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Fluid mechanics of electroosmotic flow and its effect
on band broadening in capillary electrophoresis

Electroosmotic flow (EOF) usually accompanies electrophoretic migration of charged
species in capillary electrophoresis unless special precautions are taken to supress it.
The presence of the EOF provides certain advantages in separations. It is an alterna-
tive to mechanical pumps, which are inefficient and difficult to build at small scales,
for transporting reagents and analytes on microfluidic chips. The downside is that any
imperfection that distorts the EOF profile reduces the separation efficiency. In this
paper, the basic facts about EOF are reviewed from the perspective of fluid mechanics
and its effect on separations in free solution capillary zone electrophoresis is discussed
in the light of recent advances.
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1 Introduction

Electroosmotic flow (EOF) was first reported by Reuss [1]
in 1809 in experiments that demonstrated that water
could be made to percolate through porous clay dia-
phragms through the application of an electric field. The

observed mobility of water was due to the fact that the
clay particles (and many other solid substrates such as
glass, silicon, polymeric materials, minerals of various
kinds, etc.) acquire a surface charge when in contact
with an electrolyte. The immobile surface charge in turn
attracts a cloud of free ions of the opposite sign creating
a thin (,1–10 nm under typical conditions, e.g., univalent
electrolyte at a concentration of 1–100 mol per m3) Debye
layer of mobile charges next to it. The thickness of this
electric double layer (EDL) is determined by a balance be-
tween the intensity of thermal (Brownian) fluctuations and
the strength of the electrostatic attraction to the sub-
strate. In the presence of an external electric field, the
fluid in this charged Debye layer acquires a momentum
which is then transmitted to adjacent layers of fluid
through the effect of viscosity. If the fluid phase is mobile
(such as in a packed bed of particles or in a narrow capil-
lary), it would cause the fluid to flow (electroosmosis). In a
typical separation in capillary electrophoresis (CE)* both
electroosmosis (sometimes also called electroendosmo-
sis) and electrophoresis occur simultaneously. Therefore,
the resultant migration velocity of each species ‘i’ is

uðiÞ
total � ueof þ uðiÞ

eph (1)

where the first term is the bulk EOF velocity and the sec-
ond term is the migration velocity relative to still fluid of
species i (generally different for each species ). Due to
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* In this paper CE will always refer to ‘free solution capillary zone
elecrophoresis’, which is the only mode considered here,
though the ideas presented could with appropriate modifica-
tion be useful for other separation modes.
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the thinness of the EDL (1–10 nm) compared to typical
channel radii (10–100 mm), the electrical driving forces
are localized in a thin sheath at the solid-fluid interface.

EOF can have a number of effects on the efficiency of
separation. First note that if ueofj j4 u ið Þ

eph

��� ��� for all i, then all
species move in the same direction enabling single point
detection of charged species of either sign. If the capillary
is uniformly charged and the inlet and outlet are at the
same pressure, it is well-known that the flow is uniform
throughout the capillary cross-section except for a very
thin EDL near the wall where the flow velocity rapidly
decreases from its free stream value to zero at the sub-
strate/fluid interface [2]. This uniform velocity is given by
the Helmholtz-Smoluchowski (HS) formula:

ue ¼ � eEz
4pm

(2)

where e is the dielectric constant of the fluid, E is the
applied electric field, z is the zeta-potential at the electro-
lyte/substrate interface, and m is the fluid viscosity. There-
fore, except in the thin EDL there is no shear in the flow.
Thus, EOF does not add any significant shear induced
axial dispersion (Taylor-Aris dispersion) to the analyte.
Band broadening in this case is purely due to axial molec-
ular diffusion.

Clearly, Eq. (2) cannot be valid if any of the parameters
that enter into the expression vary in the axial direction,
or, if the cross-section varies along the capillary. This is
because any such variation would require the continuity
condition, that the fluid flux through all cross-sections be
the same to be violated. Axial variations usually lead to
induced pressure gradients that drive a ‘Poiseuille’ type
of flow*. Thus, the flat EOF profile becomes distorted
resulting in strong band broadening due to Taylor-Aris dis-
persion [3, 4]. The effect of such axial variability is dis-
cussed in detail in this review.

The rest of this paper is organized in the following way: in
the next section, the basic equations describing EOF in
any conduit are presented. In Section 3, these basic
equations are simplified by introducing the assumption
of thin Debye layers. An exact solution of the EOF prob-
lem in cylindrical capillaries due to Rice and Whitehead is
presented next (Section 4) and compared with the corre-
sponding reduced solution in the case of infinitely thin
Debye layers. In Section 5, the more difficult case of EOF
through capillaries with axial inhomogeneities is consid-
ered and solutions are discussed for two special geome-

tries. In order to handle problems involving inhomoge-
neous channels of arbitrary cross-sectional shapes, the
potential flow and the lubrication approximation are intro-
duced in Sections 5.2 and 5.3. Finally, the dispersive
effects of EOF in homogeneous and inhomogeneous
channels are considered in Section 6. A summary is pre-
sented in Section 7.

2 Electroosmotic flow

The equations describing the velocity field, u, of the fluid
phase are those of momentum conservation:

r0(qtu 1 u ? Hu) ¼ 2 Hp 1 mH2u 2 reHf (3)

and continuity:

H ? u ¼ 0 (4)

where r0 and m are the (constant) density and viscosity of
the fluid, p is the fluid pressure, f is the electric potential,
and the charge density in the EDL, re is related to the
potential by Poisson’s equation

eH2f ¼ 24pre (5)

To close the system, we need an equation for determining
f, which is the Poisson-Boltzmann equation

H2f ¼ 2k2f (6)

where k is a constant determined by the ionic composi-
tion of the electrolyte [5]. The Debye length is defined by
lD ¼ 2p/k. The form (6) incorporates the Debye-Hückel
approximation f� kBT/e where kB is the Boltzmann con-
stant, T is the absolute temperature, and e is the electron-
ic charge. At room temperature, kBT/e < 25 mV. The elec-
tric potential at the substrate buffer interface could be as
high as 100 mV . Thus, the Debye-Hückel approximation
is not always satisfied, in which case Eq. (6) should be
replaced by the more accurate but nonlinear Gouy-Chap-
man form [5]. However, Eq. (6) is still useful for the pur-
pose of qualitative understanding even in situations
where it may not be strictly valid over the entire width of
the EDL.

The boundary conditions are those of “no slip” for the fluid
velocity at the solid-fluid interface:

uusolid surface ¼ 0 (7)

and

fusolid surface ¼ z (8)

where the potential at the solid fluid boundary, z, is speci-
fied. Due to the rapid change in the potential at the inter-
face the definition of “at the interface” is somewhat
ambiguous. It is believed that the solid substrate usually

* Sometimes referred to in the literature as ‘laminar flow’. How-
ever, this terminology is inconsistent with usage in fluid
mechanics, since all flows of relevance in CE, including the
‘pure’ EOF are laminar (as opposed to turbulent) due to the
smallness of the Reynolds numbers involved.
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has a layer of adsorbed immobile ions next to it known as
the Stern layer. It is the ions in the fluid phase adjoining
the Stern layer that are mobile and the distribution of
which are governed by the Debye-Hückel or more gener-
ally the Gouy-Chapman theory. The outer edge of the
Stern layer is therefore identified as the “slip plane” where
the no-slip boundary condition is applied [2]. The “zeta-
potential” z is defined as the electric potential at this slip
plane and is assumed known for the purpose of this
paper. The applied electric field is assumed to distort the
structure of the EDL by a negligible amount. Clearly, this
would be true if V/L � z/lD where V is the applied voltage
over a segment L of the capillary. Using typical values z
,100 mV and lD , 10 nm, we find that z/lD , 105 V/cm
� V/L ,300 V/cm.

The ratio of the characteristic magnitude of the left hand
side to the right hand side of Eq. (3) is measured by
the (dimensionless parameter) Reynolds number, Re =
(a0r0ue/m) where a0 is a characteristic radius and ue is
a characteristic electroosmotic speed. Estimates using
typical values for microfluidic applications give Re
,0.001–1.0, so that the left hand side can often be
ignored (in that case Eq. (3) becomes the Stokes equa-
tion), or at least treated as a small correction. Unlike ap-
plications of fluid mechanics to large-scale phenomena
where the left hand side is dominant leading to instabil-
ities and turbulence, microfluidics is always characterized
by smooth laminar flow.

3 The thin EDL limit

The theory of electrophoretic motion of charged particles
of characteristic size ‘a’ has been well studied in the limit
of thick (lD � a) as well as thin (lD � a) Debye layers.
However, since the characteristic radius of microfluidic
channels , 10–100 mm, whereas, the Debye length lD

,1–10 nm, the thin Debye layer approximation is usually
an excellent one for the purpose of studying EOF, at least
for the majority of current microfluidic applications. In the
limit of thin EDL, the Navier-Stokes/Poisson-Boltzmann
system described in the last section may be replaced by
a simpler set of equations. The EDL then forms a very
thin boundary layer at the solid fluid interface where the
electrical forces are confined.

At leading order, the dominant balance is between the vis-
cous and the electrical forces in the boundary layer:

m
q2u
qz2 þ reE ffi 0 (9)

where E is the external electric field which is in the tan-
gential direction. Since rates of change across the bound-
ary layer (z-axis) are much larger than along it (x-axis),
Poisson’s Eq. (5) may be written as

re ffi � e
4p

q2f
qz2 (10)

On eliminating re between Eqs. (9) and (10), integrating
the resulting differential equation and using the boundary
conditions at the inner and outer edges of the EDL, the
following jump condition across the EDL is derived

u � usolid � Du ¼ � eEz
4pm

(11)

where in Eq. (11), usolid is the velocity of the solid at a point
on the solid-fluid interface and u is the velocity of the fluid
at the corresponding point, just above the (infinitely thin)
Debye layer. A formal asymptotic development in terms of
the small parameter lD/a0 (where a0 is a characteristic
radius) has been presented by Anderson [6]. Equation
(11) is known as the Helmholtz-Smoluchowski (HS) slip
boundary condition after the pioneering work of Helm-
holtz [7] and Smoluchowski [8]. Thus, in the limit of thin
Debye layers the term 2reHf may be dropped from
Eq. (3), instead at the boundary, the no-slip boundary
condition (7) is replaced by (11). Since the external field
E is tangential to the interface, (11) implies that the normal
component of the velocity is continuous. Thus, the equa-
tions of fluid flow inside the capillary become exactly
identical to the classical fluid flow equations, the coupling
to the electrical problem is only felt through the boundary
condition in Eq. (11).

4 EOF in a uniform cylindrical capillary

In capillary zone electrophoresis (CZE) EOF takes place in
narrow cylindrical capillaries that to a first approximation
can be considered to be infinitely long and uniformly
charged. Under those conditions, the Debye-Hückel
form of the Poisson-Boltzmann equation admits an exact
solution [9]:

f ¼ z
I0 krð Þ
I0 kað Þ (12)

where I0 is the zeroth order modified Bessel’s function
of the first kind, r is the distance from the axis, and a is
the internal radius of the capillary. Equation (5) can then
be used to determine the charge density. Further, sub-
stitution of re in the Navier-Stokes Eq. (3), results in an
equation that may be integrated exactly to determine
the flow profile u(r). In the absence of an imposed pres-
sure gradient, the solution, after Rice and Whitehead
[9], is

u rð Þ ¼ � ezE
4pm

1 � I0 krð Þ
I0 kað Þ

� �
(13)
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Since the fluid flow equation is linear in this limit, clearly a
pressure-driven flow can be added to the solution (super-
position) in the event that both a pressure gradient and an
electric field are simultaneously applied.

In the thin EDL limit, the flow problem can be formulated
in terms of the HS slip boundary conditions. Due to sym-
metry in the axial direction, the Navier-Stokes equation
simply reduces to

m
r

d
dr

r
du
dr

� �
¼ 0 (14)

with the ‘slip’ boundary conditions

u r ¼ að Þ ¼ � ezE
4pm

(15)

The only solution, without a singularity at the origin, is the
‘plug flow’ profile

u rð Þ ¼ u r ¼ að Þ ¼ � ezE
4pm

(16)

Equation (16) may be compared to the Rice-Whitehead
solution (13). When ka � 1 (thin EDL limit) [10]

I0 zð Þ � exp zffiffiffiffiffiffiffiffi
2pz

p 1 þ 1
8z

þ � � �
� �

(17)

therefore the term I0(kr)/I0(ka) in Eq. (13) is negligible
unless r < a. Near r ¼ a we have I0(kr)/I0(ka)
, exp[2k(a2r)], thus the HS solution (16) is recovered
except in a thin boundary layer a2r ,k21 ,lD within
which the velocity drops precipitously to zero in order to

Figure 1. Normalized velocity profile from the Rice-
Whitehead solution showing the thin boundary layer at
the wall for small Debye lengths.

satisfy the no-slip boundary condition at r = a. This behav-
ior is shown in Fig. 1. Exact solutions within the Debye-
Hückel approximation are also available for EOF between
parallel plates for any Debye length [11]. They show a
similar ‘boundary layer’ type of behavior.

In the case of CE channels etched on substrates for
micrototal analysis system (m-TAS) applications, the
channels are usually rectangular or trapezoidal rather
than circular in cross-section. However, in the thin EDL
limit the plug flow profile is valid for channels of arbitrary
cross-sectional shape since it simultaneously solves the
Stokes flow equation and satisfies the HS slip boundary
condition. This is of course not true in the case of finite
EDL thickness as the detailed structure of the flow within
the EDL is determined by the cross-sectional geometry of
the capillary.

5 Axially inhomogeneous channels

We have seen so far, that except for a very thin sheath
around the channel walls, EOF has a uniform flow profile.
This is a great advantage in CE applications since it
implies that the presence of EOF does not lead to signif-
icant added dispersion. This conclusion, however, is
valid as long as all of the parameters involved, namely
the electric field E, dielectric constant e, the zeta-poten-
tial z and viscosity m are constants. Variability in any of
these parameters could induce axial pressure gradients
which perturb the flow and distort the uniformity of the
flow profile. Calculating the perturbations in the flow
due to such causes and the resultant axial dispersion is
a fundamental fluid mechanics problem of considerable
interest in CE.

5.1 Exactly solvable models

Anderson and Idol [12] considered the problem of EOF
through a uniform, infinite, straight cylindrical capillary
with a z-potential that varies solely in the axial direction,
z = z(x). A uniform external electric field and zero imposed
pressure gradient were assumed. An exact solution to the
Stokes flow problem was derived under the assumption
of thin EDL. It was shown that the velocity field u = ux̂ 1

r̂v may be expressed in terms of the stream function c,

u ¼ �1
r
qc
qr

(18)

v ¼ �1
r
qc
qx

(19)

where c is given by a series expansion
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c ¼ eE
4pm

r2

2
zh i � 2

X1
m¼1

ac
m rð Þ cos 2mpx

L

� �
�

"

� 2
X1
m¼1

as
m rð Þ sin 2mpx

L

� �#
(20)

where

ac
m

ẑc
m

¼ as
m

ẑs
m

¼ rI0 amð ÞI1 amrð Þ � r2I0 amrð ÞI1 amð Þ
amI21 amð Þ þ 2I0 amð ÞI1 amð Þ � amI20 amð Þ

(21)

and

ẑc
m ¼ 1

L

Z L

0
z xð Þcos

2mpx
L

� �
dx (22)

ẑs
m ¼ 1

L

Z L

0
z xð Þsin

2mpx
L

� �
dx (23)

are the cosine and sine transform of the z-potential z(x),
am = 2mp/L, and 7 8 indicates the average over the length
of the capillary:

fh i ¼ 1
L

Z L

0
fdx (24)

In Eq. (21), In denotes the modified Bessel function of inte-
ger order n.

The above solution implies a remarkably simple formula
for the cross-sectional average of the axial velocity, �u (or
equivalently, the volume flux per unit cross-sectional
area),

�u ¼ � e zh iE
4pm

(25)

which follows on integrating Eq. (18) over the cross-sec-
tion of the capillary. Thus, the flux per unit area at any
instant over any cross-section is the same and equal to
that of the flow through a uniform capillary with z = 7z8.

Ajdari [13] considered the problem of EOF between a pair
of parallel plates at z = 6 h under the application of a uni-
form external electric field, E, and arbitrary position de-
pendent variations of the zeta-potential on the surface of
the plates z = z6 (x, y). Though the parallel plate geometry
is not directly relevant to CE applications, it may serve as
a reasonable approximation to flow in shallow rectangular
channels etched on chips. The analysis is based on the
assumptions of low zeta-potentials (z � kBT, the Debye-
Hückel approximation) and low Reynolds numbers
(Stokes flow). On account of the linearity of the fluid flow
equations in the Stokes flow limit, and, since the problem
for the potential in the EDL is decoupled from the fluid

problem, an exact solution could be obtained by Fourier
transforming the equations along the planes parallel to
the plates. In a subsequent paper [14], Ajdari generalized
the solution to include the effect of small (compared to
plate separation) amplitude irregularities on the surface
of the plates.

Ajdari’s solutions illustrate some interesting features of
EOF such as the presence of recirculating regions which
could be useful in the design of microfluidic mixers. In
fact, Stroock et al. [15] constructed such mixers using
EOF in a long channel of rectangular cross-section
(260 mm6130 mm) with a patterned surface charge of
alternating sign that was fabricated using soft lithographic
techniques [16]. It is further shown by Ajdari that surface
irregularities and variations in the zeta-potential in combi-
nation could generate net forces on the plates which
could even be perpendicular to the applied electric field
and need not vanish even if the net charge on either plate
vanishes. The framework of Ajdari was applied by Long et
al. [17] to obtain analytical solutions in the neighborhood
of localized ‘defects’ in the zeta-potential for both the par-
allel plate as well as cylindrical geometries. These solu-
tions are useful in providing an understanding of the per-
turbations in EOF that may result from various local
surface imperfections of the zeta-potential likely in any
practical device.

5.2 Potential flow solution

Let us consider the problem of EOF in a conduit of arbi-
trary geometry but in the thin EDL approximation. Further,
assume that all fluid and material properties are uniform
and that no external pressure gradient has been applied
across the capillary. Let us denote by S the walls of the
conduit and by S0 and S1 the equipotential surfaces f =
f0 and f = f1, respectively, near the inlet and outlet sec-
tions. These are the potentials of the reservoirs at the
extremities of the capillary. Then it follows by direct calcu-
lation that

u ¼ ez
4pm

rf (26)

where f is a solution of the boundary value problem

H2f ¼ 0; f ¼ z on S, f0 on S0, & f1 on S1 (27)

has the following properties

H ? u ¼ 0, H2u ¼ 0 (28)

Further, u satisfies the HS slip boundary conditions
(Eq. 11). Thus, Eq. (26) is already the solution of the
problem of EOF through the conduit in the Stokes flow
limit.

 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Electrophoresis 2004, 25, 214–228 EOF and band broadening 219

If the Reynolds number Re is not necessarily negligible
but the flow is known to be steady and irrotational, then
the Navier-Stokes Eqs. (3) and (4) outside the EDL may be
replaced by

H6u ¼ 0; H ? u ¼ 0 (29)

Once again, we see that Eq. (26) automatically satisfies
these equations and is therefore the unique solution to
the hydrodynamic problem.

The existence of this “similitude” between the electroos-
motic velocity u and the electric field 2Hf was first
pointed out by Cummings et al. [18]. When the conditions
needed for such similitude are satisfied, Eq. (26) provides
a remarkably simple solution to the problem of determin-
ing the EOF since one only needs to solve the Dirichlet
problem for the potential and a wide variety of analytical
and numerical techniques exist for this task. It should also
be clear that if the prefactor multiplying Hf in Eq. (26) fails
to be a constant, then u does not satisfy either the conti-
nuity equation or the equation for the conservation of
momentum and Eq. (26) therefore is no longer a solution.
It is this class of problems that we consider next.

5.3 Lubrication approximation

When the HS slip velocity is variable over the capillary sur-
face, an analytical solution for the flow field is difficult
except for the special geometries discussed in the last
section. Generally one may need to resort to the more
expensive process of full numerical simulation. However,
if the variations are ‘slow’ in the axial direction; a term that
will be made more precise later, the technique of lubrica-
tion theory [19] permits analytical solutions to be obtained
even for channels with complicated geometrical shapes.
Lubrication theory was originally developed to analyze
the motion of lubricants in the narrow gap between
machine parts (and hence the name). It has since found
wide application in various areas of fluid mechanics,
such as in the analysis of blood flow in very narrow capil-
laries [20, 21]. It has recently been applied to the prob-
lem of EOF by Ghosal [22] in the context of the thin EDL
limit.

The theory is based on the following assumptions: (i) The
characteristic length scale for the variation of the cross-
sectional shape and area in the axial (x) direction of the
channel is very much larger than a characteristic radius
(a0). (ii) The characteristic length scale for the variation
of the slip velocity in the x direction is very much larger
than a0. (iii) The characteristic time-scale (T) for any tem-
poral variations is very much larger than the diffusion
scale (td : a0

2/n) (n being the kinematic viscosity of the
fluid).

If the assumption of slow variations as defined above is
satisfied, then a formal asymptotic solution to the prob-
lem of EOF in terms of the ratio of characteristic radial dis-
tance to characteristic axial scale (a small parameter) may
be carried out [22] and the solution may be summarized
as follows: u ,î u (x, y, z) 1 O (E), E ,î E (x) 1 O (E),

u ¼ �up

m
dp
dx

þ eF
4pm

c
A xð Þ (30)

Q ¼ �
�up

m
A xð Þdp

dx
þ eF�c

4pm
(31)

E(x) ¼ F/A(x) (32)

Here, F is a constant representing the electric flux through
any cross-section, A(x) is the cross-sectional area and the
overbar indicates average over the cross-section, �f = A21

$f dydz. The constant Q represents the volume flux of fluid
through any cross-section. The functions up, defined by
H2up = 0 and up|qD(x) = 0 and the function c defined by
H2c = 0 and c|qD(x) = 2z are properties of the channel ge-
ometry and charge distribution alone. They are defined on
the domain D(x) representing the cross-section of the
channel with boundary qD at axial location ‘x’. Both of
these functions up and c may be evaluated by quadrature
from a knowledge of the Green function, G, of the Laplace
operator with zero boundary condition corresponding to
the domain D(x):

up ¼ 1
4p

Z
D xð Þ

G x; y; z; y�; z�ð Þdy�dz�

c ¼ 1
4p

I
qD xð Þ

z x; y�; z�ð Þ m
qG
qy�

þ n
qG
qz�

� �
ds� (33)

where (m, n) are the direction cosines of the unit normal
on qD(x).

According to Eqs. (30)–(32), the flow velocity in the axial
direction in a slowly varying channel is a linear superposi-
tion of a purely pressure-driven flow, and a pure EOF. The
axial pressure pressure gradient and electric field are cal-
culated by using the dual conditions: (a) the fluid is incom-
pressible, (b) the electric flux must obey the Gauss law.
The solution is completely specified by two independent
physical constants, the volume flux of fluid, Q, and, the
electric flux, F. These constants may be expressed, if
desired, in terms of the total pressure drop, and, the total
voltage drop, respectively, between the inlet and outlet
sections, which yields the following generalization of Poi-
seuille’s law:

Q ¼ pa � pb

8mL
pa4

� �
ez�
4pm

pa2
�

Va � Vb

L
(34)

Here, pa 2 pb is an applied pressure drop and Va 2 Vb is an
applied voltage drop along a length L of the capillary. The
constants a* and z* may be regarded as “effective” values
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for the radius and the z-potential, respectively, and they
are defined as

a� ¼
8

p �u�1
p A�1

D E
24 351=4

z� ¼ � 1ffiffiffiffiffiffi
8p

p
�c�u�1

p A�1
D E

A�1� �
�u�1

p A�1
D E1=2

(35)

Here, the parameter a* is determined solely by channel
geometry and z* is determined solely by the channel ge-
ometry and the nature of the distribution of the z-poten-
tial.

It is instructive to compare the lubrication theory result
with the exact solution of the problem of EOF in a uniform
cylindrical capillary with inhomogeneous charge distribu-
tion solved by Anderson and Idol [12], also in the thin EDL
limit. For a uniform cylindrical capillary (radius a0) with
z varying only in the x direction Eq. (35) implies z* = 7z8
which is the same as the result derived by Anderson and
Idol and discussed earlier. For a sinusoidally varying wall
charge,

z(x) ¼ z0 1 Dz sin(2px/l) (36)

Then Anderson and Idol’s result implies:

u
u0

¼ 1 þ Dz
z0

F rð Þsin aXð Þ (37)

where

F rð Þ ¼
a�1I0 arð Þ 1 � aI0 að Þ

2I1 að Þ

� �
þ r

2
I1 arð Þ

a�1I0 að Þ þ 1
2

I1 að Þ � I20 að Þ
2I1 að Þ

(38)

r = r/a0, X = x/a0, u0 = 2eEz0/(4pm) and a = 2p(a0/l). This
may be compared with our solution which is Eq. (37) but
with F0(r) instead of F(r) where

F0(r) = 2r2 2 1 (39)

Clearly F(r) ,F0(r) in the limit a � 1 (the lubrication limit).
Figure 2 compares F(r) and F0(r) for several values of the
ratio a0/l. It is seen, that, for a0/l � 1 (in practice 0.1 or
less), the prediction of the lubrication analysis is in excel-
lent accord with the exact solution as expected. For a0/l
,1, the exact solution deviates significantly from the
lubrication solution. In the opposite limit of a0/l � 1, the
frequent reversal of the electric force results in no net
transfer of momentum to the interior of the fluid, and the
lubrication limit solution is qualitatively incorrect. The
latter situation may describe random fine scale inhomo-
geneities in the wall charge of the type considered by
Ajdari [13].

Figure 2. Comparison of the asymptotic solution in the
lubrication limit (symbols) with the exact solution (dashed
lines) according to Anderson and Idol for a0/l = 10.0, 2.0,
1.0, 0.5, 0.1, and 0.01. The asymptotic solution corre-
sponds to a0/l ? 0. An infinitely thin EDL is assumed for
both solutions.

6 Dispersion and EOF

The resolving power in CE is limited by axial dispersion of
the analyte. The minimum resolvable difference in mobility
Dm , �mN where �m is the average mobility of the two spe-
cies and ‘N’ is the number of theoretical plates (square of
the separation length divided by the variance of the con-
centration peak). Unlike a classical pressure-driven flow,
which has a parabolic profile, EOF has an essentially flat
profile (except in a thin EDL near the walls). Thus, under
ideal circumstances, EOF should not contribute signifi-
cantly to shear-induced axial dispersion (Taylor-Aris dis-
persion) so that essentially “diffusion limited” separation,
where resolution is limited only by molecular diffusion is
potentially realizable. However, in practice, various inho-
mogeneities can perturb the ideal EOF leading to signifi-
cant band broadening. The important ones among such
processes are discussed in the subsequent sections
(also see the two reviews by Gaš and Kenndler [23] and
by Gaš, Štědrý, and Kenndler [24]).

6.1 Dispersion due to finite size of the EDL

We have seen that in the thin EDL limit and in the absence
of axial inhomogeneities, the dispersion is essentially due
to molecular diffusion alone. However, the contribution of
the zone of shear in the EDL can easily be estimated by
actually calculating the Taylor-Aris dispersion coefficient
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for the EOF profile derived by Rice and Whitehead pre-
sented in Section 4. This has been done by Datta and
Kotamarthi [25] for a uniform infinitely long capillary. The
same result was arrived at by Griffiths and Nilson [26] by a
different method and also by McEldoon and Datta [27] in
the more general case where the solute could interact
with the wall. Subsequently, Griffiths and Nilson [28]
extended the analysis to the case where the z-potential
need not be small, and therefore the Debye-Hückel
approximation cannot be made. However, in that case
most of the calculations must be done numerically. Štědrý
et al. [29] replaced the actual velocity profile by the com-
bination of a plug flow region in the core and a stationary
annular region near the wall and obtained a simplified
expression for the plate height which depends on the
thickness of the stationary zone. The evaluation of this
thickness requires a numerical integration of the Pois-
son-Boltzmann equation.

Within the Debye-Hückel theory, the effective axial diffu-
sion coefficient is given by [25]

d

D
¼ 1 þ Pe2Xe fð Þ 1 � nð Þ2 (40)

where Pe = �ua0/D is a Peclet number based on the molec-
ular diffusion coefficient, D, capillary radius a0 and bulk
flow velocity (volume flux per unit cross-section) �u;

�u ¼ ue(1 2 Z) (41)

where ue = 2(ezE)/(4pm) and the parameter Z is a measure
of the reduction of the flow due to the presence of the
double layer. It can be shown that

Z ¼ 2
f

I1 fð Þ
I0 fð Þ (42)

where I0 and I1 are modified Bessel’s functions of order
zero and one, and f = a0/lD (lD is the Debye length). The
function Xe is defined as

Xe fð Þ ¼ Z2

1 � Zð Þ2

3
8
þ 2

f2 �
1

Zf2 �
1

Z2f2

� �
(43)

The parameter n is zero for a pure EOF. However, if a pres-
sure drop is applied across the capillary in addition to an
electric voltage, n is defined as the ratio of volume flux
due to the pressure drop alone to that of the volume flux
due to the voltage drop alone. It could have a negative
sign if these two external influences on their own would
drive a flux in opposite directions.

Typical Debye lengths in microfluidic applications are
lD , 12 10 nm and typical radii are a0 ,102 100 mm.
Thus, f, 1032 105. Using the asymptotic form for large
f, we have Z < 2/f , 10252 1023. Therefore, �u differs

from ue by 0.1% or less. In typical CZE applications it is
easily estimated that Pe , 102 100 for small to moder-
ate sized molecules. From Eq. (43), Xe ,102102 1026, so
that d/D21 , 0.01 or smaller. Thus, for such analytes
the finiteness of the EDL usually has an insignificant
effect and the dispersion is essentially limited by molec-
ular diffusion, unless axial inhomogenieties drastically
reduce performance. This conclusion may not be true
if in the future channel radii become very much nar-
rower (in the sub-mm range) for microfluidic appli-
cations. Further, for very large macromolecules, such
as proteins, the diffusion coefficient can be ,102100
times smaller so that the Pe , 1022104, in which case
d/D2 1 � 1 and the finiteness of the EDL could be
important.

6.2 Dispersion due to analyte-wall interactions

An important source of dispersion in the analysis of cati-
onic proteins is the variation in wall zeta-potential that
results from the tendency of charged species to stick to
the capillary walls [30]. This alters the z-potential in a non-
homogeneous and time-dependent manner inducing a
pressure gradient that alters the flow profile as well as
the bulk flow rate [31]. Highly asymmetric and broadened
peaks are symptomatic of the presence of wall adsorp-
tion. The combination of loss of sample and enhanced
dispersion can lead to reduction of the peak concentra-
tion in the sample below the detection threshold, in which
case no peak at all is discernible in the detector response.
Various strategies have been explored to overcome the
problem of adsorption [32], however, in this paper we
only review work related to the fluid mechanical pro-
cesses at play.

The basic equations are those of fluid flow and scalar dis-
persion with a loss term, f (cw, s) which depends on the
concentration at the wall, cw = c(a, x, t) and the concentra-
tion of adsorbed solute per unit area of the wall, s. A sim-
ple and commonly used wall interaction model is the
Langmuir law:

f (cw, s) ¼ kacw (sm 2 s) 2 kds (44)

where ka and kd, respectively, are adsorption and desorp-
tion coefficients and s = sm is the saturation concen-
tration, the maximum solute concentration that the wall
can hold. The z-potential in general is a function of
the adsorbed concentration and could potentially also
depend explicitly on x and t:

z ¼ g (s (x, t); x, t) (45)
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The form of g is determined by the structure of the EDL. If
adsorption is assumed to simply alter the density of fixed
charges at the wall and the Debye-Hückel approximation
is assumed it is readily shown that

g ¼ z0 2 (2plDzF/e) s (46)

where lD is the Debye length, F is the Faraday constant,
z is the ionization state (number of fundamental charges
per molecule), and s is assumed to be in units of moles
per unit area.

Early works on this problem are due to Gaš et al. [33] and
Štědrý et al. [34]. Though their analyses take account of
the fact that analyte is lost to the wall, the consequent
modification of the z-potential and therefore the hydrody-
namic flow field were neglected. Indeed, the hydrody-
namics was restricted to the trivial case of uniform flow
at constant velocity independent of the adsorption pro-
cess. Analysis of similar ‘purely kinematic’ models that
neglect the perturbation in the hydrodynamic field have
also been presented by other authors (see [35–37]). A
detailed experimental study of wall adsorption and its
consequences for the underlying EOF and dispersion is
due to Towns and Regnier [38]. These experiments as
well as others [39] together with their interpretation using
simple fluid mechanical models [40, 41] indicate, that, the
modification of the z-potential by adsorption, and the
consequent perturbation of the hydrodynamic field, is an
important, if not the principal cause of dispersion in these
systems.

At distances large compared to a0Pe (Pe is the Peclet
number based on the EOF speed in the unmodified capil-
lary) from the injection point, axial diffusion ensures that
the analyte concentration is slowly varying in the axial
direction relative to a length scale defined by the capillary
radius a0. In this limit, the lubrication theory discussed
earlier can be extended to include a diffusing solute. The
following one-dimensional coupled partial differential
equations for the cross-sectionally averaged concen-
tration �c(x, t) and adsorbed concentration, s(x, t) have
been derived by Ghosal using asymptotic theory [31]:

qc
qt

þ ðu þ uepÞ
qc
qx

þ a0

12D
q
qx

ðu�fÞ þ u�f1
qc
qx

� �
¼

¼ q
qx

d
qc
qx

� �
� 2

ao
s (47)

and

qs
qt

¼ s (48)

where for convenience

u� � u þ eEz
4pm

¼ Dpa2
0

8mL
þ ez0E

4pm
(49)

with z’ = z 2 7z8 and given pressure drop Dp across the
capillary. The effective axial diffusivity and source terms
are

d ¼ D þ a2
0u2

�
48D

(50)

s ¼ f 1 � ao

4D
f1

h i
(51)

where

�f ¼ f �c; sð Þ �f1 ¼ qf
qcw

����
cw¼�c

(52)

The sample concentration, c(r, x, t) itself may be ex-
pressed as

c r; x; tð Þ¼ �c x; tð Þþa2
0�2r2

4a0D
qs
qt

� 2a4
0�6a2

0r2þ3r4

24a2
0D

u�
q�c
qx

(53)

where the second and third terms are small corrections to
the first.

According to Eq. (47) the mean concentration profile is
advected at the bulk flow speed plus any electrophoretic
migration speed if present, while simultaneously diffusing
with an ‘effective’ axial diffusion coefficient shown in
Eq. (50). This axial dispersion coefficient is precisely the
classical Taylor-Aris dispersion coefficient calculated
with that part of the flow field that is proportional to the
induced pressure gradient. The last term represents
losses to the wall after accounting for a small correction
caused by the fact that the concentration at the wall
differs by a small amount from the mean concentration �c.

In order to check the accuracy of the asymptotic theory,
the complete set of coupled fluid flow and scalar equation
for concentration was solved numerically assuming a thin
EDL (via the HS slip boundary conditions) and Stokes
flow. Periodic boundary conditions were assumed in the
x (axial) direction. As initial conditions we used a trapezoi-
dal profile for c(r, x, 0) = c0 (x) approximately 10 radii wide
and used a reasonable [42] set of parameter values
shown in Table 1. Note that all parameters are in dimen-
sionless units. Figure 3 shows the distribution of �c/cm

(where cm is the maximum concentration) and z/z0 at the

Table 1. Parameter values for simulation

Parameter L/a0 Re Pe kasm/ue a0kd/ue sm

Definition a0ue/n a0ue/D
Value 1000 0 100 0.1 0.0005 0.01
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Figure 3. Comparison of asymptotic theory (symbols)
with numerical simulation (lines) of the cross-sectionally
averaged analyte concentration (lower curves) and
z-potential (upper curves) at two time instants. The
parameters are as in Table 1.

instant when the concentration peak arrives at a hypo-
thetical detector placed at a distance xd from the inlet.
The figure shows two independent sets of results for xd =
450a0 and xd = 900a0. It is seen that as the sample moves
down the capillary, the peak height decreases, the peak
width increases and the peak shape becomes markedly
asymmetric. The peak shapes have a striking qualitative
similarity with observed CZE signals in an uncoated cap-
illary for cationic proteins (see, e.g., Fig. 8 of [38] and
Fig. 10 of [43].) The z-potential is reduced behind the
peak, however, with passage of time, the z-potential at a
fixed position undergoes a gradual recovery. This is due
to desorption from the capillary walls. For both �c and z
the simulation is seen to be in excellent agreement with
the theoretical calculation using the 1-D equations.

In the case of a pure pressure-driven flow (E = 0 but Dp
40), our problem reduces to the classical chromato-
graphic problem first studied by Golay [44] and later
refined by Aris [45] and others [46, 47]. If we linearize f by
assuming s � sm and neglect desorption, kd = 0 then we
can rewrite Eq. (47) as

qc
qt

þ ðeu þ uepÞ
qc
qx

¼ q
qx

D
qc
qx

� �
� 2

a0
s (54)

where

eu ¼ u 1 þ a0kasm

6D

� �
(55)

Thus, in this case, the profile of �c is advected somewhat
faster than the mean flow speed, a result derived by var-
ious authors under slightly different assumptions [44–47].

The effect is due to the fact that the ‘tail’ of the distribution
of �c is primarily from analyte that is closer to the wall
which is lost at a faster rate thereby displacing the cen-
troid forward. Thus, the centroid moves with a velocity
that is higher than the mean velocity, �u, but lower than
the maximum velociy umax = 2�u. If the adsorption rate
kasm is small (which corresponds to our ‘slow variations’
assumption), the expression for the velocity of the cen-
troid [46, 47] can be linearized with respect to kasm. It is
then found that the resulting expression is identical to
Eq. (55). The same physical effect also brings about a
reduction in the effective axial diffusion coefficient. How-
ever, the effect is of second order in kasm and is thus not
reflected in the expression (50) for d.

The problem of CZE in the presence of wall adsorption is
very similar to the problem of open-tubular capillary elec-
trochromatography (CEC) (see, e.g., [48]). However, in
CEC the interaction with the wall is an important compo-
nent of the mechanism of separation rather than an unde-
sirable source of band broadening. In the case of a pres-
sure-driven (Poiseuille) flow, the correction to the migration
velocity due to wall interactions, as well as the effective
axial diffusion coefficient have been worked out by Golay
[44] and later, with greater generality by Aris [45]. In CEC,
the flow is electroosmotic rather than pressure-driven.
McEldoon and Datta [27] replaced the Poiseuille profile in
the Golay-Aris theory by the the Rice-Whitehead flow pro-
file discussed in Section 4 to derive an expression for the
dispersion in CEC due to wall interactions. A similar
approach has been used earlier by Martin and Guichon
[49] and by Martin et al. [50], except ad hoc approximations
to the electrokinetic flow profile were used. The analyte
concentration peak profile itself has been calculated
numerically recently [51] by integrating a set of one-dimen-
sional model equations. The asymptotic theory presented
in this section should also apply to the CEC problem.

6.3 Thermal broadening

The flow of electric current through the buffer in CE sys-
tems produces a significant amount of Joule heat which
results in temperature variations in the microcapillary. In
fact, the problem of Joule heat was a major impediment
to the development of CE as an analytical tool. Excessive
heating could cause convective overturning in the fluid
that would result in obliteration of all signals. The fluid
could even vaporize leading to a “vapor lock” and cata-
strophic failure. These problems were overcome only
when microcapillaries (less than 200 mm internal diame-
ter) became available. In modern capillaries or microflui-
dic channels, Joule heating does not have such disas-
trous effects, nevertheless it can be a significant source
of band broadening.
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The transport problem for temperature in a cylindrical
capillary carrying a current of uniform density can be
easily solved [52] yielding a radially varying temperature
field, T(r). The electrophoretic migration speed of mole-
cules varies inversely with the fluid viscosity m. For exam-
ple, for a spherical particle with a thin EDL (EDL thickness
much less than the particle radius) the Stern-Gouy-Chap-
man theory [5] gives

uep ¼ 2
3
ezE
4pm

(56)

(in cgs units) where e and m are the dielectric constant and
viscosity of the buffer, E is the applied electric field, and
z is the zeta-potential at the surface of the migrating par-
ticle. Since the viscosity m varies with temperature, T,
which in turn varies with r, analyte molecules near the
wall migrate with a slightly different speed than those at
the center. This, clearly would lead to band broadening in
the sample plug.

How is the EOF modified and what role does it play in the
band broadening process? At first sight one might con-
clude that since the electroosmotic velocity

ueo ¼ � ezE
4pm

(57)

the EOF too should have a profile similar to the electro-
phoretic velocity. This, however, is not true. The reason
is, the formula (57) is valid only for a constant m not if m =
m(r). If the viscosity depends on r, we must go back to the
Stokes equation for determining the correct velocity pro-
file. In the absence of a pressure gradient Stokes equation
becomes

1
r

d
dr

rm rð Þdu
dr

� �
¼ 0 (58)

with the HS slip boundary conditions (in the thin EDL
limit):

u r ¼ a0ð Þ ¼ � ezE
4pm a0ð Þ (59)

a0 being the capillary radius. Assuming that u is not singu-
lar at r = 0, the unique solution

u rð Þ ¼ u r ¼ a0ð Þ ¼ � ezE
4pm a0ð Þ (60)

is determined. Thus, the velocity still has a flat profile and
the result (57) may still be used, provided that the ‘m’ is
interpreted as the m at the wall, r = a0. Thus, it is the mod-
ification of the electrophoretic velocity, not the electroos-
motic velocity that causes band broadening, as pointed
out by Knox [53] who provided the first correct treatment

of the thermal band broadening phenomenon. Knox also
calculated an explicit expression for the plate height (the
variance developed by an initially sharp concentration
peak per unit length of capillary traversed by the sample).

A similar analysis was published later by Grushka et al.
[54] who also provided an expression* for the plate height:

H ¼ 2D
u

þ R6
1E4C2

bB2L2�u

24D 8k1T2
1 � E2LCbR2

1B
	 
2 (61)

where D is the molecular diffusivity, �u is the cross-section-
ally averaged value for the migration velocity, R1 is the
internal capillary diameter, E is the applied electric field,
Cb and L are, respectively, the buffer electrolyte concen-
tration and equivalent conductance and k1 is the buffer
thermal conductivity. Finally, the coefficients A and B
characterize the temperature dependance of the viscosity
of the buffer: m = A exp (B/T), T being the absolute temper-
ature and T1 its value at the wall. Andreev and Lisin [55]
analyzed the problem by numerically solving the coupled
equations for Stokes flow, the Poisson-Boltzmann equa-
tion for the electric potential, and the advection diffusion
equation for the analyte concentration taking into account
the dependence of the transport coefficients on concen-
tration and temperature. The thermal equation was inte-
grated analytically assuming a small temperature drop
between the axis and the wall of the capillary, which
implies a parabolic distribution of the temperature profile.
It was found that depending on the parameter regime, the
effect of the nonuniform temperature on the EOF could
sometimes dominate effects due to variations of the elec-
trophoretic velocity. This is due to the finite Debye layer
effects which disappear in the thin EDL limit considered
by Knox [53] and by Grushka et al. [54].

The wall temperature can be calculated by solving the
steady state diffusion equation with a source. This has
been done by various authors under different assump-
tions. Grushka et al. [54] assume a polyimide-coated cap-
illary and constant electrical and thermal conductivity of
the buffer, in which case

T1 ¼ Ta þ
GR2

1

2
1
k2

ln
R2

R1

� �
þ 1

kc
ln

Rc

R2

� �
þ 1

Rch

� �
(62)

where Ta is the ambient temperature, h is the heat transfer
coefficient to the surroundings (power radiated per unit
area per unit temperature difference between the outer

* The author’s expression for what they call the “electrophoretic
migration velocity” appears to be missing a pre-factor (2/3 for
spherical particles with thin EDL), however, this should not
affect the final result, Eq. (61) which depends only on the fact
that this velocity is inversely proportional to the viscosity.
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wall and the environment), Rc and R2 are the outer capil-
lary diameters with and without the polyimide coating, k2

and kc are the thermal conductivities of fused-silica and
polyimide coating, respectively, and G is the (constant)
heat generation rate. The temperature distribution within
the buffer itself has a parabolic profile. A more accurate
model for calculating the temperature distribution must
account for the variation of buffer electrical conductivity
with temperature. In that case the heat generation rate is
no longer constant but to a good approximation a linear
function of temperature. The resulting equation for ther-
mal transport is nevertheless still linear, and may be read-
ily solved in terms of the zeroth order Bessel function [56].
However, as shown by Jones and Grushka [56], under
typical CE operating conditions the correction to the
parabolic temperature profile obtained assuming con-
stant conductivity is very small.

In addition to the obvious radial dependence on tempera-
ture, axial variations in temperature could also occur due
to various inhomogeneities in the capillary. Such varia-
tions could induce pressure gradients and lead to band
broadening. It is not clear whether such axial variations
are present and if so whether they do cause significant
dispersion. Convective motion of fluid in the capillary is
also possible. These are open areas for investigation.

6.4 Dispersion in curved channels

In a typical laboratory CE unit the capillary is usually
straight, or has a radius of curvature very much larger
than the capillary diameter (in which case it may be con-
sidered essentially straight). However, for CE systems,
the requirement of a long analysis section (in order to sup-
port a larger voltage drop, the number of theoretical
plates being proportional to the voltage drop) forces one
to consider sinuous channels in order to fit it on a chip of
modest footprint.

Such curved channels contribute to axial dispersion due
to the following mechanism: Since the isopotential sur-
faces intersect the channel boundaries at right angles
(ignoring the finite thickness of the EDL) the same poten-
tial drop occurs over a shorter distance on the inner side
of a curve than on the outer side. As a result, the applied
voltage creates a stronger field on the inside edge of the
channel. Therefore, by the HS slip boundary condition,
the fluid velocity is higher at the inner edge than at the
outer one. Further, solute particles near the inner edge of
the turn traverse a shorter distance at this higher speed
than particles at the outer edge (the so-called “race track
effect”). Thus, as a band goes round the bend it is sheared
out of shape. Cross-stream molecular diffusion acts on
this shear resulting in an enhanced effective axial disper-

sion due to the Taylor-Aris mechanism. Minimizing such
turn induced “geometric dispersion” is a subject of active
research interest (see, e.g., the short report by Zubritsky
[57] for an overview of the approaches being pursued).

The simplest geometry is that of a rectangular channel of
width ‘a’ and infinite depth that has a curved region with a
turn angle of y (in radians) connecting infinitely long inlet
and outlet sections. The channel is assumed to lie in a
single plane. The following formula has been proposed
by Griffiths and Nilson [28] for the turn induced axial var-
iance s2:

s
a

� �2
¼ y2Pe

15r� þ 3Pe
þ 2r�y

Pe
(63)

Here, r* is the mean of the radii of curvature of the inner
and outer walls normalized by the channel width, and Pe
= aU/D is the Peclet number based on the (uniform) flow
speed far upstream of the bend (U) and the molecular dif-
fusion coefficient (D).

There are two qualitatively different regimes of interest.
The distinction is based on whether the cross stream dif-
fusion of species is dominant or if it is a small correction.
The characteristic time scale required for any concentra-
tion variation across the channel to be homogenized is tD

, a2/D. This is to be compared with the characteristic
residence time of the sample in the curved section of
the capillary, tR , ar*y/U. Clearly if tA � tD diffusion is un-
important and the dispersion may be calculated from
purely geometrical considerations. The ratio

tA/tD , r*y/Pe (64)

Thus, we distinguish between the (i) Low Peclet number
regime: tA/tD � 1 which corresponds to turns of relatively
large radius of curvature or large diffusion coefficients. In
this case, cross-stream diffusion is dominant so that the
concentration is almost constant across the capillary.
Thus, the variance may be obtained through a straight for-
ward substitution of the analytical expression for the ve-
locity profile in the Taylor-Aris formalism for calculating
the variance. (ii) High Peclet number regime: tA/tD � 1
which corresponds to small radius of curvature and low
molecular diffusion coefficients. In this case, the disper-
sion may be calculated by purely geometrical means
since the solute is simply advected along streamlines.

The expression (63) is an empirically constructed “com-
posite expression” that reduces to the correct limits in
the low and high Peclet number regimes. In these two lim-
its the expression (63) for the variance take the following
forms

s2 � 2D þ
�u2a4y
15�r2D

� �
tA Pe ! 0ð Þ (65)
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s2 � y2a2

3
þ 2DtA Pe ! 1ð Þ (66)

where �r = ar* is the dimensional mean radius of curvature
and tA = �ry/U is the transit time across the bend. The for-
mer expression clearly has the form of the variance due to
molecular diffusion added to a Taylor-like term. In the sec-
ond case we have molecular diffusion plus a purely geo-
metrical quantity that is independent of the diffusion coef-
ficient D but depends solely on the difference of path
lengths ay between the inner and outer edges of the
bend. In microfluidic applications both limits are relevant.
For example, if we take a ,100 mm, �r ,1 cm and y = p
then r*y , 300. Since Pe ,1012 102 for small molecules
but Pe , 1032104 for macromolecules it is clear from
Eq. (64) that the ‘high’ the ‘low’ as well as the ‘intermedi-
ate’ Peclet number regimes are relevant for microfluidic
applications. Culbertson et al. [58] also considered the
problem of geometric dispersion in a rectangular channel
undergoing a 1807 turn. They used an ad hoc modification
of the expression for the axial stretching of an initially
sharp bend in the absence of diffusion to incorporate dif-
fusive effects. The model was fitted to experimental data.
However, their model differs from Eq. (63) by a numerical
factor at low Peclet numbers and the apparent agreement
with experimental data in this regime has been attributed
by Griffiths and Nilson [28] to uncertainties in the meas-
urement of the channel width.

The first term in Eq. (63) increases linearly with Pe for
small values of Pe and saturates at large Pe. Clearly the
dispersion contribution from this term can be reduced if
either Pe can be reduced or else if r* could be increased.
Two main ideas for designing low dispersion bends have
evolved out of these two possibilities. The channel can be
‘pinched’ so that it becomes very narrow in the curved
sections. This effectively reduces the Pe locally by
decreasing a. This approach has been investigated by
Paegel et al. [59]. Alternatively one could design the
separation channel in the form of spiral turns of large radii
of curvature. This approach, which relies on increasing
the effective radius of curvature r*, has been followed, for
example, by Culbertson and others [60–62]. Yet a third
possibility is to redesign the channel geometry at the
bend so as to compensate for both the higher electric
field and the ‘race track’ effect. Effectively this is equiva-
lent to attempting to reduce the prefactor multiplying the
Pe in the first term of Eq. (63) by altering the velocity dis-
tribution. This approach has been adopted for example
by Molho et al. [63, 64] who tried to come up with optimal
shapes using computer simulation. The results were com-
pared to experimental data and appeared to show rea-
sonable agreement. Similar designs were proposed by
Griffiths and Nilson [65]. Others have attempted to com-

bine several of these ideas. For example, Dutta and Leig-
ton have proposed spirals with inner walls that are wavy
to compensate for the shorter path [66] thereby both
increasing r* as well as reducing the geometric prefactor
in (63). Johnson et al. [67] achieve the same effect by
modifying the wall z-potential through laser ablation,
which will also change the pattern of EOF in the channel.
Fiechtner and Cummings [68] have proposed a ‘faceted’
design which is a polygonal shape approximating a
smooth spiral. Griffiths and Nilson [69] have investigated
‘pleated channels’ where some of the turn induced dis-
persion is ‘undone’ at the following turn in the opposite
direction.

7 Summary and conclusions

Electroosmosis and electrophoresis are closely related
phenomena which are often present together in CZE.
EOF is an effect of the action of the applied electric field
on the Debye layer of free charges adjoining the walls of a
microfluidic channel. Electroosmosis is both an ally and
an enemy of the researcher interested in achieving effi-
cient separation. The main advantage of EOF is that it is
a useful means for transporting analytes and buffer in a
microfluidic circuit. Unlike pressure-driven flows in which
the pressure drop needed to maintain a certain fixed
mean flow speed increases inversely as the square of the
capillary radius, in EOF, the voltage needed is independ-
ent of the capillary radius. Thus, EOF is very efficient for
transporting infinitesimal volumes of fluid through very
narrow capillaries. The presence of EOF in the microchan-
nels enables single point detection (species of either sign
elute at the same end), reduces analysis times and
enables operation of the microdevice in a continuous
mode. The disadvantage is that any effect that causes
the EOF flow profile to deviate from the classical “plug
flow” shape would cause band broadening.

The state of current knowlege of the fluid mechanics of
EOF was reviewed with special attention to the role of
EOF on dispersion in CZE systems. EOF is fully described
by the Poisson-Boltzmann equation coupled to the in-
compressible Navier-Stokes and continuity equations
describing fluid flow. This set of equations is, however,
quite complex and nonlinear, exact analytical solutions
can be found only for certain highly idealized systems.
Fortunately, however, a series of simplifications can be
made to these equations, at each step exploiting a certain
disparity in scales inherent in the problem.

The first level of simplification comes about through the
assumption of thin Debye layers. This is justified, since in
most current applications to EOF, characteristic channel
radii are of the order of 10–100 mm whereas for the normal
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range of buffer concentrations used, the Debye length is
1–10 nm. This disparity in scales allows us to drop the
term representing the electrical force in the Navier-Stokes
equations and instead, to replace the classical “no slip”
boundary conditions at the solid fluid interface by the
“HS slip boundary conditions”. Thus, within the realm of
this approximation, the electrical forces are described by
a single parameter, ‘the z-potential’ that enters the fluid
flow description solely through the new ‘slip’ boundary
conditions and the Poisson-Boltzmann equation may be
replaced by the Laplace equation for a charge free region.

If fluid properties and the z-potential are uniform, no exter-
nal pressure gradient is applied, the substrate is a poor
electrical conductor and the Reynolds number is negligi-
bly small, then the fluid velocity through a channel of any
geometry is simply proportional to the electric field which
may be determined by solving a Dirichlet problem for the
electric potential. This ‘similitude’ between the electric
field and the hydrodynamic flow also applies to the finite
Reynolds number situation provided the flow is irrota-
tional. However, the assumption of uniform fluid proper-
ties and z-potential is not valid in all problems of interest,
such as in the problem of flow modification due to wall
interactions.

In such cases an alternate approximation becomes
possible due to the smallness of channel diameters
(10–100 mm) compared to overall capillary length (10–
100 cm). This allows us to invoke a well developed branch
of fluid mechanics, namely “lubrication theory” for the
description of the fluid flow. The consequent reduction in
complexity enables a rational description of an important
class of problems involving EOF; namely the problem of
EOF through channels that are not homogeneous in the
axial direction. Axial inhomogeneity can arise due to a
variety of reasons, in particular due to adsorption of
charged sample components to the wall (which in turn
changes the z-potential), variations in temperature due to
nonuniform heating or cooling, alteration of the electrical
conductivity of the buffer by the sample or axial variation
in buffer pH (as in sample stacking or isoelectric focus-
ing).

One of the most important results of flow modification in
CZE is its effect on the effective axial dispersion of the
analyte. Here, the basic fluid mechanics tool at our dispo-
sal is the “Taylor-Aris dispersion theory” for the long time
evolution of a scalar field in a shear flow and the various
generalizations and modifications of it that have been
developed over the years. Axial dispersion or band
broadening arises out of three main sources: (i) axial inho-
mogeneities, (ii) radial inhomogeneities, and (iii) channel
curvature. In general, axial inhomogeneities of any kind
lead to an induced axial pressure gradient due to the

incompressibility constraint. Such pressure fluctuations
give rise to a “Poiseuille” type of flow with a parabolic pro-
file, which through the mechanism of Taylor-Aris disper-
sion leads to greatly enhanced effective axial dispersion.
Radial variations are often caused by nonuniform temper-
ature distributions inside the capillaries and cause band
broadening due to differential rates of electromigration
over the capillary cross-section. Channel curvature
results in ‘geometric dispersion’ and is relevant at the
low, intermediate as well as high Peclet number regimes.

Though the basic analytical machinery for treating EOF in
a wide variety of situations of interest appear to be avail-
able, there are many areas where theoretical understand-
ing is in a relatively primitive state. Advances in the study
of this new area of fluid mechanics should facilitate the
development of software and numerical tools that could
be very useful in the quest to develop m-TAS technology
and more efficient separation methods.
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