

By using central differencing for the spatial derivative, and forward differencing

for time on a collocated grid:

~un+1
i − ~un

i

∆t
+ ~un

i

~un
i+1 − ~un

i−1

2∆x
= 0

And finally rearranging in a common Forward Euler style gives us the integratable

equation:

~un+1
i = ~un

i + ∆t~un
i

~un
i+1 − ~un

i−1

2∆x
(3.5)

There is, however, a stability problem with using Forward Euler in this manner.

The region of absolute stability for Forward Euler is extremely small, so for even

reasonable values of ∆t and ∆x, stability of this solution would still give us prob-

lems. Other integrators, such as higher order Runge-Kutta, would merely delay

the error propagation because the problem is specifically with central differenc-

ing on this type of PDE(hyperbolic). If explicit integrating is required, there are

17

Figure 3.2: Example of Semi-Lagrangian advection. The starting vector field (left)
is traced backwards in time from each node (middle), and velocities are transported
to the starting nodes resulting in an advected velocity field (right).

”upwind” differencing techniques which choose a biased direction for computing

derivatives based on the direction the wave is traveling.

An alternative, and often a bit more intuitive, unconditionally stable solu-

tion called Semi-Lagrangian advection will now be covered. Originally presented

to the graphics community by Stam [43], Semi-Lagrangian advection acquires its

name from performing a Lagrangian-like integration to compute a Eulerian calcu-

lation. The Lagrangian part of the name comes from tracing a particle through a

domain, while the Eulerian calculation comes from the discretized grid represen-

tation of space. It starts by asking the question, what will the velocity at a given

point be at the next time step? The answer is, whatever velocity is advected to

that specific point during the current timestep. Using this intuition, from a given

cell i we trace a massless particle backwards through the velocity field a distance of

∆t. Typically Forward Euler is good enough, although higher order Runge-Kutta

methods will help maintain vortices and defined features of the fluid. From the

end point, we interpolate (bi-linear in the grid case) between the nearest neigh-

18

bors. This interpolated value is transported back to the original spot, where the

process is repeated for every cell. Refer to Figure 3.2 for more information.

3.1.4 Diffusion

Solving for the diffusion component is a bit more difficult, as it involves solving a

large sparse symmetric positive definite matrix of linear systems. As stated before,

diffusion describes the viscosity of the fluid, which is the tendency of a fluid to move

at the speed of its neighbors. Again, the diffusive term is:

ν∇ · ∇~u =
∂~u

∂t

The term ∇ · ∇ is commonly referred to as the Laplace operator, ∆, which is

also very similar to the Laplacian in both form and function. An excellent source

discussing the Laplace operator is found in [53]. We will be using the discrete

version to numerically approximate the operator. By using a central differencing

approach for a two dimensional staggered grid, with velocity ~u = (u, v), we get

the following equation for grid cell i, j and grid spacing ∆x = ∆y for diffusing

component u with constant viscosity ν:

(ν∆u)i,j =
∂~u

∂t

ν(
ui+1/2,j + ui−1/2,j − 2ui,j

∆x2
+

ui,j+1/2 + ui,j−1/2 − 2ui,j

∆x2
) =

∂~u

∂t
ν

∆x2
(−4ui,j + ui+1/2,j + ui−1/2,j + ui,j+1/2 + ui,j−1/2) =

∂~u

∂t
(3.6)

19

The same is repeated for each component of ~u. The series of equations generated

from 3.6 can be easily written in Matrix-Vector form, Ax = f , with x being the

vector of velocity unknowns, and A being the matrix of coefficients of Equation 3.6.

Matrix A is typically modified by dividing by -4, leading to a very well-conditioned

and intuitively calculated matrix. Solving for all the components of ~u in a single

matrix can easily be done, although care should be taken in ordering the com-

ponents so the matrix stays diagonally dominant. The matrix A turns out to be

sparse and symmetric positive definite, which is very easy to solve with typical

numerical algorithms. Note that the coefficients of A are directly associated with

the numerical approximations of the derivatives. In the next chapter, we will see

that due to the non-uniformity and directional ambiguity of surfaces, matrix A is

much more difficult to setup.

3.1.5 Projection

The solution for the Navier-Stokes equations relies on the enforcement of incom-

pressibility. Using vector calculus, this measurement of compressibility can be

computed by the divergence operator, ∇·. With this operator, equation 3.2 can

be interpreted as ”the divergence of the velocity field u is equal to zero”. The

opposite of the divergence operator, which measures incompressibility, is known as

the curl operator, ∇×. Incompressible fluids consist of all curl, and no divergence.

These operators are a slight abuse of notation, but treating the gradient as simply

a vector of partial derivatives will derive more familiar forms. For example, here

20

are the per-component three-dimensional operators with a vector ~u = (u, v, w):

∇ · ~u = ∂
∂x

u + ∂
∂y

v + ∂
∂z

w

∇× ~u = (∂
∂y

w − ∂
∂z

v, ∂
∂z

u − ∂
∂x

w, ∂
∂x

v − ∂
∂y

u)

Typically we interpret the curl vector as an axis of rotation that the fluid is moving

around at a given point. Suppose that we were able to solve every term in the

equation except the pressure term, 1
ρ
∇P . We would then have a fluid flow which

would violate incompressibility, due to the forces generated by the pressure not

being present. By measuring the divergence of the current flow field after advec-

tion, diffusion, and external force addition, we can solve for the correct amount of

pressure to apply to the field in order to enforce incompressibility via equation 3.2.

This is done by first measuring the divergence of the current vector field after

advection, diffusion, and external force addition:

∇ · (
∂~u

∂t
+ (~u · ∇)~u +

1

ρ
∇P) = ∇ · (ν∇ · ∇~u + ~f)

Followed by rearranging the terms:

∇ · (
∂~u

∂t
) + ∇ · (

1

ρ
∇P) = ∇ · (−(~u · ∇)~u + ν∇ · ∇~u + ~f)

Notice that the first term, ∇ · (∂~u
∂t

), making the reasonable assumption that the

derivatives are sufficiently smooth, can be rewritten as ∂
∂t

(∇ · ~u). By equation 3.2,

the incompressibility constraint, this term is equal to zero. Rewriting and solving

21

for P:

∇ · (
1

ρ
∇P) = ∇ · (−(~u · ∇)~u + ν∇ · ∇~u + ~f) (3.7)

Once we know P , we can subtract 1
ρ
∇P from the divergent field to find the in-

compressible field. The final vector field at timestep n + 1 for an advected and

diffused vector field at timestep n is therefore:

~un+1 = ~un − ∆t
1

ρ
∇P (3.8)

An associated theoretical description, called Helmholtz-Hodge decomposition, de-

scribes the process in the context of vector fields [29, 28, 49]. Equation 3.7 is often

called a Poisson Equation, and is similar to how we solved diffusion in Section 3.1.4.

In fact, the matrices composed on the left-hand side are the exact same (in the case

of solving diffusion for a single scalar). Note, however, that the right-hand side of

the equation is not zero like in the diffuse case, but rather the divergence of the

vector field at timestep n after advection, diffusion, and external force addition.

An excellent description of the following material is found in the pressure equa-

tions section of [5]. The authors’ derivations are summarized and extended upon

here. To be able to calculate divergence for the right hand side of the Poisson

Equation 3.7, we make use of discrete version of the divergence and curl operators.

For example, for a two dimensional staggered grid representation at grid cell i,

22

with ~u = (u, v) and ∆x = ∆y, the discrete divergence is equal to:

(∇ · ~u)i = ∂
∂x

u + ∂
∂y

v

= 1
∆x

((ui+1/2,j − ui−1/2,j) + (vi,j+1/2 − vi,j−1/2)) (3.9)

We are enforcing incompressibility at the next timestep, therefore we use Equa-

tion 3.8 to write Equation 3.9 in terms of the current timestep n, to get the following

derivation for (un+1
i+1/2,j − un+1

i−1/2,j):

((ui+1/2,j −
∆t

ρ∆x
(Pi+1,j − Pi,j)) − (ui−1/2,j −

∆t

ρ∆x
(Pi,j − Pi−1,j))) (3.10)

And for (vn+1
i,j+1/2 − vn+1

i,j−1/2):

((vi,j+1/2 −
∆t

ρ∆x
(Pi,j+1 − Pi,j)) − (vi,j−1/2 −

∆t

ρ∆x
(Pi,j − Pi,j−1))) (3.11)

Take note that the unknowns in the equation are the pressure values, P. Collect

like terms, and move the velocities over to the right-hand side to get the completed

two-dimensional equations that need to be solved:

∆t
ρ∆x2 (4Pi,j − Pi+1,j − Pi−1,j − Pi,j+1 − Pi,j−1) =

1
∆x

(ui+1/2,j − ui−1/2,j + vi,j+1/2 − vi,j−1/2) (3.12)

We now collect all the terms in the form of Ax = b where A is a matrix known

as the discrete Laplacian, and b is a vector representing the divergence of the vector

23

field at the current timestep. This can be solved by using a variety of numerical

solvers, such as the Bi-Conjugate Gradient Solver (BCGS) found in [31]. This is

such a not so straight-forward derivation, but the actual implementation details

stay fairly concise.

3.1.6 Boundary Conditions

Until now, we have been assuming that the computational domain is all fluid, and

that the boundary conditions, like the edge of the domain, are not handled. We

will now discuss two boundary conditions of upmost importance to fluids.

The first, Dirichlet boundary conditions, are applied to free surfaces of the fluid

such as movement of the fluid into air. By making the observation that fluid is

able to freely move into such regions, setting the pressure in an air cell to zero will

produce the correct behavior. Notice that we literally do just that in the previous

equations. For an air cell i, j, we set the corresponding pressure in the cell, Pi,j =

0, and modify the Discrete Laplace operator accordingly.

Neumann boundary conditions occur when the fluid encounters an obstacle.

Naturally, the fluid should not leak through the solid, but rather slide along it

or bounce off. Written in the language of pressure, the pressure values on the

boundaries need be solved for so that the velocity of the fluid at the boundary

points normal to the object is equal to the normal velocity of the object. This will

allow the fluid to slide by without penetrating through the object. We therefore

need to solve for a pressure value that will enforce this constraint. Assuming us is

24

the velocity of of the solid:

Pi+1,j = Pi,j −
∆t

ρ∆x
(ui+1/2,j − us) (3.13)

In the case of the discrete Laplace operator in Equation 3.12, this amounts to

decrementing the diagonal, and adding the second term in Equation 3.13 to the

right hand side.

This formulation is not completely physically correct, as the projection of the

fluid’s velocity onto an object’s normal should be greater than or equal to zero,

rather than strictly zero. However, enforcing an inequality constraint is beyond

the scope of this thesis. For further reference, see [4] for an excellent discussion of

an alternate solution which incorporates inequality constraints.

3.1.7 Numerical Considerations

A discussion of the numerical complexities of fluid simulations can take an entire

thesis to explain. I will limit my discussion here to concepts that I have personally

encountered or found useful.

When trying to represent a fluid like water it is important to maintain a high

degree of numerical accuracy. Numerical errors typically manifest themselves as

the dissolution of features in the fluid, and can be interpreted as diffusion. This

will amount to key fluid visual features like vortices or waves failing to form or

maintain structure. Diffusion, in most cases, should probably be dropped, and

25

Semi-Lagrangian advection should use a higher-order tracing scheme, such as the

midpoint or trapezoidal method.

Interpolation methods also need to be considered. Since interpolation amounts

to an averaging of neighbors, high frequency signals in the velocity field tend to be

smoothed out. Higher-order interpolation methods help keep this smoothing to a

minimum, but tend to be a bit cumbersome to implement. An effective method was

described by [52], in which boundary cells are tracked and initialized with negative

values in order to describe the fluid-air interface more accurately. By using a type

of fast-marching method, C1 continuity can be achieved along the fluid interface,

and high quality results can be maintained throughout the simulation. This does

not address interpolation inside a fluid region. This same type of reasoning can

be applied to Neumann boundary conditions, where the pressure in the solid cell

can be set to a value that, during interpolation, accurately describes the interface

between the fluid and the solid. These negative values applied to the boundary

cells are typically call Ghost pressures.

Another way of improving interface tracking is by combining the Eulerian me-

chanics of a grid, with the Lagrangian mechanics of particle tracing. Fluid simula-

tors using Lagrangian mechanics are typically called particle methods. By incor-

porating a grid-based implicit surface representation of the fluid-air interface, the

so called particle level-set methods are created. They represent the most accurate

and computationally expensive fluid simulators in modern research.

26

3.2 Surface Deformation

Since the primary contribution of this thesis is in the area of fluid dynamics and

control, not deformation, only the deformation technique implemented by this

thesis will be covered.

The deformation algorithm used by our system is a method based on shape

matching first presented in [26]. For reference, a summary of their technique is

presented here. In typical mass-spring models with explicit integration schemes,

like Forward Euler or Runge-Kutta, care must be taken in choosing the timestep

and spring stiffness due to the possibility of overshooting the equilibrium.

Meshless shape matching addresses the problem of updating velocity by cre-

ating an unconditionally stable integration scheme which does not overshoot the

equilibrium, thus always conserving momentum. In this scheme, the mesh is rep-

resented by two sets of particles, the mesh in its transformed deformed state, and

the mesh in its resting static state. By matching up a particle in the deformed po-

sition with the static counterpart, the algorithm can design an integration scheme

which moves the particle towards a goal position without erroneously increasing

the energy of the system.

The first step in this algorithm is to find the transformation matrix which

matches the particles representing the static mesh to the deformed state. Let

x0
i and xi be the two sets of particles of mass mi that represent the static and

deformed shapes of the mesh respectively, while xcm represents the center of mass

of particle set x. The goal is to find a rotation matrix R and translation vector t

27

that together best describe the transformation of the static mesh to its deformed

state. The translation vector t is simply the vector that translates the center of

the static mesh to the center of the deformed one. Computing the rotation matrix

R involves first computing a matrix A:

qi = x0
i − x0

cm

pi = xi − xcm

A = (
∑

i mipiq
T
i)(

∑

i miqiq
T
i)−1 = ApqAqq (3.14)

The rotational part R of this matrix is found via Polar Decomposition [40]. Specif-

ically R = ApqS
−1 where S =

√

AT
pqApq represents the symmetric, non-deforming

part of the transformation. Evaluating the square root of a function is done by

diagonalizing the matrix through a method like Jacobi rotation. The square root is

then applied to the eigenvalues of the system before composing the matrix. Once

matrix R has been found, the goal positions and the updates to particle veloci-

ties are found by rotating the original particle, x0
i − x0

cm, by R, and translating

by xcm. By linearly interpolating matrix A with the rotation matrix R during

the transformation process, stretching and shearing can be introduced into the

shape matching. Following the same idea, twisting and bending can be created by

computing a larger matrix which encodes quadratic deformation similar to Equa-

tion 3.14. Our implementation of this method is shown in Figure 3.3.

28

Figure 3.3: Meshless shape matching linear deformation (top) versus quadratic
deformation (bottom).

29

Chapter 4 – Fluid Flow on Interacting Deformable Surfaces

4.1 Fluid Dynamics on Surfaces

While there have been many excellent techniques for solving the Navier-Stokes

equations in planes and volumes volumes, few solvers exist for non-planar surfaces.

There has been some success in this field by storing a height value and velocity at

each surface fluid cell, and solving the Shallow Wave Equations which are a height-

field interpretation of the Navier-Stokes equations. Typically, velocity advection

and diffusion in those frameworks are ignored, while external force integration and

control are enforced through the pressure control of the height field [52]. The

largest contribution presented in this thesis is the interactive, controllable frame-

work of designing and controlling fluids on deformable surfaces, while maintaining

a pure 2D representation of the full Navier-Stokes equations. The only height

field interpretation of the data comes from advecting a scalar quantity along the

velocity field, as covered in Section 5.2.2.

Here, again, is the outline of the fluid simulation part of the framework. To

compute the velocity of the fluid at the next timestep, ut+1, we perform the fol-

lowing operations:

1. ua = advect(ut)

2. ud = diffuse(ua)

30

Figure 4.1: Velocities, u, are stored on vertices while pressure values, p, are stored
on the barycenter of triangles (left). Local coordinate frames with corresponding
tangential velocities are shown in red for vertices j, k, and l (right).

3. uf = ud + f t

4. ut+1 = project(uf)

An overview of some of the issues concerning fluid dynamics on surfaces is now

presented.

It is important to recognize a fundamental difference between a grid represen-

tation and a surface based approach. For every vertex, triangle, and edge in the

mesh, a local coordinate frame is built where values like velocity, pressure, and curl

are stored. This is analogous to the staggered grid approach shown in Section 3.1.2,

where the pressure values are stored in the center of cells, and the velocity is stored

at the edges. This assists, as in the planar and volume case, with differentiation.

The up-vector of the local coordinate plane corresponds to a smooth normal at

a vertex or triangle. The two perpendicular vectors which complete the local ba-

sis, and represent a plane tangent to the surface are chosen arbitrarily as Parallel

31

Transport alleviates the need for locally smooth parameterizations. Also, velocity

in the local coordinate frame representation has only two coordinates. The fluid’s

velocity in the tangent plane is defined as: ~u = (u, v) where (u, v) is a linear com-

bination with respect to the tangent plane basis vectors, i.e. ~u = ue0 + ve1 with

e0, e1 being the two tangent plane basis vectors from the local coordinate frame.

Velocity is stored per-vertex, while curl and pressure are stored at the per-triangle

barycenter. Refer to Figure 4.1 for more information.

Part of the difficulty for solving the Navier-Stokes equations on surfaces is how

exactly do we compute advection, diffusion, and projection. Remember that the

discrete differential operators in an evenly-spaced grid are relatively straight for-

ward to define, shown in Equation 3.9. In a triangle representation, this is not

the case as triangle area and edge length vary dramatically, which can signifi-

cantly complicate derivative computation. However, much research has been done

on effective numerical approximations of derivatives on triangular or tetrahedral

primitives, so we will utilize Mean Value Coordinates as in [11]. We will have to

amend all equations requiring spatial derivatives to use the more accurate surface

based alternative. Specifically, this affects the divergence calculation for projection

in 4.1.5.

A more serious problem also exists in that, on a surface, a question of ori-

entation arises. Specifically, we are easily able to trace particles, interpolate, and

average inside a grid or volume because the orientation in Euclidean space is always

consistent, i.e. we have a clearly defined up, down, left, and right. Non-Euclidean

geometry, such as the surfaces presented in this thesis, do not have a clear orien-

32

Figure 4.2: An intuitive globally assigned direction of south on a sphere leaves
singular points at the poles, where the direction south becomes ambiguous and
difficult to deal with.

tation. This is described in the case of a sphere in Figure 4.2. Any attempt to

flatten or parameterize the surface onto an orientation-consistent plane, for any

sufficiently complex surface, will be met with some amount of distortion [44], or

singularities where derivatives become impossible to solve. Näively ignoring this

problem of orientation causes velocities defined in different coordinate frames to

be operated upon! A solution to this problem is presented in Section 4.1.1.

The deformation of the surface effects the simulation numerically as well as

visually. Large amounts of computation dependent on the differential properties

of the surface, like the Discrete Laplace operator and local coordinate frames, need

to be recomputed if the surface deforms. Physics and deformation also have an

impact on the fluid flow. This behavior is described in Sections 4.2, 4.2.1, and 4.2.2.

The interactive framework presented in this thesis allows the user to control

33

and design fluid flow and deformation. Control and design mechanisms for fluid

flow and deformation are presented in Section 5.1. Effectively visualizing the fluid

flow is also a vital problem. Procedures which allow the display of vector field

quantities as well as fluid density advection are shown in Sections 5.2.1 and 5.2.2.

Since we are essentially doing a 2D simulation on a 3D surface, we need a way

of ”faking” a volumetric fluid behavior, like rain-drops flowing down the surface.

Proof-of-concept of this effect is provided as part of the high-quality visualization

discussed in Section 5.2.3.

4.1.1 Parallel Transport

Parallel Transport gives a solution to the orientation problem locally around a given

point on the surface. The region for transporting between non-oriented coordinate

frames is going to be restricted to sufficiently small regions around a given point,

anything larger is not necessary for our purposes. For example, given a vertex vi,

we can consider coordinate frames centered on adjacent vertices vj and triangles

Tk. For the barycenter of a triangle, Ti, we can consider adjacent vertices vj and

triangles Tk. Between two non-oriented local coordinate frames, we are going to

construct a mapping based on geodesics that will allow us to transport a vector

from one to another, allowing us to do averaging, differencing, and particle tracing

on a surface. See Figure 4.3 for a visual representation of this transportation.

A more technical explanation of connecting geodesics is described by [59]; the

author’s description is summarized here. A geodesics on a curved surface is

34

Figure 4.3: The vector Vp-Vq represents the geodesic that the red vector is trans-
ported on (left). The vectors in the tangent planes are rotated according to the
angle differences between the geodesic and the x-axis (right).

a locally shortest and straightest curve connecting two points. It is basically a

generalization of a straight line in the plane. Given a surface S and two points

p,q ∈ S, there is a geodesics γ connecting them, i.e. if γ(0) = p and γ(1) = q.

Let ~v0 and ~v1 be tangent vectors defined at points p and q, respectively. If the

oriented angle between γ′(0) and ~v0 equals that between γ′(1) and ~v1, then ~v0 and

~v1 are parallel with respect to γ, and ~v1 is said to be the parallel transport of ~v0

along γ. γ gives rise to an orthonormal and bijective linear map between TPp and

TPq, the tangent planes at p and q.

Technical details aside, implementation of Parallel Transport is fairly straight-

forward. Transporting a vector ~v0 defined in the tangent plane of p, TPp, to a

corresponding vector in the tangent plane of q, TPq, is defined as follows:

1. ~upq = p − q where p and q are the two locally close points in world space

35

that we are transporting between.

2. ~up = WorldToLocalp(~upq) and ~uq = WorldToLocalq(~upq) where WorldToLocal

is a transformation between world space and the local coordinate frame de-

fined at p and q.

3. ∆θ= tan−1(vq

uq

) − tan−1(vp

up

) where ~u = (u, v)

4. ~v1 = Rotate(∆θ)~v0

Remember that ~v0 and ~v1 are defined in the tangent space of the surface, so the

bijective linear mapping, Rotate, is simply a two dimensional rotation. Written

explicitly:

Rotate(∆θ) =

cos ∆θ − sin ∆θ

sin ∆θ cos ∆θ

(4.1)

This rotation from an element j to an element i will, from here on, be referred to as

the Transport operator Tij. As long as the differentiable properties of the mesh do

not change, ∆θ stays constant so the rotation Rotate(∆θ) can be precomputed for

fast transportation between local coordinate frames. The restriction of two points

being locally close is the same as the restriction outlined in the first paragraph.

We are now able to bypass the orientation problem with surfaces, and are now able

to define interpolation, diffusion, advection, and projection.

36

4.1.2 Surface Interpolation Using Parallel Transport

We can now use the Transport operator to perform interpolation operations. In-

terpolation is a necessary part for Semi-Lagrangian advection much like in the

planar case. The end point of the massless particle trace will end up somewhere

between the vertices we store data at. Interpolation is also necessary for pro-

jection. Helmholtz-Hodge decomposition, which is the theoretical foundation for

divergence-free projection, is defined for the center of triangles so an interpolation

step that transfers from vertex velocities to triangle velocities and back is required.

For scalar interpolation, we use a linear basis function:

f(x) =
∑

Φi(x)fi (4.2)

where Φi(x) is a piecewise linear basis function valued 1 at vertex i, vi, and 0

everywhere else for a given triangle [49]. This linear basis function serves the same

purpose as the familiar Cartesian basis vectors, i.e. e0 = (1, 0, 0), e1 = (0, 1, 0),

e2 = (0, 0, 1). A defined function described in a particular basis can be written as

a linear combination of its basis vectors. For a Cartesian basis, this turns out to

be: f = ~e0f + ~e1f + ~e2f . For a triangular basis composed of vertices v0, v1, v2, by

Equation 4.2 this turns out to be: f = Φ0f0 + Φ1f1 + Φ2f2.

For interpolating to an interior point inside a triangle, the values of the linear

basis function Φ(x) turn out to be the α, β, and γ values of the familiar barycentric

coordinates. For interpolating velocities defined at the vertices, to a location inside

a triangle we use the Transport operator defined in Section 4.1.1 to handle surface

37

orientation ambiguities. We transport the velocity at each vertex j, ~uj, to the

triangles local coordinate frame and perform a weighted summation to get the

interpolated triangle velocity, ~ui:

~ui =
∑

j∈Tri

ΦijTij(~uj) (4.3)

where Tij is the Transport operator between triangle vertex j and triangle i, as

described in Item 4 of Section 4.1.1. Φij is defined as the barycentric weight asso-

ciated to vertex vj inside triangle i calculated by Equation 4.2. The interpolation

from triangles to vertices is done similarly, with velocities located at the center of

triangles being transported to each vertex, weighted, and summed. We now have

an interpolation algorithm we will be able to utilize from now on.

4.1.3 Particle Advection on Surfaces

In this section, we use the Transport operator defined in Section 4.1.1 to present

an intuitive, unique definition of a per-vertex surface particle advection routine

described in the context of fluid dynamics. The algorithm can be broken up into

five parts:

1. One-ring flattening to determine the triangle to trace from

2. Time Integration to move along the trajectory

3. Edge Transportation to move a velocity across a non-planar edge

38

4. Triangle Interpolation to sample at a point inside a triangle

5. Velocity Transport to move the interpolated velocity back to the starting

point.

Recall that Semi-Lagrangian advection, described in the planar case in Sec-

tion 3.1.3, traces the velocity field back in time to determine what velocity should

be at the current point. Our current domain discretization stores velocities at the

vertices. Since this is a per-vertex algorithm, the number of elements required

to advect a velocity field defined on a surface is much less than triangle based

approaches in other papers [37].

A näive approach would project the velocity into three-dimensions to perform

tracing. Not only is this inconsistent with our surface-based approach, but trac-

ing outside the coordinate frame of a triangle will eventually lead to an incorrect

solution due to the trajectory of the three-dimensional trace deviating from the

surface. Interpolation requirements would also require excessive switching of coor-

dinate frames with every sample of the surface’s velocity field and interpolation.

A much more preferred and intuitive solution would be to perform the tracing

directly within the tangent space of the mesh, taking advantage of our previously

defined Transport operator to handle surface ambiguities and interpolation.

Since the velocity ~ui is stored in the tangent space at a vertex i, step 1 requires

that we first determine which triangle to start tracing from. We use the concept

of Geodesic Polar Maps to flatten the one-ring neighborhood onto a planar disk,

applying the resulting affine mapping to the velocity stored at the center of the

39

Figure 4.4: The one-ring neighborhood of a vertex is parameterized onto a unit
disc, where we evaluate which triangle contains the velocity.

neighborhood. Angles between edges are normalized to add up to 2π, and we

compute an edge whose projection onto the tangent plane of the vertex is minimal.

The normalized angles are rotations which are applied to the edge in order to find

the other edges’ representations in this space. Using simple cross products with

the edges emanating from the center vertex in this mapping identifies the starting

triangle. This is described visually in Figure 4.4. Using the Transport operator,

the velocity is mapped to the triangle, where it is interpreted as a ray, r = o+∆t~v,

that will be traced on the surface.

To integrate Step 2 through time, we intersect each edge of the triangle with

the ray, with the successful intersection resulting in a parameterized distance from

the origin d. If d ≤ ∆t, integration is stopped and we move onto Step 4. If

not, the ray’s origin is reparameterized to the intersection point on the edge, while

∆t = ∆t−d, and the algorithm moves onto Step 3 indicating that the need to trace

farther on the surface. Higher order integrators, such as the midpoint method, can

40

be applied here to increase numerical accuracy. Benefits and drawbacks of this are

discussion in Section 4.1.6.

Edge Transportation in Step 3 is fairly straightforward due to the Transport

operator. The velocity is being transported from triangle element i to triangle

element j, which is within the definition of being local as discussed in Section 4.1.1.

The Transport operator, Tij, is applied to the rays direction ~v and Step 2 continues

until the termination condition d ≤ δt is hit.

Step 4 is again straightforward due to the Transport operator. The ray is traced

the remainder of ∆t, which is guaranteed to terminate within the current triangle.

The velocities are interpolated via Section 4.1.2 to acquire the final velocities.

Step 5 is a little more involved. Since the final coordinate frame the trace

ended at is different from one at the vertex origin , a geodesic will need to be

defined that transports the velocity back. Luckily, the ray we have traced is just

that, a geodesic. Therefore, we can compute ∆θ with respect to the velocity

vector’s representation at the origin at termination, and apply the rotation to our

interpolated velocity to arrive at the final result.

In comparison with other surface advection algorithms [37], the algorithm pre-

sented here provides: a smaller and more consistent interpolation framework, in-

creased consistency with differential geometry concepts (Parallel Transport and

Geodesic Polar Maps), and smaller velocity interpolation calculations (per-vertex

versus per-triangle).

41

4.1.4 Diffusion on Surfaces

Using the Transport operator, solving for diffusion becomes straightforward. We

need to again solve the following equation:

ν∇ · ∇~u =
∂~u

∂t
(4.4)

In Section 3.1.4, we solved Equation 4.4 by using a discrete version Laplace opera-

tor. We will be doing the same on a surface, except a surface version of the Laplace

operator, called Laplace-Beltrami, will be used instead. Finite element approxi-

mation of this operator turns out to be a bit more difficult and is not within the

scope of this thesis, but we direct the reader to an excellent description by [11].

With the assistance of Mean Value Coordinates and the Transport operator Tij,

only the coefficients of ~u in Equation 3.6 change. A linear system of Equation 4.4

can then be written in summation form:

~ui =
∑

j∈J

ωij
∑

j∈J ωij

Tij~uij (4.5)

with ωij being the weights described in [11]. The division by the summation

of the weights is similar to dividing Equation 3.6 by -4 in order to make the

resulting matrix simple to compute. The Matrix-Vector form of Equation 4.5 can

be solved efficiently by taking advantage of the diagonal, symmetric structure of

the coefficient matrix by using the Bi-Conjugate Gradient Solver of [31].

42

4.1.5 Projection on Surfaces

The largest difficulty in solving projection on surfaces is defining the differential

operators for the gradient, divergence, and curl. Once we have surface-based dif-

ferential operators, projection proceeds similarly to the grid case in Section 3.1.5,

albeit with slightly different linear systems. A theoretical basis, called Helmholtz-

Hodge Decomposition states that any vector field can be decomposed into three

orthogonal fields: one divergence-free, one curl-free, and another incompressible

field termed harmonic. Again, the goal is to solve for a pressure scalar field whose

gradient indicates the forces that maintain incompressibility, or the divergence-free

characteristics of the fluid. Helmholtz-Hodge decomposition is used to compute a

curl-free field that represents the compressibility of the system. The gradient field

of the potential solved by the decomposition correlates to the 1
ρ
∇P term of the

Navier-Stokes equations. Since Helmholtz-Hodge decomposition is defined when

velocities are inside triangles, not on vertices, an interpolation step is required

before computation of the curl-free potential. Otherwise, the pressure field is com-

puted in the same way as [49], so I direct the reader there for more information.

4.1.6 Numerical Considerations

There are a few areas in this framework where careful understanding of numer-

ical issues is important. Like in the planar case, numerical error during Semi-

Lagrangian advection in Section 4.1.3 manifests itself as diffusion. Specifically,

important fluid features like vortices or waves tend to diffuse quickly or fail to

43

form at all. While this is fine for effects like smoke, fluids like water and syrup be-

come especially difficult to simulate. This can be partially fixed by using a higher

order integration scheme, like midpoint or trapezoidal method, or by segmenting

the timestep into smaller intervals. Also, making sure the field is divergence-free

before and after advection helps maintain features. All of this is at the price of

performance, so we opted to use a second-order tracing method.

The timestep and sampling size, or tessellation, of the surface effect numerical

stability as well as convergence. Typically the ratio of largest triangle area to

smallest is a decent metric for measuring conditioning, while triangles with poor

angle ratios effect accuracy, specifically during interpolation and diffusion. We

found that a timestep of 1/100 seconds is usually sufficient for most high-quality

visual simulations.

Interpolation around the edges of fluid can be particularly problematic, again

contributing to diffusion. In [52], Wang et al. keep track of the boundary cells and

initialize cells outside the fluid region with C1 continuous negative values in order

to obtain a more accurate interpolation around the boundaries. An interesting

research area involving boundaries would be to investigate contour tracking on

surfaces. Perhaps this would lead to a particle level-set method on surfaces that

can accurately track water regions on surfaces, and vastly improve numerical issues

related to interpolation and advection.

44

4.2 Surface Deformation

For surface deformation, we implemented the method based on shape matching

first presented by [26]. For more information, see Section 3.2. When a surface

undergoes deformation, the Discrete Laplace operator, as well as local coordinate

frames need to be recomputed. This turns out to be rather fast, being linear with

respect to the number of vertices and triangles.

The interactivity of this approach made it a good choice for the system we de-

veloped. Currently, Meshless Deformation applies the deformation globally across

the whole model, making it less suitable for objects with complex, varying geom-

etry undergoing deformations of different magnitude. The original authors solved

this problem through overlapping clusters subdivided across the model. These clus-

tered are then matched to their original configurations, and the particles contained

within are updated appropriately. Further refinements to the technique involved

lattices in order to increase the level of control and detail in the deformation [34].

We are currently looking into using the Sphere Bounding Hierarchy tree used

by our physics system to spatially partition the surface into overlapping regions.

Different levels of the tree could demonstrate different levels of stiffness, increas-

ing or decreasing the amount of clusters matched based on dynamically changing

stiffness or user interaction. Accurate deformation is not of primary importance

to our main goals, so it would mostly be done for aesthetic purposes.

45

4.2.1 Incorporating Physics

To provide interaction between multiple deformable surfaces, we have implemented

a standard collision detection system with a hybrid collision response system that

imparts forces onto the object as a rigid body to produce rigid body motion and

imparts forces onto the vertices to produce deformations.

The linear and angular motion of each deformable object is governed by typ-

ical rigid body dynamics. As objects move through space, we use a hierarchical

bounding sphere algorithm to efficiently identify collisions with other deformable

surfaces similarly to [32]. Because our objects deform over time, the bounding

spheres are updated if deformation is above a certain tolerance threshold.

Our system runs at a time step determined by the user, which is typically set

to 1/60 to 1/30 seconds. We use a Runge-Kutta (RK4) integration scheme to

integrate the rigid body dynamics forward in time. The RK4 timestep is further

subdivided to provide a reasonable timestep for detecting and responding to colli-

sions accurately without unacceptable penetration. Once a collision is successfully

detected, we employ an impulse response method to compute and apply forces di-

rectly into the rigid body dynamics [2]. The impulse force is also used to scale the

position of the colliding vertex, resulting in a deformation that propagates through

the surface. See Section 3.2 for more information on deformation.

46

4.2.2 Fluid-Deformation Interaction

To understand the impact on the fluid by the motion and deformation of the

underlying surface, recall the force equation ~F = M~a. Consider a surface S with

the mass M , velocity v(t), and external force F (t). The instant acceleration is

F (t)
M

. Given a small concentration of fluid in S with a mass m, the force by S on

the fluid is then:

fi(t) = −m
F (t)

M
(4.6)

This force is used to account for the impact on the fluid by the changes in

motion and shape of the underlying surface. We also consider the friction between

the surface and fluid, which is fr = αv where v is the fluid velocity relative to the

underlying surface, and α is a frictional coefficient representing roughness. Then

the total force that exercised by the surface to the fluid is fi + fr.

Essentially this states that the fluid in this representation is separate from

the surface it is represented in, and is affected by frictional forces. If the floor

moves out from under it, a fluid with α = 1 stays stationary with respect to the

surface point under it, while a fluid with α = 0 moves completely independent of

the surface. This can violate the divergence-free constraint of the Navier-Stokes

equation in the case of linear acceleration, as ∆v projected onto a spherical object’s

mesh essentially constitutes a divergent source or sink.

Collisions also introduce ill-suited vector fields at the point of contact, signifying

possible compression of the fluid similar to explosive shockwaves in the tangential

velocity representation. Angular acceleration, however, is well suited, resolving in

47

Figure 4.5: Forces due to direct impacts intuitively create divergence forces on
the tangential velocity field, which are quickly eliminated during pressure projec-
tion. Angular forces caused by rotations create curl forces which are suitable for
incompressibility.

the case of the sphere to a pure rotational field. Further exploration into simulating

compression would be needed to refine these rules, and to ensure mass is conserved

during compressibility. A comparison of these forces is presented in Figure 4.5.

Fluid also is implicit interacted upon by the deformation of the underlying

surface. As the surface compresses and decompressed, the surface area the fluid

is traveling over expands and contracts, allowing the fluid to flow faster or slower

over areas. This can be thought of as the fluid slipping over a surface moving

under it. It is unclear, however, if this type of behavior is desirable, as it reduces

control over the fluid especially in circumstances undergoing extreme amounts of

deformation. A remeshing step which attempts to conserve a uniform sampling

distribution could be implemented to avoid this problem.

48

Chapter 5 – Results

5.1 User-Interaction

How the user and the environment interact with the fluid and deformation of the

system is outlined in Figure 5.1 as well as the controls available to the user. In this

section, control mechanisms for the fluid and deformation part of the simulation

are described.

5.1.1 Fluid Control

The user is able to interactively paint velocities and density sources directly onto

the surface. Viscosity on both the velocity field and density field are tunable, as well

the timestep used in fluid integration. We also provide a decoupling mechanisms

in order to simulate each section of the framework individually. This is useful for

when the user wants to interactively design a fluid on high-quality meshes. And

example of painting a fluid onto a static velocity field is shown in 5.2. Procedurally

introduced forces can be used in to generate a complex, highly turbulent flow. The

framework also supports density textures, which was used in Figure 5.8 to write

the words deformable and flow on the torus and bunny.

49

Figure 5.1: The controls available to the user during the Open-GL visualization.

5.1.2 Deformation Control

Deformation control is done by dragging individual vertices in a direction per-

pendicular to the viewing direction. The vertex is displaced and scaled, allowing

the deformation system to take over and fit a deformation field to the surface,

described in detail in Section 3.2. An example of the deformation system imple-

mented in this thesis can be seen in Figure 5.3, while the original work can be found

here [26]. Deformation can be decoupled from the fluid simulation so a shape can

50

Figure 5.2: Fluid flow on the motionless rigid Bunny surface, where the user is
interactively adding density to the low-quality visualization.

Figure 5.3: A deformation force is applied to a bunny with the words FLOW
textured on.

be manipulated to a specific purpose.

5.2 Visualizations

Effective visualization of the fluid is necessary in guiding the design of the fluid.

We provide three groups of techniques that the user is able to switch between at

run-time: Vector Field visualization, OpenGL, and POV-Ray high-quality post-

process. The visualization of vector fields is a heavily researched topic. Being able

51

Figure 5.4: Vectors representing velocities at a given vertex are shown in blue.

to identify features of the field is vital for mechanical engineering, visualization,

and geometric processing. For fluids, vector field visualization allows us to see

fluid flow in regions where fluid may not be present, or regions where the visual

characteristics do not visually reflect the characteristics of the flow (saddle-points,

or small singularities). We also present an OpenGL framework which serves as a

low-quality, interactive design studio. Geometric data is then output to the high

quality visualization. In the post-processing visualization stage, photon mapping

and ray-tracing are used in the open source ray-tracer POV-Ray to produce the

best images.

52

Figure 5.5: Deforming shapes with fluids flowing on their surfaces collide.

5.2.1 Vector Field

For the visualization of vector fields, we use two techniques. We implemented a

noise-texture warping method for surfaces presented by [50]. While it produces

excellent results, sometimes areas of the field tend to become blurred making it

difficult to see the flow in complex regions of the surface. A per-vertex vector

field velocity visualization technique is shown in Figure 5.4. This visualization

technique scales well with the tessellation of the surface, as the velocities can be

scaled or normalized easily.

5.2.2 OpenGL

The OpenGL visualization provides an interactive control studio which allows the

user to manipulate and modify the fluid and the surface. Figure 5.5 shows the

OpenGL interactive visualization.

53

Figure 5.6: Surface geometry being displaced negatively (left) and positively (right)
by an advected and diffused height value.

A scalar value representing the density, height, or temperature at a vertex is

advected and diffused along the fluid’s velocity field. A warm-to-hot (dark red

to white) color scale is used which can also reflect the temperature of a fluid at

a point. Since this visualization emphasizes interactivity and design, not much

concern is spent on quality. The scalar value can be used to displace the vertices

through a GLSL vertex shader. A positive displacement provides a visual indicator

of fluid accumulation, while a negative displacement gives the illusion of an eroded

surface as shown in Figure 5.6.

The performance of the OpenGL visualization is generally dominated by the

pressure solution, which involves solving a large spare linear system. Direct pre-

computed methods like Cholesky Decomposition were considered, but could only

be utilized when the differential properties of the surface do not change. There are

a variety of numerical methods out there, so more investigation needs to be done

on which solver would be best suited for this type of application.

54

of Tri’s Advect Diffusion Projection Total
Sphere 8192 .016 .006 .059 .081
Bunny 72754 .142 .060 .928 1.130
Square 107520 .181 .084 1.107 1.372
Torus 204800 .371 .167 2.828 3.366

Figure 5.7: Timing in seconds per frame averaged over 100 frames on Intel Core 2
Duo 3.0Ghz with NVIDIA 8800GT.

Figure 5.8: The torus and bunny collide!

We used OpenMP to multithread sections of the code suitable for parallelism,

like independent updates to the surface’s coordinate frames or particle advection.

OpenGL performance numbers for meshes of varying complexity with procedurally

changing forces every fifty frames are shown in Figure 5.7. The test machine: a

Intel Core 2 Duo 3.0Ghz with a NVIDIA 8800GT on Windows Vista.

55

Figure 5.9: Torus and Sphere surfaces are displaced according to an advected
height scalar and rendered in a post-processing step through POV-Ray.

5.2.3 POV-Ray Post-Process

Geometric data is piped out from the OpenGL visualization, where it is run

through POV-Ray. A separate, displaced mesh based on the scalar value at a

vertex which represents a fluid on the surface is also exported for visualization.

A Gaussian weighting function is convolved with the fluid’s geometric data upon

export from the OpenGL visualization in order to smooth out the sharper displace-

ments of the fluid. This gives the visual illusion of a fluid flowing on the surface.

Caustics are generated through traditional photon mapping. Parameters specified

on a per-object basis reflect the color, transparency, and smoothness of the fluid.

56

The POV-Ray post-process visualization provides a high-quality render of the

scene at the click of the button. Due to expensive ray-tracing effects like photon

mapping, each frame can take upwards of three minutes to render. The state of

the scene at each frame in an animation can be saved to a file, so that a distributed

batch rendering of the frames can be done at a later time.

57

Chapter 6 – Conclusion

6.1 Future Work

We have demonstrated some of the potential benefits restricting the computational

domain of fluid flow to surfaces. While working on the research presented in this

thesis, more questions came up than answers. We will now provide a discussion of

future work we feel may benefit the current project.

6.1.1 Height-field Description of Surface-Fluid

While a still image of flow on surfaces is moderately convincing, the animation of

fluid flow on deforming surfaces does not give the full impression of being physically

correct. Vortices and wave propagations which indicate a fluid are present, but

the three-dimensional interactions of the fluid with the environment are not fully

represented. If the purpose of the fluid is to mimic behavior of three-dimensional

flow on surfaces, velocity and pressure in the normal and tangential directions

need to be captured. Currently, our system only supports velocities in the surface

tangential direction, which limits the types of special effects we are able to generate.

A recent paper on solving a generalized version of the Shallow Wave Equations [52]

attempts to address the problem of surface flow in the normal direction. The

authors use a fully implicit method to enforce incompressibility, which leads to a

58

fair amount of success. However they assume the movement of the fluid is slow,

which also limits the types of effects they are able to generate on surfaces.

6.1.2 Fluid-Deformation Coupling

A difficult problem for computation fluid dynamics is the interaction of fluid with

deformable surfaces. Restricting the computational domain of the fluid to a surface

has obvious advantages in not needing to resolve the complex boundary conditions

typical volumetric simulators are required to. The question then becomes how can

we describe a physically plausible interaction between the fluid and the deforming

surface? What forces does the flow impart upon the surface, and the surface upon

the flow? How can we guarantee smooth animation when the domain the fluid

is being computed on is dramatically deformed? An interesting approach would

be to solve the Navier-Stokes equations alongside the equations describing surface

deformation, coupling the two together in a large system of equations. Future

research into this possibility may lead to interesting surface simulations of rivers

carving into deforming geometry, or rain drops eroding a rock bed.

6.1.3 2D-3D Fluid Transferance

The interaction of a surface based fluid with the environment requires the transfer-

ence of fluid to and from the surface domain. This problem is especially difficult,

as great care would need to be taken in ensuring a smooth transition of fluid to

59

and from the surface. At what point does the fluid start to fall of, or transfer

onto the surface? How quickly does this happen? What is a visually smooth way

to remesh a water droplet dripping off a surface? These questions all need to be

addressed if this type of important physical behavior is to be simulated.

6.1.4 CPU Multicore

Exploiting the recent paradigm shift to multiple cores is essential to the success of

breaking through expensive computations to interactive simulation. Soon, comput-

ers will be equipped with dozens of cores capability of carrying out embarassingly

parallel computations with a near linear speed-up with respect to the number of

cores. Parallelism in the framework we have presented here is extremely preva-

lent. Semi-Lagrangian particle advection is an excellent example, as each vertex

can be traced independently of the others, leading to a algorithm which can be

easily mapped to multiple cores. The multi-threaded version yielded an almost

three times speed-up in this specific algorithm on a hyper-threaded dual-core. Nu-

merical methods used in diffusion and pressure projection can also be mapped to

multiple threads as long as the method can be parallelized, like Jacobi iteration.

More research would need to be done in order to determine other areas in which

these types of optimizations can be effective.

60

6.1.5 GPU Implementation

The power of the GPU in processing heavily parallel data-intensive tasks like image

processing or numerical iterative methods is undeniable. As GPU programming

languages turn the GPU into a general purpose arithmetic power-house, large

computational speed-ups can be made. A full investigation into porting a surface-

based fluid simulator onto the GPU could be an interesting project. While fluid

simulators for the GPU have been easily programmed for volumetric or planar

simulations, a full-triangle based implementation has not yet been shown. Simply

porting part of the pipeline over to the GPU incurs a great cost of data transferring

latency. A part way port, in my opinion, is not indicative of the performance a

full GPU implementation would have, so a full GPU simulator may prove useful.

6.2 Final Thoughts

The work presented in this thesis could eventually be a vital component of a larger,

more interactive, and physically correct fluid design and deformation studio. Rivers

could carve canyons over plains, or lava could flow over volcanic surfaces all at real-

time speeds in a high-quality visualization. Video games could finally incorporate

non-planar fluid simulation without losing a significant amount of performance.

While much research still needs to be completed to fully realize this goal of

faking volumetric fluids on surfaces, a proof-of-concept of such a system has been

demonstrated by this thesis.

61

Bibliography

[1] Pierre Alliez, David Cohen-Steiner, Mariette Yvinec, and Mathieu Desbrun.
Variational tetrahedral meshing. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Papers, pages 617–625, New York, NY, USA, 2005. ACM Press.

[2] David Baraff. Rigid body dynamics, 2001.

[3] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. A finite
element method for animating large viscoplastic flow. ACM Trans. Graph.,
26(3):16, 2007.

[4] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational
framework for accurate solid-fluid coupling. In SIGGRAPH ’07: ACM SIG-
GRAPH 2007 papers, page 100, New York, NY, USA, 2007. ACM.

[5] Robert Bridson and Matthias Müller-Fischer. Fluid simulation: Siggraph 2007
course notes. In SIGGRAPH ’07: ACM SIGGRAPH 2007 courses, pages 1–
81, New York, NY, USA, 2007. ACM.

[6] Mark Carlson, Peter J. Mucha, and Greg Turk. Rigid fluid: animating the in-
terplay between rigid bodies and fluid. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, pages 377–384, New York, NY, USA, 2004. ACM Press.

[7] M. Desbrun, M. Meyer, and P. Alliez. Intrinsic parameterizations of surface
meshes. In Proceeding of Eurographics, pages 209–218, 2002.

[8] Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu
Desbrun. Stable, circulation-preserving, simplicial fluids. ACM Transactions
on Graphics, 26(1), 2007.

[9] Douglas Enright, Stephen Marschner, and Ronald Fedkiw. Animation and
rendering of complex water surfaces. ACM Trans. Graph., 21(3):736–744,
2002.

[10] Ronald P. Fedkiw. Coupling an eulerian fluid calculation to a lagrangian solid
calculation with the ghost fluid method. J. Comput. Phys., 175(1):200–224,
2002.

62

[11] Michael S. Floater. Mean value coordinates. Comput. Aided Geom. Des.,
20(1):19–27, 2003.

[12] Nick Foster and Ronald Fedkiw. Practical animation of liquids. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pages 23–30, New York, NY, USA, 2001. ACM.

[13] Nick Foster and Dimitris Metaxas. Modeling the motion of a hot, turbu-
lent gas. In SIGGRAPH ’97: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages 181–188, New York, NY,
USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[14] Simone E. Hieber and Petros Koumoutsakos. A lagrangian particle level set
method. J. Comput. Phys., 210(1):342–367, 2005.

[15] Jin Huang, Xiaohan Shi, Xinguo Liu, Kun Zhou, Li-Yi Wei, Shang-Hua Teng,
Hujun Bao, Baining Guo, and Heung-Yeung Shum. Subspace gradient domain
mesh deformation. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages
1126–1134, New York, NY, USA, 2006. ACM.

[16] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust
simulation of large deformation. In SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 131–
140, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[17] Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw. Effi-
cient simulation of large bodies of water by coupling two and three dimensional
techniques. ACM Trans. Graph., 25(3):805–811, 2006.

[18] Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw. Volume conserving fi-
nite element simulations of deformable models. ACM Trans. Graph., 26(3):13,
2007.

[19] Doug L. James and Dinesh K. Pai. BD-Tree: Output-sensitive collision de-
tection for reduced deformable models. ACM Transactions on Graphics (SIG-
GRAPH 2004), 23(3), August 2004.

[20] Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. Geometric modeling
in shape space. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 64,
New York, NY, USA, 2007. ACM.

63

[21] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F.
O’Brien. Fluid animation with dynamic meshes. In SIGGRAPH ’06: ACM
SIGGRAPH 2006 Papers, pages 820–825, New York, NY, USA, 2006. ACM
Press.

[22] Vivek Kwatra, David Adalsteinsson, Nipun Kwatra, Mark Carlson, and
Ming C. Lin. Texturing fluids. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Sketches, page 63, New York, NY, USA, 2006. ACM.

[23] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares
conformal maps for automatic texture atlas generation. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graphics and interac-
tive techniques, pages 362–371, 2002.

[24] Frank Losasso, Tamar Shinar, Andrew Selle, and Ronald Fedkiw. Multiple
interacting liquids. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages
812–819, New York, NY, USA, 2006. ACM.

[25] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid
control using the adjoint method. In SIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, pages 449–456, New York, NY, USA, 2004. ACM.

[26] Matthias Muller, Bruno Heidelberger, Matthias Teschner, and Markus Gross.
Meshless deformations based on shape matching. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, pages 471–478, New York, NY, USA, 2005. ACM
Press.

[27] A. Nealen, M. Mller, R. Keiser, E. Boxerman, and M. Carlson. Physically
based deformable models in computer graphics. In Computer Graphics Forum
25, page 809836. Blackwell Publishing, 2006.

[28] K. Polthier and E. Preuss. Variational approach to vector field decomposition,
2000.

[29] K. Polthier and E. Preuss. Identifying vector fields singularities using a dis-
crete hodge decomposition, 2002.

[30] K. Polthier and M. Schmies. Geodesic flow on polyhedral surfaces. In
E. Gröller, H. Löffelmann, and W. Ribarsky, editors, Data Visualization ’99,
pages 179–188. Springer-Verlag Wien, 1999.

64

[31] William H. Press, William T. Vetterling, Saul A. Teukolsky, and Brian P.
Flannery. Numerical Recipes in C++: the art of scientific computing. 2002.

[32] S. Quinlan. Efficient distance computation between non-convex objects.
IEEE International Conference on Robotics and Automation, pages 3324–
3329, 1994.

[33] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,
S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In SCA ’04: Pro-
ceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, pages 193–202, Aire-la-Ville, Switzerland, Switzerland, 2004. Eu-
rographics Association.

[34] Alec R. Rivers and Doug L. James. Fastlsm: fast lattice shape matching for
robust real-time deformation. In SIGGRAPH ’07: ACM SIGGRAPH 2007
papers, page 82, New York, NY, USA, 2007. ACM.

[35] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture
mapping progressive meshes. In SIGGRAPH ’01: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages
409–416, 2001.

[36] Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. A vortex particle method
for smoke, water and explosions. ACM Trans. Graph., 24(3):910–914, 2005.

[37] Lin Shi and Yizhou Yu. Inviscid and incompressible fluid simulation on trian-
gle meshes: Research articles. Comput. Animat. Virtual Worlds, 15(3-4):173–
181, 2004.

[38] Lin Shi and Yizhou Yu. Controllable smoke animation with guiding objects.
ACM Trans. Graph., 24(1):140–164, 2005.

[39] Lin Shi and Yizhou Yu. Taming liquids for rapidly changing targets. In SCA
’05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on
Computer animation, pages 229–236, New York, NY, USA, 2005. ACM.

[40] Ken Shoemake and Tom Duff. Matrix animation and polar decomposition. In
Proceedings of Graphics Interface ’92, pages 258–264, 1992.

[41] Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski.
Bounded-distortion piecewise mesh parameterization. In VIS ’02: Proceed-
ings of the conference on Visualization ’02, pages 355–362, 2002.

65

[42] J. Stam. Real-time fluid dynamics for games, 2003.

[43] Jos Stam. Stable fluids. In SIGGRAPH ’99: Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 121–128,
New York, NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[44] Jos Stam. Flows on surfaces of arbitrary topology. ACM Trans. Graph.,
22(3):724–731, 2003.

[45] Robert W. Sumner and Jovan Popović. Deformation transfer for triangle
meshes. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 399–405,
New York, NY, USA, 2004. ACM.

[46] Robert W. Sumner, Matthias Zwicker, Craig Gotsman, and Jovan Popović.
Mesh-based inverse kinematics. ACM Trans. Graph., 24(3):488–495, 2005.

[47] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically
deformable models. SIGGRAPH Comput. Graph., 21(4):205–214, 1987.

[48] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, Laks Raghupathi,
A. Fuhrmann, Marie-Paule Cani, François Faure, N. Magnetat-Thalmann,
and W. Strasser. Collision detection for deformable objects. In Eurographics
State-of-the-Art Report (EG-STAR), pages 119–139. Eurographics Associa-
tion, Eurographics Association, 2004.

[49] Yiying Tong, Santiago Lombeyda, Anil N. Hirani, and Mathieu Desbrun. Dis-
crete multiscale vector field decomposition. ACM Trans. Graph., 22(3):445–
452, 2003.

[50] J. van Wijk. Image based flow visualization for curved surfaces.

[51] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field based
shape deformations. ACM Trans. Graph., 25(3):1118–1125, 2006.

[52] Huamin Wang, Gavin Miller, and Greg Turk. Solving general shallow wave
equations on surfaces. In SCA ’07: Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 229–238,
Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[53] Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. Dis-
crete laplace operators: no free lunch. In SGP ’07: Proceedings of the fifth

66

Eurographics symposium on Geometry processing, pages 33–37, Aire-la-Ville,
Switzerland, Switzerland, 2007. Eurographics Association.

[54] William Welch and Andrew Witkin. Free-form shape design using triangulated
surfaces. In SIGGRAPH ’94: Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 247–256, New York, NY,
USA, 1994. ACM Press.

[55] Patrick Witting. Computational fluid dynamics in a traditional animation
environment. In SIGGRAPH ’99: Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pages 129–136, New York,
NY, USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[56] Xunlei Wu, Michael S. Downes, Tolga Goktekin, and Frank Tendick. Adap-
tive nonlinear finite elements for deformable body simulation using dynamic
progressive meshe. In A. Chalmers and T.-M. Rhyne, editors, EG 2001 Pro-
ceedings, volume 20(3), pages 349–358. Blackwell Publishing, 2001.

[57] Gary D. Yngve, James F. O’Brien, and Jessica K. Hodgins. Animating ex-
plosions. In SIGGRAPH ’00: Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, pages 29–36, 2000.

[58] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based sur-
face parameterization and texture mapping. ACM Transactions on Graphics,
24(1):1–27, 2005.

[59] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Vector field design
on surfaces. ACM Transactions on Graphics, 25(4):1294–1326, 2006.

