Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: Nature and experiment. Part I. Chlorapatite

DANIEL E. HARLOV,^{1,*} HANS-JÜRGEN FÖRSTER,^{1,2} AND TIMO G. NIJLAND³

¹GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, FR Germany ²Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, FR Germany ³Rooseveltlaan 964, NL-3526 BP Utrecht, The Netherlands

ABSTRACT

This study investigates chlorapatite [ideally $Ca_{10}(PO_4)_6Cl_2$] from two spatially separated locations in the Ødegårdens Verk apatite mine, Bamble Sector, SE Norway, which was partially metasomatized under amphibolite-facies conditions. Relative to the original chlorapatite, metasomatized areas in sample DL136 are enriched in OH and F, depleted in Na, Si, and (Y + REE) and contain numerous inclusions (1–15 μ m) of monazite and xenotime. In contrast, metasomatized areas in sample TN174 are enriched in F and Si, depleted in Na, show (Y + REE) abundances similar to the original chlorapatite, and host only a few monazite and xenotime grains.

In order to define the role of fluids in the formation of (Y + REE)-phosphate minerals associated with apatite, a series of experiments covering wide ranges of temperature (900–300 °C) and pressure (1000–500 MPa) for a series of fluid compositions (pure H₂O, a 50/50 molar mix of H₂O and CaF₂, and CO₂ with 1–2 wt% H₂O) were conducted on unaltered chlorapatite from the Ødegårdens Verk. In the H₂O experiments, features due to metasomatic alteration [depletion in Na, Si, and (Y + REE) as well as numerous monazite and xenotime inclusions], as observed in the natural sample DL136, were fully reproduced. Monazite and xenotime grains were also observed growing on the surface of the apatite in dissolution embayments in metasomatized areas. In the 50/50 CaF₂-H₂O experiments, metasomatized regions are strongly enriched in F and Si, depleted in Na, show unchanged (Y + REE) abundances, and contain only a very few, small monazite and xenotime grains similar to what was observed in sample TN174.

Natural and experimental observation imply the presence of two coupled substitutions: Na⁺ + (Y + REE)³⁺ = 2 Ca²⁺ and Si⁴⁺ + (Y + REE)³⁺ = P⁵⁺ + Ca²⁺. In the case of DL136 and H₂O–fluid experiments, Na⁺ and Si⁴⁺ went into solution, whereas the released (Y + REE) contributed to the growth of monazite and xenotime within the metasomatized apatite structure. For sample TN174 and the 50/50 CaF₂ + H₂O–fluid experiments, Na in apatite became depleted but Si was enriched thereby stabilizing the (Y + REE) in the now recrystallized fluor-hydroxylapatite structure, which retarded the growth of monazite and xenotime inclusions. The basic conclusion of this study is that nucleation of monazite and xenotime in the metasomatized chlorapatite is principally a function of the composition of the infiltrating fluid and, to a much lesser extent, temperature and pressure.