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Abstract

Metallic seals are crucial machine elements in many important applications, e.g., in ultrahigh vacuum systems. Due to the 

high elastic modulus of metals, and the surface roughness which exists on all solid surfaces, if no plastic deformation would 

occur one expects in most cases large fluid flow channels between the contacting metallic bodies, and large fluid leakage. 

However, in most applications plastic deformation occurs, at least at the asperity level, which allows the surfaces to approach 

each other to such an extent that fluid leakage often can be neglected. In this study, we present an experimental set-up for 

studying the fluid leakage in metallic seals. We study the water leakage between a steel sphere and a steel body (seat) with 

a conical surface. The experimental results are found to be in good quantitative agreement with a (fitting-parameter-free) 

theoretical model. The theory predicts that the plastic deformations reduce the leak-rate by a factor ≈ 8.

Keywords Sealing · Leakage · Percolation · Experiment · Simulation · Elasto-plasticity

1 Introduction

Seals are a crucial machine element used to confine a high 

pressure fluid to some given volume. Due to the interfa-

cial surface roughness most seals exhibit leakage [1, 2]. 

To minimize the leakage, seals are usually made from a 

soft material, such as rubber (with an elastic modulus of 

order E ≈ 10 MPa ), which can easily deform elastically and 

reduce the gap to the counter surface to such an extent that 

the fluid leakage becomes negligible or unimportant.

For some applications, e.g., involving high temperatures 

or hot reactive gases, or very high fluid pressures, rubber-

like materials cannot be used. In these cases, and in ultra 

high vacuum systems, seals made from metals are very use-

ful [3–6].

Metals are elastically very stiff (typical elastic modulus of 

order E ≈ 100 GPa ), and unless the surfaces are extremely 

smooth, or the nominal contact pressure extremely high, 

calculations (assuming purely elastic deformations) show 

that large non-contact channels would occur at the inter-

face resulting in a large fluid leakage. However, most metals 

yield plastically at relative low contact pressures, typically 

of order �
Y
≈ 1 GPa . This will allow the contacting surfaces 

to approach each other, which will reduce the interfacial 

gap to such an extent that the fluid leakage usually can be 

neglected.

For purely elastic solids like rubber, contact mechan-

ics theories have been developed for how to predict the 

fluid leak-rate, and it has been shown that they are in good 

agreement with experiments [7, 8]. The simplest approach 

assumes that the whole fluid pressure difference between the 

inside and outside of the sealed region occurs over the most 

narrow constrictions (denoted critical junctions) which are 

encountered along the largest open percolating non-contact 

flow channels.

For elastic solids numerical contact mechanics models 

[9], such as the boundary element model, and the analytic 

theory of Persson [10, 11], can be used to calculate the sur-

face separation at the critical junction and hence predict fluid 

leakage rates. For solids exhibiting plastic flow, the surfaces 

will approach each other more closely than if only elastic 

deformations would occur. This will reduce the fluid leak-

age rate [12, 13].

We have recently shown how the leakage of static rubber 

seals can be estimated using the Persson contact mechan-

ics theory combined with the Bruggeman effective medium 
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theory [14–18] (for other approaches, see Refs. [6, 19, 20, 

21, 22]). In this paper we apply the theory to metallic seals 

where plastic deformations are important unless the surfaces 

are extremely smooth [23–26].

Experimental studies of plastic deformation of rough 

metallic and polymeric surfaces was presented in Refs. [27, 

28]. Several studies of surface roughness and plastic flow 

have been reported using microscopic (atomistic) models 

[29], or models inspired by atomic scale phenomena that 

control the nucleation and glide of the dislocations [30–33]. 

These models supply fundamental insight into the complex 

process of plastic flow, but are not easy to apply to practi-

cal systems involving inhomogeneous polycrystalline met-

als and alloys exhibiting surface roughness of many length 

scales. The approach used in this study is less accurate but 

easy to implement, and it can be used to estimate the leakage 

rates of metallic seals.

2  Experimental

2.1  Surface Topography

The topography measurements were performed with a Mitu-

toyo Portable Surface Roughness Measurement device, Sur-

ftest SJ-410 with a diamond tip with the radius of curva-

ture R = 1 μm, and with the tip–substrate repulsive force 

F
N
= 0.75 mN . The lateral tip speed was v = 50 μm/s.

From the measured surface topography (line scans) 

z = h(x) we calculated the one-dimensional (1D) surface 

roughness power spectra defined by

where ⟨..⟩ stands for ensemble averaging. For surfaces with 

isotropic roughness, the 2D power spectrum C(q) can be 

obtained directly from C
1D
(q) as described elsewhere [15, 

34, 35]. An approximate transformation can be achieved 

using C(q) = C
1D
(q)�∕q [36]. For randomly rough surfaces, 

all the (ensemble averaged) information about the surface is 

contained in the power spectrum C(q). For this reason the 

only information about the surface roughness which enter 

in contact mechanics theories (with or without adhesion) is 

the function C(q). Thus, the (ensemble averaged) area of real 

contact, the interfacial stress distribution and the distribu-

tion of interfacial separations, are all determined by C(q) 

[10, 11, 37−39].

2.2  Leak-Rate Experiment

The aim of the experiment is to measure the fluid (here 

water) leakage for a ball-seat valve as a function of the 

C
1D
(q) =

1

2� ∫
∞

−∞

dx ⟨h(x)h(0)⟩eiqx

applied fluid pressure. In the present set-up we can apply 

fluid pressures up to 20 bar ( 2 MPa ), and the pressure can be 

kept at a constant level even if there is leakage. In this study 

we are interested in the influence of the surface roughness on 

the leak-rate. The steel ball we use is very smooth and has a 

root mean square roughness below 0.1 μm. We use different 

seats with varying surface roughness produced by sandblast-

ing. Thus the seat must be easily replaceable.

In the experiments reported below, the ball is squeezed 

against the seat only by the fluid pressure. However, the 

experimental set-up also includes the ability to create an 

additional normal load onto the ball. This additional force 

is generated by pushing a steel piston against the ball using 

an oil based hydraulics system. In this work, the steel rod 

has not been used extensively.

The test chamber, which contains the ball and the seat, 

can be seen in Fig. 1. Here, the chamber surrounding the 

ball is filled with water (dark blue color). Purified water is 

used as the leakage fluid because the low viscosity increases 

the leakage which makes the measurement more easy and 

accurate as compared to using a hydraulic oil. Purified water 

has very few contamination particles which can clog the 

flow channels. However, if water is used in a hydraulics 

system one has to be careful to avoid corrosion of all sur-

faces, including the seat and the ball. In order to keep the 

water pressure at a constant level a hydraulic accumulator is 

used to compensate for the (wanted and unwanted) leakage. 

A pressure sensor measures the actual pressure at the test 

Fig. 1  Schematic picture of the leakage experiment. The dark blue 

color is water, the light blue color is air and the yellow color is oil. 

The steel ball (black) is squeezed against the steel seat (green) in part 

by the applied water pressure, and in part by the steel piston contact-

ing it from on-top (gray cylinder) using an oil based hydraulics sys-

tem. In the present experiments no force has been applied by the steel 

piston (Color figure online)
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chamber. When the water pressure crosses a certain thresh-

old the water pump will raise the pressure again. In this 

way it is possible to keep the water pressure within ±0.5 bar 

( ±0.05 MPa ) of the nominal pressure at every time during 

the measurement.

The method used to determine the leak-rate depends on 

the amount of leakage. For very low amounts of leakage the 

best way is to count the amount of water drops over time. 

The volume of a single drop can be estimated by repeated 

measurement of multiple drops. For higher amounts of 

leakage a measuring cylinder can be used. If the leakage 

surpasses the typical volume of a measuring cylinder, the 

leakage is instead determined by measuring its mass using 

a scale. In this work all three methods have been used. 

Comparison of different methods in the overlap regions has 

shown that all three methods deliver comparable results.

Each measurement was repeated five times. Using Gauss-

ian uncertainty propagation we have quantified the uncer-

tainties on derived quantities. Between two consecutive 

measurements the contact area was cleaned using purified 

water. If the contact was not been cleaned properly, or if too 

long time had passed between the cleaning and the start of 

a measurement, a reduced leak-rate was observed. This was 

probably due to the accumulation of contamination particles 

at the sealing contact, which block fluid flow channels.

3  Leakage Calculations

The calculation of the fluid leakage in metallic seals involves 

several steps. First it is necessary to determine the nomi-

nal contact pressure profile p(x, y) acting at the interface 

between the two metallic bodies. This will in general involve 

both elastic and plastic deformations of the metals. Sec-

ondly, one must determine the separation u(x, y) between the 

surfaces as this will determine the fluid flow channels at the 

interface. This problem will depend on the pressure profile 

p(x, y) and on the surface roughness, and the elastoplastic 

properties of the metals. Finally, one must calculate the fluid 

flow at the interface in the open (non-contact) channels from 

the high pressure side to the low pressure side. This is a 

complex hydrodynamic problem which in general cannot 

be solved exactly.

3.1  Contact Force

The experimental set-up consists of a steel ball (radius R) and 

a conical steel body (seat) with the angle � defined in Fig. 2. A 

fluid with the pressure p
fluid

 squeezes the ball against the seat. 

We assume here that there is no other applied force squeezing 

the ball against the seat. The contact region between the ball 

and the seat forms a circular region (line contact) with radius 

r
0
 (see Fig. 2). Hence, the force squeezing the ball against the 

seat is F
N
= �r2

0
p

fluid
 . The force per unit circumferential length 

is denoted f
N
 . From Fig. 2, we get

so that

Using F
N
= �r2

0
p

fluid
 we get

3.2  Hertzian Pressure Pro�le

If we assume that the contact is Hertz-like we get the pressure 

distribution [40, 41]

where

where E∗ is the effective Young’s modulus defined by

F
N
=2�r

0
f
N

cos�

Rsin� =r
0

f
N
=

F
N

2�Rcos�sin�

(1)f
N
=

1

2
Rp

fluid

sin�

cos�

(2)p = p
0

(

1 −
(

x

a

)2
)1∕2

(3)p
0
=

(

E∗f
N

�R

)1∕2

(4)a =(R�)1∕2

(5)f
N
=
�

4
E∗

�

R

θ

FN

fN

r0

Fig. 2  A steel ball (radius R) squeezed against a conical surface. The 

radius of the ball R = 2 cm and the cone angle � = 45◦ . In the experi-

ments, the axial force F
N
 squeezing the ball against the cone surface 

is due only to the fluid pressure difference between inside and out-

side the seal, so that F
N
= �r2

0
p

fluid
 . In some applications, in addition 

to the fluid pressure force, we applied a force from the steel piston 

shown in Fig. 1
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where E
1
 and �

1
 are the Young’s modulus and Poisson ratio 

of the steel seat, and E
2
 and �

2
 the same quantities for the 

steel ball.

Using (1) and (3) gives

and from (1), (4) and (5)

Assuming that both the steel ball and the steel cone (seat) 

have E = 210 GPa , � = 0.3 we get

As an example, if p
fluid

= 20 bar , � = 45◦ , and R = 2 cm 

we get F
N
≈ 1260 N , and p

0
≈ 181 MPa and the half-width 

a ≈ 0.07 mm.

3.3  Gaussian Pressure Pro�le

When a cylinder with a smooth surface is squeezed against a 

flat smooth substrate, a rectangular contact region of width 

2a is formed with a contact pressure given by the Hertz 

theory. However, if the substrate has surface roughness the 

nominal contact region will be larger than predicted by the 

Hertzian theory.

In a classical study Greenwood an Tripp [42] studied 

the influence of surface roughness on the elastic contact of 

rough spheres. They used the Greenwood-Williamson [43] 

(GW) contact mechanics theory where the elastic coupling 

between the asperity contact regions is neglected. However, 

this coupling is very important even for small nominal con-

tact pressures, where the distance between the macroasperity 

contact regions may be large. The reason is that there are 

smaller asperities (microasperities) on top of the big asperi-

ties, and since the contact pressure in the macroasperity con-

tact region in general is very high, the microasperity contact 

regions are closely spaced and the elastic coupling between 

them cannot be neglected. In the present study we will use 

the Persson contact mechanics theory which includes the 

elastic coupling between all asperity contact regions in an 

approximate but accurate way.

We will now show that the pressure distribution will 

change from parabolic-like for the case of smooth surfaces 

to Gaussian-like if the surface roughness is large enough. 

Due to the surface roughness, if the contact pressure p is not 

1

E∗
=

1 − �
2

1

E
1

+

1 − �
2

2

E
2

(6)p
0
=

(

E∗p
fluid

2�

sin�

cos�

)1∕2

(7)a = R

(

2

�

p
fluid

E∗

sin�

cos�

)1∕2

E
∗
=

1

2

E

1 − �
2
≈ 115 GPa

too high the interfacial separation u is related to the contact 

pressure as [37]

where u
0
= �h

rms
 , where � ≈ 0.4 and where h

rms
 is the root-

mean-square (rms) roughness amplitude.

For a cylinder with radius R which is squeezed against the 

flat surface we expect (see Fig. 3)

so that

where s2
= �Rh

rms
 . Using (9) we get

or

We note that (9) holds only as long as the pressure p is so 

small that the asymptotic relation (8) is valid, but not too 

small, because then finite size effects become important. 

In addition, while deriving (9) we have neglected bulk 

deformations. This is a valid approximation only if s ≫ a 

or h
rms

≫ �.

Using hrms = 1.9 μm and R = 2 cm gives the stand-

ard deviation s = 0.123 mm . A numerical study using 

(8)p = p
c
e
−u∕u

0

u ≈ u
1
+

x
2

2R

(9)p = p
0
e
−x

2∕2s
2

.

∫
∞

−∞

dx p
0
e−x2∕2s2

= p
0
s(2�)1∕2 = f

N

(10)p
0
=

f
N

s(2�)1∕2

FN

rigid sphere
or cylinder

u=x
2
/2R

x

z

R

(a) Hertz limit: 
      bulk deformation

(b) Gaussian limit:
      roughness deformation

FN

Fig. 3  Two limiting cases when a rigid cylinder (black) with radius R 

is squeezed against a nominal flat halfspace (green). a If the surface 

roughness amplitude is very small, or the applied force very high, 

the nominal contact area will be determined by bulk deformations 

and given by the Hertz contact theory. b In the opposite limit mainly 

the surface asperities deform (but with a long-range elastic coupling 

occurring between them). In this limit the pressure profile is Gauss-

ian-like (Color figure online)
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the full p = p(u) relation instead of the asymptotic rela-

tion (8), and including bulk deformations, gives a nearly 

Gaussian stress distribution with the standard devia-

tion s ≈ 0.139 mm and the full width at half maximum 

(FWHM) ≈ 0.33 mm (see Fig.  4). These results are 

close to the prediction s = (�Rh
rms

)1∕2 ≈ 0.123 mm , and 

the FWHM expected for a Gaussian function, which is 

FWHM = 2(2ln2)1∕2
s ≈ 2.355s ≈ 0.29 mm.

Using (1) and (10) we get

For p
fluid

= 20 bar and s = 0.123 mm we get the maximum 

nominal contact pressure p
0
≈ 57.4 MPa.

Note that the asperities act like a compliant layer on the 

surface of the body, so that contact is extended over a larger 

area than it would be if the surfaces were smooth and, in 

consequence, the contact pressure for a given load will be 

reduced. In reality the contact area has a ragged edge which 

makes its measurement subject to uncertainty. However, 

the rather arbitrary definition of the contact width is not a 

problem when calculating physical quantities like the leak-

age rate, which can be written as an integral involving the 

nominal pressure distribution.

Note also that the fact that the nominal contact pressure 

p(x) is a Gaussian function of x has nothing to do with the 

fact that randomly rough surfaces has a Gaussian distribu-

tion of asperity heights. Rather, it results from the fact that 

there is an exponential relation between the contact pressure 

and average interfacial separation (see (8)), and the fact that 

(11)p
0
=

R

2s(2�)1∕2

cos�

sin�
p

fluid

when bulk deformations can be neglected the average inter-

facial separation depends quadratic on the lateral coordinate 

x as long as x∕R << 1.

3.4  Role of Plastic Deformation

The derivation of the nominal contact pressure profile (9) 

(and (2)) assumes elastic deformations. The stress-strain 

curve for the steel 1.4122 used for the seat shows that the 

stress at the onset of plastic flow (in elongation) is at about 

500 MPa , which is much higher than the maximum stress p
0
 

(and maximum shear stress) at the surface and also below 

the surface in the ball-seat contact region. Thus for smooth 

surfaces we expect no macroscopic plastic deformations, and 

can treat the contact as elastic when calculating the nomi-

nal contact pressure distribution. However, the stress in the 

asperity contact regions is much higher than the nominal 

contact pressure. Thus, using the power spectrum of the 

sandblasted seat, and including just the roughness compo-

nents with wavelength λ > 2 μm, and assuming elastic con-

tact, gives for the nominal contact pressure p
0
≈ 57 MPa 

the relative contact area [12] A∕A
0
≈ (2∕h�)(p

0
∕E∗) ≈ 0.003 , 

where h′ is the rms slope. Since the average pressure p in 

the asperity contact regions must satisfy pA = p
0
A

0
 or 

p = (A
0
∕A)p

0
≈ h�E∗∕2 we get p ≈ 23 GPa . According to 

Tabor [44] the penetration hardness is �
P
≈ 3�

Y
 , where �

Y
 

is the (physical) yield stress in tension at about 15% strain, 

which is about 1 GPa for the steel 1.4122. Thus �
P
≈ 3 GPa 

(we use �
P
≈ 3.5 GPa in the calculations presented below). 

We conclude that the asperities on the seat surface will 

deform plastically as also observed in optical pictures of 

the seat surface after removing the steel ball.

However, the derivation of (9) may still be approximately 

valid if the asperities deform elastically on the length scale 

which determines the contact stiffness for the (nominal) con-

tact pressures relevant for the calculation of (9). The contact 

stiffness (or the p(u) relation) for small pressures is deter-

mined by the most long wavelength roughness components 

which deform mainly elastically (see Sect. 4). Nevertheless, 

a more detail study is necessary to determine the exact influ-

ence of plastic flow at the asperity level on the nominal con-

tact pressure profile.

3.5  Leak-Rate Theory

In calculating the fluid (here water) leak-rate we have used 

the effective medium approach combined with the Persson 

contact mechanics theory for the probability distribution of 

surface separations. The most important region for the seal-

ing is a narrow strip at the center of the nominal contact 

pressure profile, where the contact pressure is highest (and 

the surface separation smallest), but the study presented 

below takes into account the full pressure profile p(x).

 0
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Fig. 4  The calculated pressure distributions for a smooth seat sur-

face (red dashed line), and for the rough seat surface (red solid line) 

for the line load f
N
= 20 kN/m (corresponding to the fluid pressure 

p
fluid

= 20 bar ). For the rough surface we also show the pressure pro-

file for the line load f
N
= 2 kN/m (corresponding to the fluid pres-

sure p
fluid

= 2 bar ), multiplied by a factor of 10. In the calculations 

we used and the effective elastic modulus E∗
= 115 GPa (Color fig-

ure online)
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The basic contact mechanics picture which can be used to 

estimate the leak-rate of seals is as follows: Consider first a seal 

where the nominal contact area is a square. The seal separates 

a high pressure fluid on one side from a low pressure fluid 

on the other side, with the pressure drop ΔP . We consider 

the interface between the solids at increasing magnification � . 

At low magnification we observe no surface roughness and it 

appears as if the contact is complete. Thus studying the inter-

face only at this low magnification we would be tempted to 

conclude that the leak-rate vanishes. However, as we increase 

the magnification � we observe surface roughness and non-

contact regions, so that the contact area A(�) is smaller than 

the nominal contact area A
0
= A(1) . As we increase the mag-

nification further, we observe shorter wavelength roughness, 

and A(�) decreases further. For randomly rough surfaces, as a 

function of increasing magnification, when A(�)∕A
0
≈ 0.42 

the non-contact area percolate [19], and the first open channel 

is observed, which allow fluid to flow from the high pressure 

side to the low pressure side. The percolating channel has a 

most narrow constriction over which most of the pressure drop 

ΔP occurs. In the simplest picture one assumes that the whole 

pressure drop ΔP occurs over this critical constriction, and 

if it is approximated by a rectangular pore of height u
c
 much 

smaller than its width w (as predicted by contact mechanics 

theory), the leak rate can be approximated by [14, 20, 21]

where � is the fluid viscosity. The height u
c
 of the criti-

cal constriction can be obtained using the Persson contact 

mechanics theory (see Ref. [10, 11, 12, 14, 16, 17, 37]). The 

result (12) is for a seal with a square nominal contact area.

In this work the Bruggemann effective medium method, 

which is based on the concept of fluid flow conductivity �
eff

 , 

is used to calculate the leak-rate. The fluid flow current

Since the leak-rate Q̇ = LyJx we get

Note that �
eff

 depends on the contact pressure p
con

(x) and 

hence on x. In the present case p
fluid

≪ p
cont

 and in this case 

p
cont

≈ p , where p(x) is the external applied squeezing pres-

sure (or nominal pressure) given by (9). Integrating (13) 

over x gives

(12)Q̇ =
u3

c

12�
ΔP

Jx = −�
eff

dp
fluid

dx

(13)
dp

fluid

dx
= −

Q̇

Ly

1

�
eff

ΔP =
Q̇

Ly
∫

∞

−∞

dx
1

�
eff
(p(x))

where ΔP denotes the fluid pressure drop from inside to out-

side the seal, and where we have used that Q̇ is independent 

of x as a result of fluid volume conservation. For the Hertz 

contact pressure profile, where p(x) = 0 for x > a and x < a , 

we get with y = x∕a:

where

For the Gaussian pressure profile (9) using y = x∕s we get

where

From (14) we get the fluid leak-rate (volume per unit time)

This theory takes into account all the fluid flow channels and 

not just the first percolating channel observed with increas-

ing magnification. The dependency of the leak-rate on the 

fluid viscosity � and the fluid pressure difference ΔP given 

by (11) is the same in the more accurate approach. Similar, 

the leak-rate is proportional to Ly∕Lx (where L
x
= 2s in the 

present case) in this approach. Comparison of the predic-

tion of the Bruggeman effective medium theory for the leak-

rate with exact numerical studies has shown the effective 

medium theory to be remarkably accurate in the present 

context [19].

3.6  Accounting for Plastic Deformations

In the present study we are interested in metallic seals and 

in this case plastic deformation of the solids is very impor-

tant. Plastic flow is a complex topic but two very simple 

approaches have been proposed to take into account plastic 

deformations in the context of metallic seals. One approach, 

which is simple to implement when using actual realiza-

tions of the rough surfaces (as done in most numerically 

treatments, e.g., using the boundary element method [11]), 

is to move surface grid points vertically in such a way that 

the stress in the plastically deformed region is equal to (or 

below) the penetration hardness.

Another approach, which is more convenient in analytic 

contact mechanics theories, is based on smoothing the sur-

face in wavevector space (see [14, 16, 17]). Thus, if two 

ΔP = Q̇
2a

Ly
∫

1

0

dy
1

�
eff
(p(y))

p
c
(y) = p

0

(

1 − y
2
)1∕2

(14)ΔP = Q̇
2s

Ly
∫

∞

0

dy
1

�
eff
(p(y))

p(y) = p
0
e
−y

2∕2
.

(15)Q̇ =
Ly

2s

ΔP

∫ ∞

0
dy �

−1

eff
(p(y))
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solids are squeezed together with the pressure p
0
 they will 

deform elastically and, at short enough length scale, plasti-

cally. If the contact is now removed the surfaces will be 

locally plastically deformed. Assume now that the surfaces 

are moved into contact again at exactly the same position 

as the original contact, and with the same squeezing pres-

sure p
0
 applied. In this case the solids will deform purely 

elastically and the Persson contact mechanics theory can be 

(approximately) applied assuming that the surface roughness 

power spectrum Cpl(q) of the (plastically) deformed surface 

is known.

An expression for Cpl(q) can be obtained as follows. 

Let us consider the contact between two elastoplastic bod-

ies with nominal flat surfaces, but with surface roughness 

extending over many decades in length scale, as is almost 

always the case. Assume that the applied (nominal) contact 

pressure p
0
 is smaller than the penetration hardness �

P
 of 

the solids. When we study the contact between the solids at 

low magnification we do not observe any surface roughness, 

and since p
0
< �

P
 the solids deform purely elastically at this 

length scale. As we increase the magnification we observe 

surface roughness and the (elastic) contact area decreases. 

At some magnification the pressure p = p
0
A

0
∕A(�) may 

reach the penetration hardness and at this point all the con-

tact regions are plastically deformed. In general, depend-

ing on the magnification � , some fraction of the contact 

area involves elastic deformations, while the other fraction 

has undergone plastic deformation. Thus we can write the 

contact area A(�) = Ael(�) + Apl(�) . The Persson contact 

mechanics theory predicts both A
el
(�) and Apl(�) (see Ref. 

[10]).

In Refs. [45, 46] we have shown that Cpl(q) can be 

obtained approximately using (with � = q∕q
0
 , where q

0
 is 

the smallest wavenumber)

where A0
pl
= FN∕�P is the contact area assuming that all con-

tact regions have yielded plastically so the pressure in all 

contact regions equal the penetration hardness �
P
 . The basic 

picture behind this definition is that surface roughness at 

short length scales gets smoothed out by plastic deformation, 

resulting in an effective cut-off of the power spectrum for 

large wave vectors (corresponding to short distances). 

Assuming elastic contact and using the power spectrum (16) 

result in virtually the same (numerical) contact area A(�) , as 

a function of magnification � , as predicted for the original 

surface using the elastoplastic contact mechanics theory, 

where A(�) = Ael(�) + Apl(�).

The smoothing of the surface profile at short length scale 

allows the surfaces to approach each other and will reduce 

(16)Cpl(q) =

⎡
⎢⎢⎣
1 −

�
Apl(�)

A0
pl

�6⎤
⎥⎥⎦
C(q),

the height u
c
 of the critical constriction. By using the plasti-

cally deformed surface roughness power spectrum (16) this 

effect is taken into account in a simple approximate way.

It is not clear which of the two ways to include plastic 

flow described above is most accurate. In the first approach 

the solids deform plastically only in the region where they 

make contact, but this procedure does not conserve the vol-

ume of the solids. The second approach does conserve the 

volume but smooth the surfaces everywhere, i.e., even in 

the non-contact region. However, this does not influence the 

area of real contact, and it has a relative small influence on 

the surface separations in the big fluid flow channels, which 

mainly determine the fluid leakage rate (see Ref. [12] for a 

discussion of this).

4  Experimental Results and Analysis

Figure 5 shows the (measured) 2D surface roughness power 

spectrum of the sandblasted seat’s surface (red line) and of 

the steel ball (green line). The rms roughness are 1.9 μm 

and 0.8 μm, respectively. The rough cone has the rms slope 

0.4. The smooth seat has anisotropic roughness (not shown), 

resulting from the grinding process which introduced wear 

tracks in the circumferential direction. These wear tracks 

are easily observed with the naked eyes, and shows up in 

the power spectrum in the radial direction as the two sharp 

peaks around q ≈ 105 m−1 (not shown). Since the theory 

we use to analyze the experimental data assumes randomly 

rough surfaces (but it can be generalized to include periodic 

roughness [47]), in this paper we consider only the seat with 

the sandblasted surface (red line), which is randomly rough 

to a good approximation.
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Fig. 5  The (measured) 2D surface roughness power spectrum of the 

sandblasted steel cone surface (red line) and of the steel ball (green 

line). The rms roughness are 1.9 μm and 0.8 μm, respectively. The 

rough cone has the rms slope 0.4 (Color figure online)
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Figure 6 shows the (calculated) relative elastic A
el
∕A

0
 

(red line) and relative plastic Apl∕A0 (green line) contact area 

as a function of the magnification � (lower log-scale) and the 

wavenumber q (upper log-scale). The red dotted line is the 

relative contact area without plasticity. In the elastoplastic 

calculation we use the penetration hardness �
P
= 3.5 GPa , 

and the effective Young’s modulus E∗
= 115 GPa and the 

nominal contact pressure p
0
= 50 MPa . Note that the long 

wavelength roughness is elastically deformed, but already 

at the magnification � ≈ 100 all the contact area is observed 

to be plastically deformed. The magnification � ≈ 100 

corresponds to the wavenumber q = �q
0
≈ 105 m−1 or the 

wavelength � = 2�∕q ≈ 60 μm. Thus all the contact regions 

observed with, e.g., an optical microscope (with the optimal 

resolution determined by the wavelength of light, � ≈ 1 μm), 

are plastically deformed.

Figure 7 shows the (measured) 2D surface roughness 

power spectrum of the sandblasted steel seat’s surface (red 

line, from Fig. 5), and the (calculated) power spectrum of 

the plastically deformed seat’s (green solid line) as obtained 

using (16).

Figure 8 shows the measured (red squares) and the calcu-

lated water leak-rate as a function of the water pressure dif-

ference. The green line is the result including plastic defor-

mation, and the blue line assuming only elastic deformation. 

The steel ball is squeezed against the sandblasted seat only 

by the water pressure so increasing the water pressure also 

increases the normal force squeezing the ball against the 

seat’s surface. This will reduce the interfacial separation 

at the critical junctions, and hence the leak rate, and this 

explains why the leak rate does not increase proportional 

to the fluid pressure difference ΔP as otherwise expected.

Note that including the plastic deformation results in a 

drastic reduction, by roughly a factor of 8, in the (calcu-

lated) fluid leak-rate. The theory prediction with the plastic 

deformation included is in very good agreement with experi-

ments. This is shown in greater detail in Fig. 9. We note that 

all the parameters which enter in the theory, like surface 

roughness power spectrum or elastoplastic modulus, have 

been measured directly so there is no fitting parameter in 

the theory calculation.
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Fig. 6  The relative elastic A
el
∕A

0
 (red line) and relative plastic Apl∕A0 

(green line) contact area as a function of the magnification � . The red 

dotted line is the relative contact area without plasticity. In the elasto-

plastic calculation we use the penetration hardness �
P
= 3.5 GPa . For 

the effective Young’s modulus E
∗
= 115 GPa and the nominal con-

tact pressure p
0
= 50 MPa (Color figure online)
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Fig. 7  The (measured) 2D surface roughness power spectrum of the 

sandblasted steel cone (seat) surface (blue line), and the (calculated) 

power spectrum of the plastically deformed cone surface (green solid 

line) (Color figure online)
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Fig. 8  The measured (red squares) and the calculated water leak-

rate as a function of the water pressure difference. The green line is 

the result including plastic deformation, and the blue line assuming 

only elastic deformation. The steel ball is squeezed against the sand-

blasted conical surface (seat) only by the water pressure so increasing 

the water pressure also increases the normal force squeezing the ball 

against the seat’s surface (Color figure online)
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The leak-rate depends on the separation at the critical 

constriction as u3

c
 . Thus the reduction in the leak-rate by a 

factor of ≈ 8 when including the plastic deformation imply 

that the separation u
c
 decreases with a factor of ≈ 2 . This is 

in good agreement with the result shown in Fig. 10 which 

shows the calculated surface separation at the critical junc-

tion as a function of the water pressure. The green line is 

the result including plastic deformation, and the blue line 

assuming only elastic deformation.

Figure 10 shows that if there would be contamination 

particles in the fluid of micrometer size they could clog the 

flow channels and hence reduce the fluid leakage rate with 

increasing time. In spite of the fact we used purified water 

we did observe a dependency of the leak-rate on time. This 

may be due to dust particles in the water, which could not 

be completely avoided as the experiments was performed 

in the normal atmosphere. Other possible reasons for the 

contamination are internal leakage from the air side or the 

oil side or corrosion of the materials. To illustrate this effect, 

in Fig. 11 we show the measured time dependency of the 

measured leak-rate for the sandblasted seat at the water pres-

sure p
water

= 1 bar (red squares) and p
water

= 10 bar (green 

squares). The steel ball is squeezed against the smooth seat 

by the water pressure, but for the p
water

= 10 bar case an 

additional normal force of 8.5 kN was applied via the piston 

in Fig. 1. The decrease in the leakage rate with increasing 

time may be due to clogging of flow channels by contamina-

tion particles.

The leak rates in this work have been estimated using 

the total amount of leakage during 10 minutes. The time-

variation in the leakage rate due to clogging of flow channels 

by particles in not included in the theory presented in this 

work and introduces another uncertainty to the experimental 

results.

5  Summary and Conclusion

We have investigated the role of plastic deformation in the 

leak-rate of metallic seals. We found that plastic deformation 

increases the area of real contact and reduces the interfacial 

separation at the critical constriction, which reduces the 

leak rate by roughly a factor of 8. Our experimental results 

show a nonlinear dependency of leak-rate with fluid pressure 

difference, due to a dependency of the applied axial force 

on the fluid pressure. The theoretical results, based on the 
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Fig. 9  The measured (red squares) and the calculated (green line) 

water leak-rate as a function of the water pressure difference. The the-

ory curve includes the plastic deformation (Color figure online)
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Persson’s contact mechanics theory in combination with the 

Bruggeman effective medium theory are in good agreement 

with measured data for the leak-rate as a function of the fluid 

pressure. The measured leak-rate decreases with increasing 

time, which we interpret as resulting from clogging of criti-

cal constrictions by impurities present in the water.
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