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Chapter 1 — Introduction

The physical simulation of fluid is a difficult problem! Naive implementations of
fluid simulation can be programmed in under a day. In stark contrast, a highly
accurate and accelerated fluid simulator can be the topic of research and devel-
opment for years. Implementing this type of simulation requires a wide breadth
of knowledge. For example, an in-depth understanding of differential equations
describing the physical motion of fluid is a problem a physicist or mechanical en-
gineer can handle. Careful numerical considerations are also required in order to
ensure numerical error doesn’t propagate exponentially through the simulation;
topics mathematicians are suited for. A computer scientist, on the other hand, is
best equipped to handle the rendering, visualization, acceleration, and control of
the fluid.

The focus of this thesis is to provide a background and material study on a
specific sub-problem in fluid dynamics: fluid flow on deforming, colliding surfaces.
The majority of fluid simulators operate on either a planar or volumetric domain,
i.e. in two or three dimensions. An example of a two dimensional simulation is
shown in Figure 1.1. Space is discretized according to finite differencing methods,
which are used to solve the differential equations describing the fluid flow. Addi-
tional constructs such as particle tracing or higher order interpolation methods are

also defined in order to assist with accuracy and efficiency. The work we present in



Figure 1.1: A planar simulation of fluid dynamics (Source: Author).

this thesis deals with fluid flow on deforming surfaces. We feel that restricting the
domain of computation to a surface will achieve attractive properties for certian
special effects especially suited to that domain. As primary motivation for our
research, many physically interesting fluid phenomena can be intuitively simplified
to a deforming, surface-like representation. Examples of such physical behavior
are large-scale oceans and other slow fluid flows, rain-drops flowing down surfaces,
paintings on flexible surfaces, and dynamically flow-like deformations.

Fluid flow on surfaces may also present an attractive, relatively inexpensive
alternative to computing full volumetric simulations. Volumetric simulations of
fluids, while producing a wide range of fluid-like effects, traditionally suffer from
a lack of control and interactivity. There is also the difficult question of how to
deal with the complex interface between a voxelized volume and non ’grid’ aligned

geometry. A planar simulation, on the other hand, offers the user an interactive



environment to design and control fluid flow. Planar simulations, however, are too
restricted to be used in environments where underlying computational domains
are non-planar. Fluid flow on surfaces may offer a compromise between the planar
and volume case, achieving effects that are not achievable in planar simulations,
or effects that require complex interface handling in volumes. Fluid flow on a
dynamic, deforming medium also presents an interesting physical and numerical
challenge. How does the deformation effect the flow of the fluid? How does the
flow of the fluid effect the deformation of the surface? What are the numerical
issues associated with a dynamically changing computational domain?

The set of problems related to the flow of a fluid on deformable surfaces is
not simple. One has to deal with an irregular discretization over the surface. To
emphasize interactivity, the collection of partial differential equations of Navier-
Stokes have to also be solved over the surface in a fraction of a second. Adding
deformation into the system causes the differential properties of the surface to
dynamically change, which prevents important pre-computation present in other
fluid simulators. One also has to deal with the ambiguity associated with vectors
lying in different tangent planes, a classic differential geometry problem of lack-
ing global parameterizations. Since the surface is embedded in three dimensions,
surface-to-surface interaction in the form of collisions or transference of fluid is an-
other topic the system needs to address. Functionalities that allow the control and
design of fluid and deformation also need to be implemented. This thesis discusses
how to couple these features together in a comprehensive, interactive framework.

An example of an image generated by this system is shown in Figure 1.2.



Figure 1.2: Fluid flowing on a deformable surface. Even though the fluid appears
volumetric, fluid flow is directly computed on the triangular surface.

Therefore, this thesis presents the following contributions.

1. A unified framework and a system for the simulation of fluid flows on de-
formable and interacting surfaces. To the best of our knowledge, this is the

first time such a system has been developed.

2. At the core of this system is a numerical fluid solver that not only is stable
during surface deformation, but also supports efficient computation such as
performing diffusion, Helmholtz-Hodge decomposition, and Semi-Lagrangian

advection on surfaces.

3. We discuss vital ideas such as geodesic polar maps and parallel transport
from classical differential geometry and apply them to the solution of fluid

flow on surfaces.



4. We provide a set of functionalities that allows the user to design and con-
trol not only the density and velocity of the fluid but also the motion and

deformation of the underlying surface.

5. We present various visualization techniques which assist in the control and
design of the fluid and deformation of the surface. As a proof-of-concept
for emulating volumetric surface fluids, a high quality post-process rendering

step is also presented which gives the illusion of volumetric flow on surfaces.



Chapter 2 — Literature Review

2.1 Conventional Fluid Dynamics

Solving various forms of the Navier-Stokes equations has been a thoroughly re-
searched problem. Foster and Metaxas [13] provide a finite-differencing approach
with explicit integration steps to simulate gas motion in a volume. Their use of
explicit integration introduces numerical instability during advection and diffusion
for large time steps. Later Stam [43] showed that through the use of implicit
integration for diffusion and semi-Lagrangian advection, the previous time-step
constraint can be eliminated at the cost of introducing numerical dissipation typ-
ically present in implicit numerical methods.

Ensuring fluid incompressibility is typically done through Helmholtz-Hodge
Decomposition. Restricting the computational domain to a regular grid of same-
sized cells makes Helmholtz-Hodge decomposition and semi-Lagrangian tracing
easy to define. It is much more difficult for triangular or tetrahedral meshes due
to irregular tessellation. Polthier and Preuss [28, 29] define Helmholtz-Hodge
decomposition of discrete vector fields on arbitrary surfaces. Their work was later
extended by Tong et al. [49] to irregular 3D tetrahedral volumes. Our model of
Helmholtz-Hodge Decomposition on surfaces follows the work found in [49] in a

straightforward fashion.



Evolving the front of a fluid accurately requires precise tracking and correction
to achieve realistic fluid-to-air interactions. Massless marker particles are typically
used with an implicit surface representation in order to achieve a high order of
numerical accuracy [12, 9]. Losasso et al. [24] provide an effective way of handling
multiple front interactions between fluids of different compositions. Intelligent
particle placement algorithms also help with preserving certain features of the
fluid like vortices [36, 14]. By combining a height field underneath the surface
with a full volumetric simulation near the surface front, Irving et al. [17] are able
to concentrate computational time on regions most visible by the user. Resolving
the interface between dynamically moving objects and fluids was recently addressed

by Carlson et al. [6].

2.2 Surface-based Fluid Dynamics

Work describing fluid flow on surfaces has been less covered than volumetric simu-
lations. The primary problem with fluid flow on arbitrary surfaces is that the semi-
Lagrangian advection and diffusion are more difficult to define. Stam [44] originally
proposed the use of Catmull-Clark subdivision surfaces in order to transform the
Navier-Stokes equations to a parameterized domain where all tangent planes are
continuous. This effectively eliminated the ambiguity associated with vectors de-
fined on different tangent planes, allowing tracing and diffusion to occur identically
to the planar case. The use of the Catmull-Clark subdivision surfaces allowed the

Navier-Stokes equations to be solved on a surface, but not without noticeable ar-



tifacts due to the distortion introduced by surface parameterization, and the extra
cost incurred by working in such representations. While their technique did much
to reduce distortions through the use of a deformation metric, artifacts were still
present, specifically on the boundaries between patches.

Shi and Yu [37] presented an idea of solving the Navier-Stokes equations directly
on the mesh without the use of special surfaces. The paper makes use of Geodescic
Polar maps, used also by [54, 30, 22, 59], to transport vectors defined on vertices to
incident triangles. Shi and Yu [37] also presented an interesting advection method,
where the curved mesh is essentially rotated into a flat planar representation in
the direction of the tracing.

Wang et al. also presented a framework similar to ours, but used a general-
ized version of the Shallow Wave Equations instead of Navier-Stokes [52]. Their
work used a completely implicit integration scheme, ignored velocity advection
and diffusion, and incorporated external forces, surface tension, and rigid body
interactions from earlier work.

Fluid design and control is important to animators who would rather deal with
the high level control rather than low level variable tweaking. Patrick Witting
presents an approach on incorporating fluid dynamics into a tradional animation
environment [55]. McNamara et al. [25] make use of the adjoint method and
emphasize control over the fluid surface through minimizing objective functions.
Shi and Yu discuss controlling smoke with objects [38], and creating force fields to

influence the fluid into certain shapes or animations [39].



2.3 Deformation in Computer Graphics

The field of deformation can be classified into a few different categories, each
with distinct benefits and disadvantages. Since deformation is not the primary
contribution of this thesis, interested readers can refer to [27] for a more complete
introduction to the field.

Non-physically based methods focus on controlling and designing qualities
about the object, and emphasize the preservation of certain features of the sur-
face or volume while the shape is undergoing deformation. Some existing tech-
niques [51, 15] that preserve volume and provide control mechanisms that make
deformation design simpler. An intuitive deformation controller based on Inverse
Kinematics is presented in [46]. A technique that preserves surface features such as
distance-preserving or angle-preserving while the model undergoes shape interpo-
lation or extrapolation is presented in [20]. Finally, animated deformation transfer
between two vaguely related animationed shapes is demonstrated by Sumner et
al. [45].

Performance based methods focus on acquiring a plausible, not necessarily
physically based deformation in real-time. Primary applications include interactive
applications such as games or educational tools. Typically these techniques are also
merited by their ease of implementation when compared to other classes of meth-
ods. Mass-spring systems found in common literature simulate deformation-like
behavior at real-time speeds. They do, however, suffer from numerical instabil-

ity and generally non-plausible deformations. By combining the intuition gained
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from mass-spring systems with a process known as shape matching, Matthias et
al. and Rivers et al. [26, 34] eliminate numerical instability and incorporate non-
linear deformations in a real-time, easily-controllable framework. [19] provides an
interesting approach where deformations of a model are described by a hierarchical
tree structure, with physical forces being applied to the bounding geometry rather
than the actual model.

Physically based methods usually use a finite element method in which the
model undergoing deformation is volumetrically discretized into tetrahedra. Phys-
ical descriptions of the deformation are usually coupled with volume preservation
constraints solved by energy minimization to generate the most physically realistic,
albeit slowest, class of deformations. Fundamental literature on elastic deforma-
tions based on finite differencing and finite elements is described in [47]. Finite
element methods for representing different types of deformations are seen in [18, 3].
When large deformations occur, the model may become inverted due to extreme
forces or numerical error accumulation. Irving et al. [16] demonstrate a finite el-
ement method which can handle such mesh inversions. Finally, Wu et al. [56]
show that nonlinear finite element methods can be computed interactively, if the

simulation concentrates on features which are identified by progessive meshing.



11

Chapter 3 — Background

3.1 Fluid Dynamics

The background of knowledge required in computational fluid dynamics is indeed
large. There are a variety of methods available, each with advantages and dis-
advantages. For the sake of clarity and conciseness, I will only present simple
solutions to the required equations. A short introduction to fluid dynamics on an

evenly discretized domain is presented here.

3.1.1 Navier-Stokes Equations

To be able to simulate how an incompressible constant density fluid flow changes
over time, we will need equations describing the differential behavior of the system.
There are a collection of Partial Differential Equations(PDEs), known commonly

as the Navier-Stokes equations, which describe this behavior over time:

B ) B
g?qt(ﬁ-V)ﬁwLpVP:uV-Vﬁva (3.1)

Vid=0 (3.2)

Each term has a fairly intuitive solution, at least for the purposes of this thesis.

A good starting point is to first deal with each term individually. « represents the
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velocity of the fluid, so £* represents the change in the fluid’s velocity over time.
This term is what we will be eventually using to advance our simulation during
each time-step.

The second term, (- V), is usually called advection, transport, or convection.
The form of this equation is a bit of an abuse of notation (what is the dot product
with the gradient operator anyways?), but will be explained in Section 3.1.3. Com-
bining this term with the first term gives us 4% + (@ - V)4, which is usually called
the material derivative, convective term, Lagrangian, Stokes, or particle derivative.

%VP represents the forces that high pressure regions of the fluid exert on low
pressure regions. P represents the potential of these forces, while p represents the
density of the fluid or gas. Incompressible fluids aggressively attempt to maintain
constant pressure, as is implied in the name. Visually, this manifests itself as forces
applied to the fluid that force the conservation of mass and momentum. We will
be using this term in order to correct the velocity field so that mass or energy,
ideally, is not introduced or taken away from the simulation. Due to numerical
issues, enforcing the conservation of mass turns out to be a rather tricky task. This
step is typically called pressure projection, and is discussed in Section 3.1.5.

The diffusion term, vV - Vi, is a term usually left out in most fluid simulators.
The constant v, called the kinematic viscosity, is defined as the dynamic viscosity
divided by the density of the fluid, or u/p. The term V - V, also written as V2 or
A, is known as the Laplacian or Laplace operator and represents the tendency of

fluid flow at a point to move at the same speed as the fluid around it. Think of it

as an averaging, or smoothing operator. A high viscosity correlates to a fluid like
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oil or molasses, while a low viscosity allows for fluids like water or air. Diffusion
will be discussed in Section 3.1.4.

The last term, f, represents all external forces to the fluid like user input, or
gravity.

We will now look at how to solve Equation 3.1. The key to the equation
is incompressibility (Equation 3.2) and to utilize a technique called splitting in
which we handle each component in the PDE separately in an iterative manner.
Assuming we have functions named advect for advection, diffuse for diffusion, and
project for pressure projection, a basic pipeline for finding u'*! from an initial

vector field u! might look like:
1. u, = advect(u')
2. uy = diffuse(u,)
3. up =ug+f
4. ut! = project(uy)

Advection, diffusion, and incorporating external forces can be solved directly by
numerical algorithms. To solve for the pressure projection found in step 4, a slight
modification to the Navier-Stokes equations must be made which will be shown in

Section 3.1.5.

We will now discuss numerical methods for solving each step of the pipeline.
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3.1.2 Domain Discretization

How we decide to discretize the domain of computation has wide-ranging implica-
tions. An excellent explanation of domain discretization is found in [5], which is
paraphrased and extended upon here.

For simplicity purposes, let’s first assume we are working in a plane with an
regular grid-like discretization. This type of spatial discretization and solution is
called an Eulerian framework. A Lagrangian framework, on the other hand, would
have us using particle tracing, but the definition of a derivative becomes non-
trivial. In an Eulerian description, all information can be stored in the center of a
grid cell. This is typically called a collocated grid due to all of the information
being stored in one location. For a given scalar ¢ in cell i, ¢;, the description of
the derivative in a single spatial dimension x using a central differencing scheme

becomes:

Jq

99, _ qi+1 — Gi—1
(5o =T 22 (3.3)

2Ax

This equation, using a Taylor Series expansion and simplifying, is accurate to the
second order. While the level of accuracy seems acceptable, a more serious problem
exists: the sample point ¢; is not considered in the computation of the difference.
Imagine a scenario that tries to find if the first derivative of a given function are
zero, i.e. determine if a function is constant. [5] uses the example ¢; = (—1)". As
long as ¢;_; is equal to g;i1, (%)i will show a constant difference at ¢; no matter

what ¢; actually is! This comes down to the null-space of equation 3.3 containing
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Figure 3.1: The collocated grid (left) suffers from non-trivial null-spaces, which
are avoided by using a staggered grid representation (right).
more functions than simply the ones evaluating to zero.

The solution to this is to use a staggered grid, also known as a Marker-
and-Cell (MAC) grid. In this situation, quantities are stored on the edges of a
cell as well as in the center. See Figure 3.1 for more information. The description
of a derivative computed at the center of a cell, when a quantity ¢ is stored on the
edges of a cell is therefore:

(@) _ Qiv1/2 — Gi1)2 (3.4)

oz’ Az '
This formulation is also accurate to the second order, and avoids the differencing
issue of equation 3.3. For convenience purposes, we store fluid velocity @ on cell

edges, and pressure values p on cell centers. The extension to three dimensions is

relatively straightforward.
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3.1.3 Advection

At first glance, the equation representing advection can be solved, for example,
through typical finite central differencing methods as described in the previous
section. In the case of advection, advecting a vector quantity o gives us:

ou

a—i—(wV)u:O

By using central differencing for the spatial derivative, and forward differencing

for time on a collocated grid:

—n+1 —n —n —n
. ! Uis g — Uiq
1 7 _{_,l—[n 1+ 1 — O

At o 2Ax

And finally rearranging in a common Forward Euler style gives us the integratable

equation:

a4 Apn e — T (3.5)

‘ ’ ' 2Ax
There is, however, a stability problem with using Forward Euler in this manner.
The region of absolute stability for Forward Euler is extremely small, so for even
reasonable values of At and Ax, stability of this solution would still give us prob-
lems. Other integrators, such as higher order Runge-Kutta, would merely delay

the error propagation because the problem is specifically with central differenc-

ing on this type of PDE(hyperbolic). If explicit integrating is required, there are
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Figure 3.2: Example of Semi-Lagrangian advection. The starting vector field (left)
is traced backwards in time from each node (middle), and velocities are transported
to the starting nodes resulting in an advected velocity field (right).

"upwind” differencing techniques which choose a biased direction for computing
derivatives based on the direction the wave is traveling.

An alternative, and often a bit more intuitive, unconditionally stable solu-
tion called Semi-Lagrangian advection will now be covered. Originally presented
to the graphics community by Stam [43], Semi-Lagrangian advection acquires its
name from performing a Lagrangian-like integration to compute a Eulerian calcu-
lation. The Lagrangian part of the name comes from tracing a particle through a
domain, while the Eulerian calculation comes from the discretized grid represen-
tation of space. It starts by asking the question, what will the velocity at a given
point be at the next time step? The answer is, whatever velocity is advected to
that specific point during the current timestep. Using this intuition, from a given
cell i we trace a massless particle backwards through the velocity field a distance of
At. Typically Forward Euler is good enough, although higher order Runge-Kutta
methods will help maintain vortices and defined features of the fluid. From the

end point, we interpolate (bi-linear in the grid case) between the nearest neigh-
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bors. This interpolated value is transported back to the original spot, where the

process is repeated for every cell. Refer to Figure 3.2 for more information.

3.1.4 Diffusion

Solving for the diffusion component is a bit more difficult, as it involves solving a
large sparse symmetric positive definite matrix of linear systems. As stated before,
diffusion describes the viscosity of the fluid, which is the tendency of a fluid to move

at the speed of its neighbors. Again, the diffusive term is:

L ou
VV-VU—E

The term V -V is commonly referred to as the Laplace operator, A, which is
also very similar to the Laplacian in both form and function. An excellent source
discussing the Laplace operator is found in [53]. We will be using the discrete
version to numerically approximate the operator. By using a central differencing
approach for a two dimensional staggered grid, with velocity @ = (u,v), we get
the following equation for grid cell 7,j and grid spacing Az = Ay for diffusing

component u with constant viscosity v:

ou

(vAu)ij = >

V(ui+1/2,j + Ui—1/2,5 — 24 " Ui j+1/2 T Uij—1/2 — 2ui,j) _ @
Az? Az? ot

ou

v
@(—4%,]‘ + Uigr/2,5 T Wic1j2 + Wigyiz + Uijo1/2) = BN (3.6)
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The same is repeated for each component of 4. The series of equations generated
from 3.6 can be easily written in Matrix-Vector form, Az = f, with x being the
vector of velocity unknowns, and A being the matrix of coefficients of Equation 3.6.
Matrix A is typically modified by dividing by -4, leading to a very well-conditioned
and intuitively calculated matrix. Solving for all the components of % in a single
matrix can easily be done, although care should be taken in ordering the com-
ponents so the matrix stays diagonally dominant. The matrix A turns out to be
sparse and symmetric positive definite, which is very easy to solve with typical
numerical algorithms. Note that the coefficients of A are directly associated with
the numerical approximations of the derivatives. In the next chapter, we will see
that due to the non-uniformity and directional ambiguity of surfaces, matrix A is

much more difficult to setup.

3.1.5 Projection

The solution for the Navier-Stokes equations relies on the enforcement of incom-
pressibility. Using vector calculus, this measurement of compressibility can be
computed by the divergence operator, V.. With this operator, equation 3.2 can
be interpreted as "the divergence of the velocity field u is equal to zero”. The
opposite of the divergence operator, which measures incompressibility, is known as
the curl operator, V x. Incompressible fluids consist of all curl, and no divergence.
These operators are a slight abuse of notation, but treating the gradient as simply

a vector of partial derivatives will derive more familiar forms. For example, here
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are the per-component three-dimensional operators with a vector @ = (u, v, w):

V. -i= %u + a%” + %w
V X = (a@yw—%v,%u—a%w,a%v—%u)
Typically we interpret the curl vector as an axis of rotation that the fluid is moving
around at a given point. Suppose that we were able to solve every term in the
equation except the pressure term, %VP. We would then have a fluid flow which
would violate incompressibility, due to the forces generated by the pressure not
being present. By measuring the divergence of the current flow field after advec-
tion, diffusion, and external force addition, we can solve for the correct amount of
pressure to apply to the field in order to enforce incompressibility via equation 3.2.
This is done by first measuring the divergence of the current vector field after
advection, diffusion, and external force addition:
ou =

1
V-(a—i—(ﬁ-V)ﬁ—i—;VP):V~(VV-Vﬁ+f)

Followed by rearranging the terms:

v-(‘zﬁwv-(;vm =V (—(@- V)i + vV - Vi + f)

Notice that the first term, V - (%f), making the reasonable assumption that the

derivatives are sufficiently smooth, can be rewritten as %(V -10). By equation 3.2,

the incompressibility constraint, this term is equal to zero. Rewriting and solving
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for P:

—

v. (;VP) Ve (—(@- V)i 4 vV - Vi + ) (3.7)

Once we know P, we can subtract %VP from the divergent field to find the in-
compressible field. The final vector field at timestep n + 1 for an advected and

diffused vector field at timestep n is therefore:
—n+1 —n 1
u"t =u" — At-VP (3.8)
p

An associated theoretical description, called Helmholtz-Hodge decomposition, de-
scribes the process in the context of vector fields [29, 28, 49]. Equation 3.7 is often
called a Poisson Equation, and is similar to how we solved diffusion in Section 3.1.4.
In fact, the matrices composed on the left-hand side are the exact same (in the case
of solving diffusion for a single scalar). Note, however, that the right-hand side of
the equation is not zero like in the diffuse case, but rather the divergence of the
vector field at timestep n after advection, diffusion, and external force addition.
An excellent description of the following material is found in the pressure equa-
tions section of [5]. The authors’ derivations are summarized and extended upon
here. To be able to calculate divergence for the right hand side of the Poisson
Equation 3.7, we make use of discrete version of the divergence and curl operators.

For example, for a two dimensional staggered grid representation at grid cell i,
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with @ = (u,v) and Az = Ay, the discrete divergence is equal to:

= = ((wigry2 — wim1y25) + (Vigr1y2 — Vij_1/2)) (3.9)

We are enforcing incompressibility at the next timestep, therefore we use Equa-

tion 3.8 to write Equation 3.9 in terms of the current timestep n, to get the following

: : n+1 _ ,ntl .
derivation for (w7 o ; — w5 ;)

At At
((is1/2,5 — @(B+1,j — Pij)) — (wic1/25 — m(ﬂ’j —Pi1y)  (3.10)
And for (vf;jrll o~ vzn;r_ll /2):
At At

((Vigy12 — m(ﬂ,ﬁl = Pij) = (vijo12 — m(Pm’ —Pij-1))) (3.11)

Take note that the unknowns in the equation are the pressure values, P. Collect
like terms, and move the velocities over to the right-hand side to get the completed
two-dimensional equations that need to be solved:

aw (AP = Py — Pioyj = Py — Pja) =

A (Uit1/2 = Wis1/25 + Viji1/2 — Vij-1/2) (3.12)

We now collect all the terms in the form of Az = b where A is a matrix known

as the discrete Laplacian, and b is a vector representing the divergence of the vector
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field at the current timestep. This can be solved by using a variety of numerical
solvers, such as the Bi-Conjugate Gradient Solver (BCGS) found in [31]. This is
such a not so straight-forward derivation, but the actual implementation details

stay fairly concise.

3.1.6 Boundary Conditions

Until now, we have been assuming that the computational domain is all fluid, and
that the boundary conditions, like the edge of the domain, are not handled. We
will now discuss two boundary conditions of upmost importance to fluids.

The first, Dirichlet boundary conditions, are applied to free surfaces of the fluid
such as movement of the fluid into air. By making the observation that fluid is
able to freely move into such regions, setting the pressure in an air cell to zero will
produce the correct behavior. Notice that we literally do just that in the previous
equations. For an air cell ¢, j, we set the corresponding pressure in the cell, P; ; =
0, and modify the Discrete Laplace operator accordingly.

Neumann boundary conditions occur when the fluid encounters an obstacle.
Naturally, the fluid should not leak through the solid, but rather slide along it
or bounce off. Written in the language of pressure, the pressure values on the
boundaries need be solved for so that the velocity of the fluid at the boundary
points normal to the object is equal to the normal velocity of the object. This will
allow the fluid to slide by without penetrating through the object. We therefore

need to solve for a pressure value that will enforce this constraint. Assuming wug is
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the velocity of of the solid:

At
Piyrj = Pij— m(ui—&-l/lj — u,) (3.13)

In the case of the discrete Laplace operator in Equation 3.12, this amounts to
decrementing the diagonal, and adding the second term in Equation 3.13 to the
right hand side.

This formulation is not completely physically correct, as the projection of the
fluid’s velocity onto an object’s normal should be greater than or equal to zero,
rather than strictly zero. However, enforcing an inequality constraint is beyond
the scope of this thesis. For further reference, see [4] for an excellent discussion of

an alternate solution which incorporates inequality constraints.

3.1.7 Numerical Considerations

A discussion of the numerical complexities of fluid simulations can take an entire
thesis to explain. I will limit my discussion here to concepts that I have personally
encountered or found useful.

When trying to represent a fluid like water it is important to maintain a high
degree of numerical accuracy. Numerical errors typically manifest themselves as
the dissolution of features in the fluid, and can be interpreted as diffusion. This
will amount to key fluid visual features like vortices or waves failing to form or

maintain structure. Diffusion, in most cases, should probably be dropped, and
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Semi-Lagrangian advection should use a higher-order tracing scheme, such as the
midpoint or trapezoidal method.

Interpolation methods also need to be considered. Since interpolation amounts
to an averaging of neighbors, high frequency signals in the velocity field tend to be
smoothed out. Higher-order interpolation methods help keep this smoothing to a
minimum, but tend to be a bit cumbersome to implement. An effective method was
described by [52], in which boundary cells are tracked and initialized with negative
values in order to describe the fluid-air interface more accurately. By using a type
of fast-marching method, C' continuity can be achieved along the fluid interface,
and high quality results can be maintained throughout the simulation. This does
not address interpolation inside a fluid region. This same type of reasoning can
be applied to Neumann boundary conditions, where the pressure in the solid cell
can be set to a value that, during interpolation, accurately describes the interface
between the fluid and the solid. These negative values applied to the boundary
cells are typically call Ghost pressures.

Another way of improving interface tracking is by combining the Eulerian me-
chanics of a grid, with the Lagrangian mechanics of particle tracing. Fluid simula-
tors using Lagrangian mechanics are typically called particle methods. By incor-
porating a grid-based implicit surface representation of the fluid-air interface, the
so called particle level-set methods are created. They represent the most accurate

and computationally expensive fluid simulators in modern research.
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3.2 Surface Deformation

Since the primary contribution of this thesis is in the area of fluid dynamics and
control, not deformation, only the deformation technique implemented by this
thesis will be covered.

The deformation algorithm used by our system is a method based on shape
matching first presented in [26]. For reference, a summary of their technique is
presented here. In typical mass-spring models with explicit integration schemes,
like Forward Euler or Runge-Kutta, care must be taken in choosing the timestep
and spring stiffness due to the possibility of overshooting the equilibrium.

Meshless shape matching addresses the problem of updating velocity by cre-
ating an unconditionally stable integration scheme which does not overshoot the
equilibrium, thus always conserving momentum. In this scheme, the mesh is rep-
resented by two sets of particles, the mesh in its transformed deformed state, and
the mesh in its resting static state. By matching up a particle in the deformed po-
sition with the static counterpart, the algorithm can design an integration scheme
which moves the particle towards a goal position without erroneously increasing
the energy of the system.

The first step in this algorithm is to find the transformation matrix which
matches the particles representing the static mesh to the deformed state. Let

0

x; and x; be the two sets of particles of mass m,; that represent the static and

deformed shapes of the mesh respectively, while x.,, represents the center of mass

of particle set x. The goal is to find a rotation matrix R and translation vector ¢
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that together best describe the transformation of the static mesh to its deformed
state. The translation vector ¢ is simply the vector that translates the center of
the static mesh to the center of the deformed one. Computing the rotation matrix

R involves first computing a matrix A:

—_ .0 0
i = T — Teyy

Pi = Xy — Tem

A= (Zimipiq] ) (Zimigiql )" = ApgAgq (3.14)

The rotational part R of this matrix is found via Polar Decomposition [40]. Specif-
ically R = A,,S™! where S = \/m represents the symmetric, non-deforming
part of the transformation. Evaluating the square root of a function is done by
diagonalizing the matrix through a method like Jacobi rotation. The square root is
then applied to the eigenvalues of the system before composing the matrix. Once

matrix R has been found, the goal positions and the updates to particle veloci-

0

cm?

ties are found by rotating the original particle, ¥ — 2% . by R, and translating
by Z.,. By linearly interpolating matrix A with the rotation matrix R during
the transformation process, stretching and shearing can be introduced into the
shape matching. Following the same idea, twisting and bending can be created by

computing a larger matrix which encodes quadratic deformation similar to Equa-

tion 3.14. Our implementation of this method is shown in Figure 3.3.
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Figure 3.3: Meshless shape matching linear deformation (top) versus quadratic
deformation (bottom).
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Chapter 4 — Fluid Flow on Interacting Deformable Surfaces

4.1 Fluid Dynamics on Surfaces

While there have been many excellent techniques for solving the Navier-Stokes
equations in planes and volumes volumes, few solvers exist for non-planar surfaces.
There has been some success in this field by storing a height value and velocity at
each surface fluid cell, and solving the Shallow Wave Equations which are a height-
field interpretation of the Navier-Stokes equations. Typically, velocity advection
and diffusion in those frameworks are ignored, while external force integration and
control are enforced through the pressure control of the height field [52]. The
largest contribution presented in this thesis is the interactive, controllable frame-
work of designing and controlling fluids on deformable surfaces, while maintaining
a pure 2D representation of the full Navier-Stokes equations. The only height
field interpretation of the data comes from advecting a scalar quantity along the
velocity field, as covered in Section 5.2.2.

Here, again, is the outline of the fluid simulation part of the framework. To

1

compute the velocity of the fluid at the next timestep, u'™, we perform the fol-

lowing operations:
1. u, = advect(u’)

2. uy = diffuse(u,)
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Figure 4.1: Velocities, u, are stored on vertices while pressure values, p, are stored
on the barycenter of triangles (left). Local coordinate frames with corresponding
tangential velocities are shown in red for vertices j, k, and 1 (right).

3. Uy = Uy —+ ft
4. u' = project(uy)

An overview of some of the issues concerning fluid dynamics on surfaces is now
presented.

It is important to recognize a fundamental difference between a grid represen-
tation and a surface based approach. For every vertex, triangle, and edge in the
mesh, a local coordinate frame is built where values like velocity, pressure, and curl
are stored. This is analogous to the staggered grid approach shown in Section 3.1.2,
where the pressure values are stored in the center of cells, and the velocity is stored
at the edges. This assists, as in the planar and volume case, with differentiation.
The up-vector of the local coordinate plane corresponds to a smooth normal at
a vertex or triangle. The two perpendicular vectors which complete the local ba-

sis, and represent a plane tangent to the surface are chosen arbitrarily as Parallel
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Transport alleviates the need for locally smooth parameterizations. Also, velocity
in the local coordinate frame representation has only two coordinates. The fluid’s
velocity in the tangent plane is defined as: @ = (u,v) where (u,v) is a linear com-
bination with respect to the tangent plane basis vectors, i.e. @ = uey + ve; with
g, €1 being the two tangent plane basis vectors from the local coordinate frame.
Velocity is stored per-vertex, while curl and pressure are stored at the per-triangle
barycenter. Refer to Figure 4.1 for more information.

Part of the difficulty for solving the Navier-Stokes equations on surfaces is how
exactly do we compute advection, diffusion, and projection. Remember that the
discrete differential operators in an evenly-spaced grid are relatively straight for-
ward to define, shown in Equation 3.9. In a triangle representation, this is not
the case as triangle area and edge length vary dramatically, which can signifi-
cantly complicate derivative computation. However, much research has been done
on effective numerical approximations of derivatives on triangular or tetrahedral
primitives, so we will utilize Mean Value Coordinates as in [11]. We will have to
amend all equations requiring spatial derivatives to use the more accurate surface
based alternative. Specifically, this affects the divergence calculation for projection
in 4.1.5.

A more serious problem also exists in that, on a surface, a question of ori-
entation arises. Specifically, we are easily able to trace particles, interpolate, and
average inside a grid or volume because the orientation in Euclidean space is always
consistent, i.e. we have a clearly defined up, down, left, and right. Non-Euclidean

geometry, such as the surfaces presented in this thesis, do not have a clear orien-



32

Figure 4.2: An intuitive globally assigned direction of south on a sphere leaves
singular points at the poles, where the direction south becomes ambiguous and
difficult to deal with.

tation. This is described in the case of a sphere in Figure 4.2. Any attempt to
flatten or parameterize the surface onto an orientation-consistent plane, for any
sufficiently complex surface, will be met with some amount of distortion [44], or
singularities where derivatives become impossible to solve. Naively ignoring this
problem of orientation causes velocities defined in different coordinate frames to
be operated upon! A solution to this problem is presented in Section 4.1.1.

The deformation of the surface effects the simulation numerically as well as
visually. Large amounts of computation dependent on the differential properties
of the surface, like the Discrete Laplace operator and local coordinate frames, need
to be recomputed if the surface deforms. Physics and deformation also have an
impact on the fluid flow. This behavior is described in Sections 4.2, 4.2.1, and 4.2.2.

The interactive framework presented in this thesis allows the user to control
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and design fluid flow and deformation. Control and design mechanisms for fluid
flow and deformation are presented in Section 5.1. Effectively visualizing the fluid
flow is also a vital problem. Procedures which allow the display of vector field
quantities as well as fluid density advection are shown in Sections 5.2.1 and 5.2.2.
Since we are essentially doing a 2D simulation on a 3D surface, we need a way
of "faking” a volumetric fluid behavior, like rain-drops flowing down the surface.
Proof-of-concept of this effect is provided as part of the high-quality visualization

discussed in Section 5.2.3.

4.1.1 Parallel Transport

Parallel Transport gives a solution to the orientation problem locally around a given
point on the surface. The region for transporting between non-oriented coordinate
frames is going to be restricted to sufficiently small regions around a given point,
anything larger is not necessary for our purposes. For example, given a vertex v;,
we can consider coordinate frames centered on adjacent vertices v; and triangles
T). For the barycenter of a triangle, T;, we can consider adjacent vertices v; and
triangles Ty. Between two non-oriented local coordinate frames, we are going to
construct a mapping based on geodesics that will allow us to transport a vector
from one to another, allowing us to do averaging, differencing, and particle tracing
on a surface. See Figure 4.3 for a visual representation of this transportation.

A more technical explanation of connecting geodesics is described by [59]; the

author’s description is summarized here. A geodesics on a curved surface is
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Figure 4.3: The vector Vp-V(q represents the geodesic that the red vector is trans-
ported on (left). The vectors in the tangent planes are rotated according to the
angle differences between the geodesic and the x-axis (right).
a locally shortest and straightest curve connecting two points. It is basically a
generalization of a straight line in the plane. Given a surface S and two points
p,q € S, there is a geodesics v connecting them, i.e. if y(0) = p and (1) = q.
Let vy and v; be tangent vectors defined at points p and q, respectively. If the
oriented angle between 7/(0) and ¢y equals that between ~/(1) and vy, then v, and
vy are parallel with respect to v, and v7 is said to be the parallel transport of
along 7. 7y gives rise to an orthonormal and bijective linear map between T'P, and
TPy, the tangent planes at p and q.

Technical details aside, implementation of Parallel Transport is fairly straight-
forward. Transporting a vector 7 defined in the tangent plane of p, T'F,, to a

corresponding vector in the tangent plane of q, T'F,, is defined as follows:

1. iy, = p —q where p and q are the two locally close points in world space
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that we are transporting between.

2. U, = WorldToLocaly(t,q) and @, = WorldT oLocalq(t,q) where WorldT oLocal
is a transformation between world space and the local coordinate frame de-

fined at p and q.
3. Af— tan’l(Z—Z) - tan’l(%) where @ = (u,v)
4. Uy = Rotate(Af)v,

Remember that v, and v are defined in the tangent space of the surface, so the
bijective linear mapping, Rotate, is simply a two dimensional rotation. Written
explicitly:

cos A —sin A6
Rotate(Af) = (4.1)

sin A@  cos Ad
This rotation from an element j to an element ¢ will, from here on, be referred to as
the Transport operator 7;;. As long as the differentiable properties of the mesh do
not change, Af stays constant so the rotation Rotate(A#) can be precomputed for
fast transportation between local coordinate frames. The restriction of two points
being locally close is the same as the restriction outlined in the first paragraph.

We are now able to bypass the orientation problem with surfaces, and are now able

to define interpolation, diffusion, advection, and projection.
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4.1.2 Surface Interpolation Using Parallel Transport

We can now use the Transport operator to perform interpolation operations. In-
terpolation is a necessary part for Semi-Lagrangian advection much like in the
planar case. The end point of the massless particle trace will end up somewhere
between the vertices we store data at. Interpolation is also necessary for pro-
jection. Helmholtz-Hodge decomposition, which is the theoretical foundation for
divergence-free projection, is defined for the center of triangles so an interpolation
step that transfers from vertex velocities to triangle velocities and back is required.

For scalar interpolation, we use a linear basis function:

fla) =2 i(x)fi (4.2)

where ®;(z) is a piecewise linear basis function valued 1 at vertex i, v;, and 0
everywhere else for a given triangle [49]. This linear basis function serves the same
purpose as the familiar Cartesian basis vectors, i.e. ey = (1,0,0), e = (0,1,0),
es = (0,0,1). A defined function described in a particular basis can be written as
a linear combination of its basis vectors. For a Cartesian basis, this turns out to
be: f=eéeyf +e1f + e f. For a triangular basis composed of vertices vy, vy, ve, by
Equation 4.2 this turns out to be: f = ®gfy + 1 f1 + Pafo.

For interpolating to an interior point inside a triangle, the values of the linear
basis function ®(x) turn out to be the «, 3, and ~y values of the familiar barycentric
coordinates. For interpolating velocities defined at the vertices, to a location inside

a triangle we use the Transport operator defined in Section 4.1.1 to handle surface
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orientation ambiguities. We transport the velocity at each vertex j, u;, to the
triangles local coordinate frame and perform a weighted summation to get the

interpolated triangle velocity, u;:

U=y CyTy()) (4.3)

JETT

where T;; is the Transport operator between triangle vertex j and triangle i, as
described in Item 4 of Section 4.1.1. ®;; is defined as the barycentric weight asso-
ciated to vertex v; inside triangle i calculated by Equation 4.2. The interpolation
from triangles to vertices is done similarly, with velocities located at the center of
triangles being transported to each vertex, weighted, and summed. We now have

an interpolation algorithm we will be able to utilize from now on.

4.1.3 Particle Advection on Surfaces

In this section, we use the Transport operator defined in Section 4.1.1 to present
an intuitive, unique definition of a per-vertex surface particle advection routine
described in the context of fluid dynamics. The algorithm can be broken up into

five parts:
1. One-ring flattening to determine the triangle to trace from
2. Time Integration to move along the trajectory

3. Edge Transportation to move a velocity across a non-planar edge
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4. Triangle Interpolation to sample at a point inside a triangle

5. Velocity Transport to move the interpolated velocity back to the starting

point.

Recall that Semi-Lagrangian advection, described in the planar case in Sec-
tion 3.1.3, traces the velocity field back in time to determine what velocity should
be at the current point. Our current domain discretization stores velocities at the
vertices. Since this is a per-vertex algorithm, the number of elements required
to advect a velocity field defined on a surface is much less than triangle based
approaches in other papers [37].

A néive approach would project the velocity into three-dimensions to perform
tracing. Not only is this inconsistent with our surface-based approach, but trac-
ing outside the coordinate frame of a triangle will eventually lead to an incorrect
solution due to the trajectory of the three-dimensional trace deviating from the
surface. Interpolation requirements would also require excessive switching of coor-
dinate frames with every sample of the surface’s velocity field and interpolation.
A much more preferred and intuitive solution would be to perform the tracing
directly within the tangent space of the mesh, taking advantage of our previously
defined Transport operator to handle surface ambiguities and interpolation.

Since the velocity ; is stored in the tangent space at a vertex ¢, step 1 requires
that we first determine which triangle to start tracing from. We use the concept
of Geodesic Polar Maps to flatten the one-ring neighborhood onto a planar disk,

applying the resulting affine mapping to the velocity stored at the center of the
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Figure 4.4: The one-ring neighborhood of a vertex is parameterized onto a unit
disc, where we evaluate which triangle contains the velocity.

neighborhood. Angles between edges are normalized to add up to 2w, and we
compute an edge whose projection onto the tangent plane of the vertex is minimal.
The normalized angles are rotations which are applied to the edge in order to find
the other edges’ representations in this space. Using simple cross products with
the edges emanating from the center vertex in this mapping identifies the starting
triangle. This is described visually in Figure 4.4. Using the Transport operator,
the velocity is mapped to the triangle, where it is interpreted as a ray, r = o+ Atv,
that will be traced on the surface.

To integrate Step 2 through time, we intersect each edge of the triangle with
the ray, with the successful intersection resulting in a parameterized distance from
the origin d. If d < At, integration is stopped and we move onto Step 4. If
not, the ray’s origin is reparameterized to the intersection point on the edge, while
At = At—d, and the algorithm moves onto Step 3 indicating that the need to trace

farther on the surface. Higher order integrators, such as the midpoint method, can
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be applied here to increase numerical accuracy. Benefits and drawbacks of this are
discussion in Section 4.1.6.

Edge Transportation in Step 3 is fairly straightforward due to the Transport
operator. The velocity is being transported from triangle element i to triangle
element j, which is within the definition of being [ocal as discussed in Section 4.1.1.
The Transport operator, T, is applied to the rays direction ¥ and Step 2 continues
until the termination condition d < §¢ is hit.

Step 4 is again straightforward due to the Transport operator. The ray is traced
the remainder of At¢, which is guaranteed to terminate within the current triangle.
The velocities are interpolated via Section 4.1.2 to acquire the final velocities.

Step 5 is a little more involved. Since the final coordinate frame the trace
ended at is different from one at the vertex origin , a geodesic will need to be
defined that transports the velocity back. Luckily, the ray we have traced is just
that, a geodesic. Therefore, we can compute Af with respect to the velocity
vector’s representation at the origin at termination, and apply the rotation to our
interpolated velocity to arrive at the final result.

In comparison with other surface advection algorithms [37], the algorithm pre-
sented here provides: a smaller and more consistent interpolation framework, in-
creased consistency with differential geometry concepts (Parallel Transport and
Geodesic Polar Maps), and smaller velocity interpolation calculations (per-vertex

versus per-triangle).
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4.1.4 Diffusion on Surfaces

Using the Transport operator, solving for diffusion becomes straightforward. We

need to again solve the following equation:

vV - Vi = ?;t‘ (4.4)

In Section 3.1.4, we solved Equation 4.4 by using a discrete version Laplace opera-
tor. We will be doing the same on a surface, except a surface version of the Laplace
operator, called Laplace-Beltrami, will be used instead. Finite element approxi-
mation of this operator turns out to be a bit more difficult and is not within the
scope of this thesis, but we direct the reader to an excellent description by [11].
With the assistance of Mean Value Coordinates and the Transport operator T;;,
only the coefficients of @ in Equation 3.6 change. A linear system of Equation 4.4
can then be written in summation form:

~ Wij "

U; = ]%;] EJTJWMTUUU (4.5)
with w;; being the weights described in [11]. The division by the summation
of the weights is similar to dividing Equation 3.6 by -4 in order to make the
resulting matrix simple to compute. The Matrix-Vector form of Equation 4.5 can
be solved efficiently by taking advantage of the diagonal, symmetric structure of

the coefficient matrix by using the Bi-Conjugate Gradient Solver of [31].
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4.1.5 Projection on Surfaces

The largest difficulty in solving projection on surfaces is defining the differential
operators for the gradient, divergence, and curl. Once we have surface-based dif-
ferential operators, projection proceeds similarly to the grid case in Section 3.1.5,
albeit with slightly different linear systems. A theoretical basis, called Helmholtz-
Hodge Decomposition states that any vector field can be decomposed into three
orthogonal fields: one divergence-free, one curl-free, and another incompressible
field termed harmonic. Again, the goal is to solve for a pressure scalar field whose
gradient indicates the forces that maintain incompressibility, or the divergence-free
characteristics of the fluid. Helmholtz-Hodge decomposition is used to compute a
curl-free field that represents the compressibility of the system. The gradient field
of the potential solved by the decomposition correlates to the %VP term of the
Navier-Stokes equations. Since Helmholtz-Hodge decomposition is defined when
velocities are inside triangles, not on vertices, an interpolation step is required
before computation of the curl-free potential. Otherwise, the pressure field is com-

puted in the same way as [49], so I direct the reader there for more information.

4.1.6 Numerical Considerations

There are a few areas in this framework where careful understanding of numer-
ical issues is important. Like in the planar case, numerical error during Semi-
Lagrangian advection in Section 4.1.3 manifests itself as diffusion. Specifically,

important fluid features like vortices or waves tend to diffuse quickly or fail to
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form at all. While this is fine for effects like smoke, fluids like water and syrup be-
come especially difficult to simulate. This can be partially fixed by using a higher
order integration scheme, like midpoint or trapezoidal method, or by segmenting
the timestep into smaller intervals. Also, making sure the field is divergence-free
before and after advection helps maintain features. All of this is at the price of
performance, so we opted to use a second-order tracing method.

The timestep and sampling size, or tessellation, of the surface effect numerical
stability as well as convergence. Typically the ratio of largest triangle area to
smallest is a decent metric for measuring conditioning, while triangles with poor
angle ratios effect accuracy, specifically during interpolation and diffusion. We
found that a timestep of 1/100 seconds is usually sufficient for most high-quality
visual simulations.

Interpolation around the edges of fluid can be particularly problematic, again
contributing to diffusion. In [52], Wang et al. keep track of the boundary cells and
initialize cells outside the fluid region with C* continuous negative values in order
to obtain a more accurate interpolation around the boundaries. An interesting
research area involving boundaries would be to investigate contour tracking on
surfaces. Perhaps this would lead to a particle level-set method on surfaces that
can accurately track water regions on surfaces, and vastly improve numerical issues

related to interpolation and advection.
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4.2 Surface Deformation

For surface deformation, we implemented the method based on shape matching
first presented by [26]. For more information, see Section 3.2. When a surface
undergoes deformation, the Discrete Laplace operator, as well as local coordinate
frames need to be recomputed. This turns out to be rather fast, being linear with
respect to the number of vertices and triangles.

The interactivity of this approach made it a good choice for the system we de-
veloped. Currently, Meshless Deformation applies the deformation globally across
the whole model, making it less suitable for objects with complex, varying geom-
etry undergoing deformations of different magnitude. The original authors solved
this problem through overlapping clusters subdivided across the model. These clus-
tered are then matched to their original configurations, and the particles contained
within are updated appropriately. Further refinements to the technique involved
lattices in order to increase the level of control and detail in the deformation [34].

We are currently looking into using the Sphere Bounding Hierarchy tree used
by our physics system to spatially partition the surface into overlapping regions.
Different levels of the tree could demonstrate different levels of stiffness, increas-
ing or decreasing the amount of clusters matched based on dynamically changing
stiffness or user interaction. Accurate deformation is not of primary importance

to our main goals, so it would mostly be done for aesthetic purposes.
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4.2.1 Incorporating Physics

To provide interaction between multiple deformable surfaces, we have implemented
a standard collision detection system with a hybrid collision response system that
imparts forces onto the object as a rigid body to produce rigid body motion and
imparts forces onto the vertices to produce deformations.

The linear and angular motion of each deformable object is governed by typ-
ical rigid body dynamics. As objects move through space, we use a hierarchical
bounding sphere algorithm to efficiently identify collisions with other deformable
surfaces similarly to [32]. Because our objects deform over time, the bounding
spheres are updated if deformation is above a certain tolerance threshold.

Our system runs at a time step determined by the user, which is typically set
to 1/60 to 1/30 seconds. We use a Runge-Kutta (RK4) integration scheme to
integrate the rigid body dynamics forward in time. The RK4 timestep is further
subdivided to provide a reasonable timestep for detecting and responding to colli-
sions accurately without unacceptable penetration. Once a collision is successfully
detected, we employ an impulse response method to compute and apply forces di-
rectly into the rigid body dynamics [2]. The impulse force is also used to scale the
position of the colliding vertex, resulting in a deformation that propagates through

the surface. See Section 3.2 for more information on deformation.
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4.2.2 Fluid-Deformation Interaction

To understand the impact on the fluid by the motion and deformation of the
underlying surface, recall the force equation F = Ma. Consider a surface S with
the mass M, velocity v(t), and external force F'(t). The instant acceleration is
F(t)

=7 - Given a small concentration of fluid in S with a mass m, the force by S on

the fluid is then:

F(t)

fi(t) = —m— (4.6)

This force is used to account for the impact on the fluid by the changes in
motion and shape of the underlying surface. We also consider the friction between
the surface and fluid, which is f, = av where v is the fluid velocity relative to the
underlying surface, and « is a frictional coefficient representing roughness. Then
the total force that exercised by the surface to the fluid is f; + f,.

Essentially this states that the fluid in this representation is separate from
the surface it is represented in, and is affected by frictional forces. If the floor
moves out from under it, a fluid with @ = 1 stays stationary with respect to the
surface point under it, while a fluid with a = 0 moves completely independent of
the surface. This can violate the divergence-free constraint of the Navier-Stokes
equation in the case of linear acceleration, as Av projected onto a spherical object’s
mesh essentially constitutes a divergent source or sink.

Collisions also introduce ill-suited vector fields at the point of contact, signifying
possible compression of the fluid similar to explosive shockwaves in the tangential

velocity representation. Angular acceleration, however, is well suited, resolving in
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Figure 4.5: Forces due to direct impacts intuitively create divergence forces on
the tangential velocity field, which are quickly eliminated during pressure projec-
tion. Angular forces caused by rotations create curl forces which are suitable for
incompressibility.
the case of the sphere to a pure rotational field. Further exploration into simulating
compression would be needed to refine these rules, and to ensure mass is conserved
during compressibility. A comparison of these forces is presented in Figure 4.5.
Fluid also is implicit interacted upon by the deformation of the underlying
surface. As the surface compresses and decompressed, the surface area the fluid
is traveling over expands and contracts, allowing the fluid to flow faster or slower
over areas. This can be thought of as the fluid slipping over a surface moving
under it. It is unclear, however, if this type of behavior is desirable, as it reduces
control over the fluid especially in circumstances undergoing extreme amounts of

deformation. A remeshing step which attempts to conserve a uniform sampling

distribution could be implemented to avoid this problem.
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Chapter 5 — Results

5.1 User-Interaction

How the user and the environment interact with the fluid and deformation of the
system is outlined in Figure 5.1 as well as the controls available to the user. In this
section, control mechanisms for the fluid and deformation part of the simulation

are described.

5.1.1 Fluid Control

The user is able to interactively paint velocities and density sources directly onto
the surface. Viscosity on both the velocity field and density field are tunable, as well
the timestep used in fluid integration. We also provide a decoupling mechanisms
in order to simulate each section of the framework individually. This is useful for
when the user wants to interactively design a fluid on high-quality meshes. And
example of painting a fluid onto a static velocity field is shown in 5.2. Procedurally
introduced forces can be used in to generate a complex, highly turbulent flow. The
framework also supports density textures, which was used in Figure 5.8 to write

the words deformable and flow on the torus and bunny.
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Figure 5.1: The controls available to the user during the Open-GL visualization.

5.1.2 Deformation Control

Deformation control is done by dragging individual vertices in a direction per-
pendicular to the viewing direction. The vertex is displaced and scaled, allowing
the deformation system to take over and fit a deformation field to the surface,
described in detail in Section 3.2. An example of the deformation system imple-
mented in this thesis can be seen in Figure 5.3, while the original work can be found

here [26]. Deformation can be decoupled from the fluid simulation so a shape can
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Figure 5.2: Fluid flow on the motionless rigid Bunny surface, where the user is
interactively adding density to the low-quality visualization.

Figure 5.3: A deformation force is applied to a bunny with the words FLOW
textured on.

be manipulated to a specific purpose.

5.2  Visualizations

Effective visualization of the fluid is necessary in guiding the design of the fluid.
We provide three groups of techniques that the user is able to switch between at
run-time: Vector Field visualization, OpenGL, and POV-Ray high-quality post-

process. The visualization of vector fields is a heavily researched topic. Being able
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Figure 5.4: Vectors representing velocities at a given vertex are shown in blue.

to identify features of the field is vital for mechanical engineering, visualization,
and geometric processing. For fluids, vector field visualization allows us to see
fluid flow in regions where fluid may not be present, or regions where the visual
characteristics do not visually reflect the characteristics of the flow (saddle-points,
or small singularities). We also present an OpenGL framework which serves as a
low-quality, interactive design studio. Geometric data is then output to the high
quality visualization. In the post-processing visualization stage, photon mapping
and ray-tracing are used in the open source ray-tracer POV-Ray to produce the

best images.
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Figure 5.5: Deforming shapes with fluids flowing on their surfaces collide.
5.2.1 Vector Field

For the visualization of vector fields, we use two techniques. We implemented a
noise-texture warping method for surfaces presented by [50]. While it produces
excellent results, sometimes areas of the field tend to become blurred making it
difficult to see the flow in complex regions of the surface. A per-vertex vector
field velocity visualization technique is shown in Figure 5.4. This visualization
technique scales well with the tessellation of the surface, as the velocities can be

scaled or normalized easily.

5.2.2 OpenGL

The OpenGL visualization provides an interactive control studio which allows the
user to manipulate and modify the fluid and the surface. Figure 5.5 shows the

OpenGL interactive visualization.



93

Figure 5.6: Surface geometry being displaced negatively (left) and positively (right)
by an advected and diffused height value.

A scalar value representing the density, height, or temperature at a vertex is
advected and diffused along the fluid’s velocity field. A warm-to-hot (dark red
to white) color scale is used which can also reflect the temperature of a fluid at
a point. Since this visualization emphasizes interactivity and design, not much
concern is spent on quality. The scalar value can be used to displace the vertices
through a GLSL vertex shader. A positive displacement provides a visual indicator
of fluid accumulation, while a negative displacement gives the illusion of an eroded
surface as shown in Figure 5.6.

The performance of the OpenGL visualization is generally dominated by the
pressure solution, which involves solving a large spare linear system. Direct pre-
computed methods like Cholesky Decomposition were considered, but could only
be utilized when the differential properties of the surface do not change. There are
a variety of numerical methods out there, so more investigation needs to be done

on which solver would be best suited for this type of application.
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# of Tri’s Advect Diffusion Projection Total
Sphere 8192 .016 .006 .059  .081
Bunny 72754 142 .060 928 1.130
Square 107520 181 .084 1.107 1.372
Torus 204800 371 167 2.828 3.366

Figure 5.7: Timing in seconds per frame averaged over 100 frames on Intel Core 2
Duo 3.0Ghz with NVIDIA 8800GT.

Figure 5.8: The torus and bunny collide!

We used OpenMP to multithread sections of the code suitable for parallelism,
like independent updates to the surface’s coordinate frames or particle advection.
OpenGL performance numbers for meshes of varying complexity with procedurally
changing forces every fifty frames are shown in Figure 5.7. The test machine: a

Intel Core 2 Duo 3.0Ghz with a NVIDIA 8800GT on Windows Vista.
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Figure 5.9: Torus and Sphere surfaces are displaced according to an advected
height scalar and rendered in a post-processing step through POV-Ray.

5.2.3 POV-Ray Post-Process

Geometric data is piped out from the OpenGL visualization, where it is run
through POV-Ray. A separate, displaced mesh based on the scalar value at a
vertex which represents a fluid on the surface is also exported for visualization.
A Gaussian weighting function is convolved with the fluid’s geometric data upon
export from the OpenGL visualization in order to smooth out the sharper displace-
ments of the fluid. This gives the visual illusion of a fluid flowing on the surface.
Caustics are generated through traditional photon mapping. Parameters specified

on a per-object basis reflect the color, transparency, and smoothness of the fluid.
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The POV-Ray post-process visualization provides a high-quality render of the
scene at the click of the button. Due to expensive ray-tracing effects like photon
mapping, each frame can take upwards of three minutes to render. The state of
the scene at each frame in an animation can be saved to a file, so that a distributed

batch rendering of the frames can be done at a later time.
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Chapter 6 — Conclusion

6.1 Future Work

We have demonstrated some of the potential benefits restricting the computational
domain of fluid flow to surfaces. While working on the research presented in this
thesis, more questions came up than answers. We will now provide a discussion of

future work we feel may benefit the current project.

6.1.1 Height-field Description of Surface-Fluid

While a still image of flow on surfaces is moderately convincing, the animation of
fluid flow on deforming surfaces does not give the full impression of being physically
correct. Vortices and wave propagations which indicate a fluid are present, but
the three-dimensional interactions of the fluid with the environment are not fully
represented. If the purpose of the fluid is to mimic behavior of three-dimensional
flow on surfaces, velocity and pressure in the normal and tangential directions
need to be captured. Currently, our system only supports velocities in the surface
tangential direction, which limits the types of special effects we are able to generate.
A recent paper on solving a generalized version of the Shallow Wave Equations [52]
attempts to address the problem of surface flow in the normal direction. The

authors use a fully implicit method to enforce incompressibility, which leads to a
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fair amount of success. However they assume the movement of the fluid is slow,

which also limits the types of effects they are able to generate on surfaces.

6.1.2 Fluid-Deformation Coupling

A difficult problem for computation fluid dynamics is the interaction of fluid with
deformable surfaces. Restricting the computational domain of the fluid to a surface
has obvious advantages in not needing to resolve the complex boundary conditions
typical volumetric simulators are required to. The question then becomes how can
we describe a physically plausible interaction between the fluid and the deforming
surface?” What forces does the flow impart upon the surface, and the surface upon
the flow? How can we guarantee smooth animation when the domain the fluid
is being computed on is dramatically deformed? An interesting approach would
be to solve the Navier-Stokes equations alongside the equations describing surface
deformation, coupling the two together in a large system of equations. Future
research into this possibility may lead to interesting surface simulations of rivers

carving into deforming geometry, or rain drops eroding a rock bed.

6.1.3 2D-3D Fluid Transferance

The interaction of a surface based fluid with the environment requires the transfer-
ence of fluid to and from the surface domain. This problem is especially difficult,

as great care would need to be taken in ensuring a smooth transition of fluid to
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and from the surface. At what point does the fluid start to fall of, or transfer
onto the surface? How quickly does this happen? What is a visually smooth way
to remesh a water droplet dripping off a surface? These questions all need to be

addressed if this type of important physical behavior is to be simulated.

6.1.4 CPU Multicore

Exploiting the recent paradigm shift to multiple cores is essential to the success of
breaking through expensive computations to interactive simulation. Soon, comput-
ers will be equipped with dozens of cores capability of carrying out embarassingly
parallel computations with a near linear speed-up with respect to the number of
cores. Parallelism in the framework we have presented here is extremely preva-
lent. Semi-Lagrangian particle advection is an excellent example, as each vertex
can be traced independently of the others, leading to a algorithm which can be
easily mapped to multiple cores. The multi-threaded version yielded an almost
three times speed-up in this specific algorithm on a hyper-threaded dual-core. Nu-
merical methods used in diffusion and pressure projection can also be mapped to
multiple threads as long as the method can be parallelized, like Jacobi iteration.
More research would need to be done in order to determine other areas in which

these types of optimizations can be effective.
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6.1.5 GPU Implementation

The power of the GPU in processing heavily parallel data-intensive tasks like image
processing or numerical iterative methods is undeniable. As GPU programming
languages turn the GPU into a general purpose arithmetic power-house, large
computational speed-ups can be made. A full investigation into porting a surface-
based fluid simulator onto the GPU could be an interesting project. While fluid
simulators for the GPU have been easily programmed for volumetric or planar
simulations, a full-triangle based implementation has not yet been shown. Simply
porting part of the pipeline over to the GPU incurs a great cost of data transferring
latency. A part way port, in my opinion, is not indicative of the performance a

full GPU implementation would have, so a full GPU simulator may prove useful.

6.2 Final Thoughts

The work presented in this thesis could eventually be a vital component of a larger,
more interactive, and physically correct fluid design and deformation studio. Rivers
could carve canyons over plains, or lava could flow over volcanic surfaces all at real-
time speeds in a high-quality visualization. Video games could finally incorporate
non-planar fluid simulation without losing a significant amount of performance.
While much research still needs to be completed to fully realize this goal of
faking volumetric fluids on surfaces, a proof-of-concept of such a system has been

demonstrated by this thesis.
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