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Fluid queue driven by a birth and death process (BDP) with only one negative effective

input rate has been considered in the literature. As an alternative, here we consider a fluid

queue in which the input is characterized by a BDP with alternating positive and negative

flow rates on a finite state space. Also, the BDP has two alternating arrival rates and two

alternating service rates. Explicit expression for the distribution function of the buffer

occupancy is obtained. The case where the state space is infinite is also discussed. Graphs

are presented to visualize the buffer content distribution.

1. Introduction

Recent measurements have revealed that in high-speed telecommunication networks, like

the ATM-based broadband ISDN, traffic conditions exhibit long-range dependence and

burstiness over a wide range of time scales. Fluid models characterize such a traffic as

a continuous stream with a parameterized flow rate. Whitt [6] establishes heavy-traffic

stochastic process limits for fluid queue models with multiple on-off sources.

A fluid model that is typically used to model such a traffic is a Markov Modulated

Fluid Model wherein the current state of the underlying Markov process determines the

flow rate. Fluid models driven by finite state Markov processes that modulate the input

rate in the fluid buffer have been analyzed by many authors. Lenin and Parthasarathy

[2] provide closed-form expressions for the eigenvalues and eigenvectors for fluid queues

driven by an M/M/1/N queue. The case where the state space is infinite has been analyzed

by van Doorn and Scheinhardt [5] for a birth and death process (BDP).

In most studies dealing with Markov modulated fluid queues, a single negative

effective flow rate is assumed. Here, we consider a more general setting of a fluid queue

driven by a BDP on a finite state space in which the flow rates are alternatively positive

and negative. Our aim is to obtain the stationary distribution function of the buffer oc-

cupancy for this fluid model which is modulated by a BDP with two alternating arrival

rates and two alternating service rates. This modulating Markov process can be visualized

as a simple case of a two-state Markov Modulated Poisson Process which is characterized
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by a Markov process with an infinitesimal generator Q=
[
−λ1 λ1

λ2 −λ2

]
and a diagonal matrix

Λ=
[
λ1 0
0 λ2

]
of arrival probabilities, where λ1 and λ2 denote the rates of arrival when the

traffic is bursty and slow, respectively. The case where the state space of the BDP is infinite

is also discussed. Some interesting identities of tridiagonal determinants are used for the

finite state space, and continued fraction methodology is employed for the infinite state

space. Graphs are presented to visualize the buffer content distribution.

The model under consideration finds a wide range of application in modelling a com-

munication switch as a fluid stochastic petri net in which two streams of traffic arrive

(Horton et al. [1]). One stream is bursty with a high flow rate when the server is busy and

the other stream is slow with a low flow rate when the workload of the server is less. We

will designate the fluid commodity accumulating in the infinite capacity buffer as credit.

It may be helpful to think of credit as the energy which the server gathers during lean

traffic period and consumes when the traffic is bursty.

2. Model description

We consider an infinite capacity buffer which receives and releases fluid flows modulated

by a BDP evolving in the background. We denote the background birth-death process by

� := {X(t), t ≥ 0} taking values in the state space �, where X(t) denotes the state of the

process at time t. Let λn and µn denote the mean arrival and service rates, respectively,

when there are n units in the system.

The flow rates of the fluid into and out of an infinite capacity buffer are determined by

the actual state of the background process. Let r j denote the flow rate of the fluid when

the background process is in state j. The rate of change of content of the buffer C(t) when

X(t)= j is given by

dC(t)

dt
=



r j if C(t) > 0,

0 if C(t)= 0, r j < 0.
(2.1)

Clearly, the two-dimensional process {(X(t),C(t)), t ≥ 0} constitutes a Markov process

which possesses a unique stationary distribution under a suitable stability condition.

The stationary state probabilities pi, i∈�, of the BDP can be represented as

pi =
πi∑
j∈�π j

, i∈�, (2.2)

where πi = λ0λ1 ···λi−1/µ1µ2 ···µi, i= 1,2,3, . . ., and π0 = 1 are called the potential coef-

ficients. In order that a limit distribution for C(t) exists as t→∞, the stationary net input

rate should be negative, that is,

∞∑

i=0

πiri < 0. (2.3)
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Letting

F j(t,u)≡ P
(
X(t)= j, C(t)≤ u

)
, j ∈�, t,u≥ 0, (2.4)

the Kolmogorov forward equations for the Markov process {X(t),C(t)} are given by

∂F0(t,u)

∂t
=−r0

∂F0(t,u)

∂u
− λ0F0(t,u) +µ1F1(t,u),

∂F j(t,u)

∂t
=−r j

∂F j(t,u)

∂u
−
(
λ j +µ j

)
F j(t,u)

+ λ j−1F j−1(t,u) +µ j+1F j+1(t,u), j ∈� \ {0}, t,u≥ 0.

(2.5)

(See van Doorn and Scheinhardt [5]). When the process is in equilibrium, ∂F j(t,u)/∂t ≡
0, and let limt→∞F j(t,u)≡ F j(u).

3. Finite state space

This section deals with a fluid queue modulated by a finite BDP with state space � =
{0,1,2, . . . ,N}. The system of equations governing the two-dimensional process {(X(t),

C(t)), t ≥ 0} in equilibrium is

r0
dF0(u)

du
=−λ0F0(u) +µ1F1(u),

r j
dF j(u)

du
= λ j−1F j−1(u)−

(
λ j +µ j

)
F j(u) +µ j+1F j+1(u), for j ∈� \ {0}, u≥ 0.

(3.1)

In matrix notation (3.1) can be written as

dF(u)

du
= R−1QTF(u), u≥ 0, (3.2)

where F(u)= [F0(u),F1(u), . . . ,FN (u)]T , R= diag(r0,r1, . . . ,rN ), and

Q=




−λ0 λ0

µ1 −
(
λ1 +µ1

)
λ1

. . .

µN−1 −
(
λN−1 +µN−1

)
λN−1

µN −µN




(N+1)×(N+1)

. (3.3)
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Hence

R−1QT =




−λ0

r0

µ1

r0

λ0

r1
−
(
λ1 +µ1

)

r1

µ2

r1
. . .

λN−2

rN−1
−
(
λN−1 +µN−1

)

rN−1

µN
rN−1

λN−1

rN
−µN
rN




(N+1)×(N+1)

.

(3.4)

Mitra [3] has shown that R−1QT has exactly N+ negative eigenvalues, N− − 1 positive

eigenvalues, and one zero-eigenvalue, where N+ is the cardinality of the set

�
+ :=

{
j ∈� : r j > 0

}
(3.5)

and N− is that of

�
− :=

{
j ∈� : r j < 0

}
. (3.6)

Let ξ j , j = 0,1,2, . . . ,N , be the eigenvalues of the matrix R−1QT such that

ξ j < 0, j = 0,1,2, . . . ,N+− 1, ξN+ = 0, ξ j > 0, j =N+ + 1, . . . ,N. (3.7)

Since the content of the buffer increases when the net input rate of fluid flow into the

buffer is positive, it follows that F j(u) must satisfy the boundary condition

F j(0)= 0 for j ∈�
+. (3.8)

Also, we have

lim
u→∞

F j(u)= p j for j ∈�, (3.9)

where the p j ’s are the stationary state probabilities of the background BDP. The solution

to the matrix equation (3.2) is given by

F j(u)= p j +
N+−1∑

l=0

ηl, je
ξlu, j ∈�, (3.10)
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where

ηl, j = kl
B j
(
ξl
)

c j0
, c j0 =

µ1µ2 ···µ j

r0r1 ···r j−1
. (3.11)

The constants kl are obtained by solving

p j +
N+−1∑

l=0

kl
B j
(
ξl
)

c j0
= 0, for j ∈�

+. (3.12)

The polynomials B j(s) are defined recursively as

B0(s)= 1, B1(s)= s+
λ0

r0
,

B j(s)=
(
s+

λ j−1 +µ j−1

r j−1

)
B j−1(s)−

λ j−2µ j−1

r j−2r j−1
B j−2(s), j = 2,3,4, . . . ,N ,

BN+1(s)=
(
s+

µN
rN

)
BN (s)− λN−1µN

rN−1rN
BN−1(s).

(3.13)

Also BN+1(s)= det(sI−R−1QT) and B j(s) is the determinant obtained by considering the

first j rows and columns of BN+1(s). More specifically, we consider a fluid queue model

with effective input rates r2 j < 0 and r2 j+1 > 0 for j = 0,1,2, . . . , (N − 1)/2. Under this as-

sumption, the system of equations involved in the determination of the constant kl is

given in matrix form as




B1

(
ξ0

)

c10

B1

(
ξ1

)

c10
··· B1

(
ξ[N/2]

)

c10

B3

(
ξ0

)

c30

B3

(
ξ1

)

c30
··· B3

(
ξ[N/2]

)

c30

B5

(
ξ0

)

c50

B5

(
ξ1

)

c50
··· B5

(
ξ[N/2]

)

c50
...

...
...




[N/2]




k0

k1

k2

...




[N/2]

=




p1

p3

p5

...




[N/2]

. (3.14)

Hence the problem of determining the stationary distribution of the content in the fluid

buffer is reduced to that of solving the above matrix equation via Cramer’s rule.

We now give three examples to illustrate the above discussion.
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Example 3.1 (N = 1). The steady state probabilities for this two-state Markov process are

given by p0 = µ1/(λ0 + µ1) and p1 = λ0/(λ0 + µ1). It follows from (2.3) that the condition

µ1r0 + λ0r1 < 0 ensures the stability of the Markov process {(X(t),C(t)), t ≥ 0}.
The matrix R−1QT takes the form

R−1QT =



−λ0

r0

µ1

r0

λ0

r1
−µ1

r1


 (3.15)

with eigenvalues ξ0 =−(λ0/r0 + µ1/r1) and ξ1 = 0. The system has one negative root pro-

vided λ0/r0 + µ1/r1 > 0 (which follows from the stability condition). Further, η00 = k0,

η01 =−k0r0/r1, and from p1 + k0(B1(ξ0)/c10)= 0, we obtain k0 = (r1/r0)p1. Therefore the

final solution is given by

F0(u)= p0 +
r1

r0
p1e

−(λ0/r0+µ1/r1)u,

F1(u)= p1− p1e
−(λ0/r0+µ1/r1)u.

(3.16)

Observe that

P
(
C(t) < u

)
= F0(u) +F1(u)= 1−

(
1− r1

r0

)(
λ0

λ0 +µ1

)
e−(λ0/r0+µ1/r1)u. (3.17)

Example 3.2 (N = 2). The steady state probabilities of the modulating Markov process

are given by

p0 =
µ1µ2

λ0λ1 + λ0µ2 +µ1µ2
,

p1 =
λ0µ2

λ0λ1 + λ0µ2 +µ1µ2
,

p2 =
λ0λ1

λ0λ1 + λ0µ2 +µ1µ2
.

(3.18)

It follows from (2.3) that the stability condition for the Markov process {(X(t),C(t)), t ≥
0} is µ1µ2r0 + λ0µ2r1 + λ0λ1r2 < 0.

The matrix R−1QT takes the form

R−1QT =




−λ0

r0

µ1

r0

λ0

r1
−λ1 +µ1

r1

µ2

r1

λ1

r2
−µ2

r2




(3.19)
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with eigenvalues given by

ξ0 =−
1

2

(
λ0

r0
+
λ1

r1
+
µ1

r1
+
µ2

r2

)

− 1

2

√√√√√
(
λ0

r0
+
λ1

r1
+
µ1

r1
+
µ2

r2

)2

− 4

(
λ0λ1

r0r1
+
µ1µ2

r1r2
+
λ0µ2

r0r2

)
,

ξ1 = 0,

ξ2 =−
1

2

(
λ0

r0
+
λ1

r1
+
µ1

r1
+
µ2

r2

)

+
1

2

√√√√√
(
λ0

r0
+
λ1

r1
+
µ1

r1
+
µ2

r2

)2

− 4

(
λ0λ1

r0r1
+
µ1µ2

r1r2
+
λ0µ2

r0r2

)
.

(3.20)

The constant k0 is determined as k0 =−p1µ1/r0B1(ξ0), where

B0(s)= 1,

B1(s)=
(
s+

λ0

r0

)
,

B2(s)=
(
s+

λ0

r0

)(
s+

λ1 +µ1

r1

)
− λ0µ1

r0r1
.

(3.21)

Therefore, the stationary distribution of the buffer content is given by

F0(u)= p0− p1
µ1

r0

1

B1

(
ξ0

)eξ0u,

F1(u)= p1− p1e
ξ0u,

F2(u)= p2− p1
r1

µ2

B2

(
ξ0

)

B1

(
ξ0

)eξ0u.

(3.22)

Observe that

P
(
C(t) < u

)
= F0(u) +F1(u) +F2(u)

= 1− p1

(
1 +

µ1

r0B1

(
ξ0

) +
r1

µ2

B2

(
ξ0

)

B1

(
ξ0

)
)
eξ0u.

(3.23)
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In the above discussion, we considered two examples in the general case. The forth-

coming example deals with the model in which the birth and death rates alternate be-

tween two constant values, with even number of states. The case with odd number of

states does not lead to explicit expression for eigenvalues.

Example 3.3 (alternating rates). Consider a fluid queue driven by a single server queuing

model with state space �= {0,1,2, . . . ,2n− 1} whose birth and death rates are given by

λ2i = λ1, µ2i = µ2 for i= 1,2, . . . ,n− 1,

λ2i+1 = λ2, µ2i+1 = µ1 for i= 0,1, . . . ,n− 2,
(3.24)

with λ0 = λ1, µ2n−1 = µ1, and the effective input rates are r2i = r1 < 0 and r2i+1 = r2 > 0 for

i= 0,1,2, . . . ,n− 1. If ρ = λ1λ2/µ1µ2 < 1, the steady state probabilities are given by

p2k =
(
λ1λ2

µ1µ2

)k

p0, k = 1,2,3, . . . ,n− 1,

p2k+1 =
λ1

µ1

(
λ1λ2

µ1µ2

)k

p0, k = 0,1,2, . . . ,n− 1,

(3.25)

with p0 = (µ1/(λ1 + µ1))((1− ρ)/(1− ρn)). From (2.3), it is observed that the condition

r1µ1 + r2λ1 < 0 ensures the stability of the Markov process {(X(t),C(t)), t ≥ 0}.
For this specific model, the matrix R−1QT takes the form

R−1QT =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ1

r1

µ1

r1

λ1

r2
−λ2 +µ1

r2

µ2

r2
. . .

λ2

r1
−λ1 +µ2

r1

µ1

r1

λ1

r2
−µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ1

r1

µ1

r2

λ1

r1
−λ2 +µ1

r2

µ2

r1
. . .

λ2

r2
−λ1 +µ2

r1

µ1

r2

λ1

r1
−µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n

.

(3.26)
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Therefore,

∣∣sI−R−1QT
∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+
λ1

r1
−µ1

r2

−λ1

r1
s+

λ2 +µ1

r2
−µ2

r1
. . .

−λ2

r2
s+

λ1 +µ2

r1

µ1

r2
λ1

r1
s+

µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n

= s×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+
λ1

r1
+
µ1

r2
−λ1µ2

r2
1

−1 s+
λ2

r2
+
µ2

r1
−λ2µ1

r2
2

. . .

−1 s+
λ2

r2
+
µ2

r1
−λ2µ1

r2
2

−1 s+
λ1

r1
+
µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n−1

.

(3.27)

Using the Identities A.2, A.1, and A.3 given in the appendix in succession, with θ = s+

λ1/r1 +µ1/r2, φ = s+ λ2/r2 +µ2/r1, and ω = θφ− λ2µ1/r
2
2 − λ1µ2/r

2
1 , we obtain

B2n(s)= s

φ
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θφ− λ1µ2

r2
1

−λ1µ2

r2
1

−λ2µ1

r2
2

ω −λ1µ2

r2
1

−λ2µ1

r2
2

ω −λ1µ2

r2
1

. . .

−λ2µ1

r2
2

θφ− λ2µ1

r2
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n

= s

φ
× θφ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω −λ2µ1

r2
2

−λ1µ2

r2
1

ω −λ2µ1

r2
2

. . .

−λ1µ2

r2
1

ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n−1
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= sθ×
n−1∏
r=1

[
θφ− λ1µ2

r2
1

− λ2µ1

r2
2

− 2

√
λ1λ2µ1µ2

r2
1 r

2
2

cos
rπ

n

]
.

(3.28)

Substituting for θ and φ, we obtain

B2n(s)= s
(
s+

λ1

r1
+
µ1

r2

)

×
n−1∏
r=1

[(
s+

λ1

r1
+
µ1

r2

)(
s+

λ2

r2
+
µ2

r1

)
− λ1µ2

r2
1

−λ2µ1

r2
2

− 2

√
λ1λ2µ1µ2

r1r2
cos

rπ

n


 .

(3.29)

We observe that B2n(s) is zero when−s is the eigenvalue of the tridiagonal matrix R−1QT .

Therefore, the eigenvalues of R−1QT are given by

ξ0 =−
(
λ1

r1
+
µ1

r2

)
,

ξ j =
1

2


−

(
λ1 +µ2

r1
+
λ2 +µ1

r2

)
−


(
λ1 +µ2

r1
+
λ2 +µ1

r2

)2

− 4
λ1λ2

r1r2
− 4

µ1µ2

r1r2

+8

√
λ1λ2µ1µ2

r1r2
cos

jπ

n




1/2
 , j = 1,2, . . . ,n− 1,

ξn = 0,

ξ j =
1

2


−

(
λ1 +µ2

r1
+
λ2 +µ1

r2

)
+



(
λ1 +µ2

r1
+
λ2 +µ1

r2

)2

− 4
λ1λ2

r1r2
− 4

µ1µ2

r1r2

+8

√
λ1λ2µ1µ2

r1r2
cos

jπ

n




1/2
 , j=n+1,n+2, . . . ,2n−1.

(3.30)
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We give below closed-form expressions for the terms B2k(s) and B2k+1(s) for k = 0, . . . ,n−
1, using the well-known identities of continuants given in the appendix. Consider

B2k(s)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+
λ1

r1

µ1

r2

λ1

r1
s+

λ2 +µ1

r2

µ2

r1

. . .

λ2

r2
s+

λ1 +µ2

r1

µ1

r2

λ1

r1
s+

λ2 +µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2k

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+
λ1 +µ2

r1

µ1

r2

λ1

r1
s+

λ2 +µ1

r2

µ2

r1

. . .

λ2

r2
s+

λ1 +µ2

r1

µ1

r2

λ1

r1
s+

λ2 +µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2k

− µ2

r1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s+
λ2 +µ1

r2

µ2

r1

λ2

r2
s+

λ1 +µ2

r1

µ1

r2

. . .

λ2

r2
s+

λ1 +µ2

r1

µ1

r2

λ1

r1
s+

λ2 +µ1

r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2k−1

.

(3.31)
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Using Identities A.2 and A.4,

B2k(s)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 +
λ2µ2

r1r2
−λ1µ1

r1r2

−λ2µ2

r1r2
ω1 −λ1µ1

r1r2

. . .

ω1 −λ1µ1

r1r2

−λ2µ2

r1r2
ω1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k

− µ2

r1s+ λ1 +µ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1 +
λ2µ2

r1r2
−λ1µ1

r1r2

−λ2µ2

r1r2
ω1 −λ1µ1

r1r2

. . .

ω1 −λ1µ1

r1r2

−λ2µ2

r1r2
ω1 +

λ2µ2

r1r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k

,

(3.32)

where ω1 = (s + (λ1 + µ2)/r1)(s + (λ2 + µ1)/r2)− λ1µ1/r1r2 − λ2µ2/r1r2. Now, expanding

the first determinant and using Identity A.1 for the second, we obtain

B2k(s)=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1
λ1µ1

r1r2

λ2µ2

r1r2
ω1

λ1µ1

r1r2
. . .

ω1
λ1µ1

r1r2

λ2µ2

r1r2
ω1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k
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+
λ2µ2

r1r2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1
λ1µ1

r1r2

λ2µ2

r1r2
ω1

λ1µ1

r1r2
. . .

ω1
λ1µ1

r1r2

λ2µ2

r1r2
ω1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k−1

− µ2

r1

(
s+

λ2 +µ1

r2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1
λ2µ2

r1r2

λ1µ1

r1r2
ω1

λ2µ2

r1r2
. . .

ω1
λ2µ2

r1r2

λ1µ1

r1r2
ω1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k−1

.

(3.33)

Therefore, from Identity A.3, the quantity B2k(s) can be expressed in closed form as fol-

lows:

B2k(s)=
(
λ1λ2µ1µ2

r2
1 r

2
2

)k/2[
Uk

(
x

2

)
+

(
λ2µ2

λ1µ1

)1/2

Uk−1

(
x

2

)]

− µ2

r1

(
s+

λ2 +µ1

r2

)(
λ1λ2µ1µ2

r2
1 r

2
2

)(k−1)/2

Uk−1

(
x

2

)
,

(3.34)

where

x = 2



(
r1s+ λ1 +µ2

)(
r2s+ λ2 +µ1

)
− λ1µ1− λ2µ2√

λ1λ2µ1µ2


 (3.35)

and Uk(x) is the Chebyshev polynomial of the second kind. Similarly, B2k+1(s) can also be

expressed as

B2k+1(s)=
(
s+

λ1 +µ2

r1

)(
λ1λ2µ1µ2

r2
1 r

2
2

)k/2
Uk

(
x

2

)

− µ2

r1

(
λ1λ2µ1µ2

r2
1 r

2
2

)k/2[
Uk

(
x

2

)
+

(
λ1µ1

λ2µ2

)1/2

Uk−1

(
x

2

)]
.

(3.36)
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Further,

c j0 =




(
µ1µ2

r1r2

)k
if j = 2k,

µ1

r1

(
µ1µ2

r1r2

)k
if j = 2k+ 1.

(3.37)

Having determined B j(s) and the roots of R−1QT explicitly, the constants kl, and hence

the buffer occupancy distributions, are obtained using (3.10) and (3.14).

Remark 3.4. From the above discussion, we observe that, without loss of generality, r1 and

r2 can be taken as −1 and +1, respectively. This is because the solution remains unaltered

when λ1 (µ2) and λ2 (µ1) are replaced by −λ1r1 (−µ2r1) and λ2r2 (µ1r2), respectively.

4. Infinite state space

In the previous section, we discussed the fluid queue model on a finite state space with

alternating positive and negative flow rates. Similar analysis on an infinite state space

does not lead to explicit expression for the buffer content distribution. Hence we analyze

the fluid queue driven by an infinite state BDP with a single negative effective flow rate,

say r0 (< 0). We employ the continued fraction methodology to obtain the stationary

distribution of the content of the buffer. Let F j(t,u) represent the probability that there

are j units in the system and the content of the buffer does not exceed u at time t, and let

F̂ j(t,s) denote the corresponding Laplace transform. If limt→∞F j(t,u) = F j(u), then the

governing system of differential-difference equations is

r0F
′
0(u)=−λ0F0(u) +µ1F1(u),

r jF
′
j(u)= λ j−1F j−1(u)−

(
λ j +µ j

)
F j(u) +µ j+1F j+1(u), j = 1,2, . . . .

(4.1)

Using the initial condition F0(0)= a, the Laplace transform of (4.1) yields

F̂0(s)= a

s+
λ0

r0
−
µ1

r0

F̂1(s)

F̂0(s)

,

F̂ j(s)

F̂ j−1(s)
=

λ j−1

r j

s+
λ j +µ j

r j
−
µ j+1

r j

F̂ j+1(s)

F̂ j(s)

, j = 1,2,3, . . . .

(4.2)



P. R. Parthasarathy et al. 483

This leads to the continued fractions

F̂0(s)=
a

s+
λ0

r0
−

λ0µ1

r0r1

s+
λ1 +µ1

r1
−

λ1µ2

r1r2

s+
λ2 +µ2

r2
−

··· ,

F̂ j(s)

F̂ j−1(s)
=

λ j−1

r j

s+
λ j +µ j

r j
−

λ jµ j+1

r jr j+1

s+
λ j+1 +µ j+1

r j+1
−

λ j+1µ j+2

r j+1r j+2

s+
λ j+2 +µ j+2

r j+2
−

··· .

(4.3)

Define

φ j(s) :=

λ j−1

r j

s+
λ j +µ j

r j
−

λ jµ j+1

r jr j+1

s+
λ j+1 +µ j+1

r j+1
−

λ j+1µ j+2

r j+1r j+2

s+
λ j+2 +µ j+2

r j+2
−

··· . (4.4)

Then,

F̂0(s)= a

s+
λ0

r0
−
µ1

r0
φ1(s)

,
F̂ j(s)

F̂ j−1(s)
= φ j(s). (4.5)

After certain algebra, we obtain

F̂0(s)= a
∞∑

k=0

(
µ1

r0

)k (
φ1(s)

)k
(
s+

λ0

r0

)k+1
,

F̂ j(s)=



j∏

k=1

φk(s)


 F̂0(s), j = 1,2,3, . . . .

(4.6)

On inversion, we get

F0(u)= a
∞∑

k=0

(
µ1

r0

)k(uke−(λ0/r0)u

k!

)
∗φ∗(k)

1 (u),

F j(u)= φ1(u)∗φ2(u)∗···∗φ j(u)∗F0(u), j = 1,2,3, . . . .

(4.7)

In the following argument we consider a specific nature of birth and death rates.
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· · ·
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1
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0

Figure 4.1. State-transition diagram of the background Markov process.

Example 4.1. Consider a fluid queue driven by an M/M/1 queue with two alternating

arrival rates and two alternating service rates as shown in Figure 4.1.

We assume the net input rate of fluid to be r0 < 0, r2 j = r1 > 0 for j = 1,2,3, . . . and

r2 j+1 = r2 > 0 for j = 0,1,2, . . . . The steady state probabilities are given by (3.25) with

p0 = (µ1µ2 − λ1λ2)/µ2(λ1 + µ1). From (2.3), the condition µ1(r0 + r1) + λ1r2 < 0 ensures

the stability of the process {(X(t),C(t)), t ≥ 0}. For the model under consideration,

φ j(s)=



f (s), if j is odd,

g(s), if j is even,
(4.8)

where

f (s)=

λ1

r2

s+
λ2 +µ1

r2
−

λ2µ2

r1r2

s+
λ1 +µ2

r1
−

λ1µ1

r1r2

s+
λ2 +µ1

r2
−

···

=
λ1

r2s+ λ2 +µ1−
λ2µ2

r1s+ λ1 +µ2−µ1 f (s)

.

(4.9)

Or

µ1

(
r2s+ λ2 +µ1

)(
f (s)

)2

−
[(
r1s+ λ1 +µ2

)(
r2s+ λ2 +µ1

)
− λ2µ2 + λ1µ1

]
f (s) + λ1

(
r1s+ λ1 +µ2

)
= 0.

(4.10)

Using Rouches theorem, considering the root that lies inside the unit circle, we get

f (s)= 1

2µ1

(
r2s+ λ2 +µ1

)
[(
r1s+ λ1 +µ2

)(
r2s+ λ2 +µ1

)
+ λ1µ1− λ2µ2

+
([(

r1s+ λ1 +µ2

)(
r2s+ λ2 +µ1

)
+ λ2µ2− λ1µ1

]2

− 4λ1µ1

(
r1s+ λ1 +µ2

)(
r2s+ λ2 +µ1

))1/2
]
.

(4.11)
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g(s) is obtained from f (s) by interchanging r1 and r2, λ1 and λ2, and µ1 and µ2. The

expression for f (s) can be written as

f (s)=
r1r2

[
(s+ a)2− b2

]
−
√
r2

1 r
2
2

(
(s+ a)2− b2

)2− 4λ1µ1r1r2

(
(s+ a)2− c2

)

2µ1r2

(
(s+ a)− c

) , (4.12)

where

a= 1

2

(
λ1 +µ2

r1
+
λ2 +µ1

r2

)
,

b2 = a2−
(
λ1λ2 +µ1µ2 + 2λ1µ1

r1r2

)
,

c = 1

2

(
λ1 +µ2

r1
− λ2 +µ1

r2

)
.

(4.13)

On inversion, we get

f (u)= 2

(
λ1

r2

)
e−au

{
f2(u)∗

∞∑
n=0

(−1)n
n∑

k=0

(n/2)(n/2− 1)···(n/2− k+ 1)

k!
f ∗(k)
3 (u)

}
,

(4.14)

where

f3(u)=
(

4λ1µ1

r1r2

)(
f1(u)∗ f2(u)

)
,

f1(u)= coshbu+
c

b
sinhbu,

f2(u)= coshbu− c

b
sinhbu,

(4.15)

and h∗(k)(u) is the k-fold convolution of h(u) with itself. Also, from (4.5),

F̂2k+1(s)

F̂2k(s)
= f (s),

F̂2k(s)

F̂2k−1(s)
= g(s), (4.16)

which on solving yield

F̂2k+1(s)=
(
f (s)

)k+1(
g(s)

)k
F̂0(s),

F̂2k(s)=
(
f (s)

)k(
g(s)

)k
F̂0(s).

(4.17)
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Figure 5.1. Buffer content distribution on a finite state space with N = 21, r1 =−1, and r2 = 1.

On inversion

F2k+1(u)= f ∗(k+1)(u)∗ g∗(k)(u)∗F0(u), k = 0,1,2, . . . ,

F2k(u)= f ∗(k)(u)∗ g∗(k)(u)∗F0(u), k = 1,2,3, . . . ,
(4.18)

where F0(u) is obtained from (4.7) as

F0(u)= a
∞∑

k=0

(
µ1

r0

)k(uke−(λ0/r0)u

k!

)
∗ f ∗(k)(u). (4.19)

5. Numerical illustrations

In this section, we provide numerical examples for the fluid queue driven by the finite

and infinite queuing model discussed in the earlier sections.

In Figure 5.1 the buffer overflow probability corresponding to the varying values of

the parameters λ1, λ2, µ1, and µ2 is plotted against buffer size for finite state space with

N = 21, r1 = −1, and r2 = 1 (see Remark 3.4). The overflow probabilities are found to

decrease rapidly with increase in µ1. The graphs are plotted for two sets of parameters by

considering the three different cases wherein the ratio λ2/µ2 is equal to one, less than one,

and greater then one, respectively.

Figure 5.2 depicts an analogous setting on an infinite state space with N truncated at

25, r0 =−1, and ri = 1 for i≥ 1. For constant values of λ1 and λ2, the overflow probabili-

ties decrease rapidly with increase in µ1. The overflow probability is in the range of 10−10

to 10−15 and hence becomes a rare event.
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Figure 5.2. Buffer content distribution on an infinite state space with N truncated at 25, r0 =−1, and

r1 = 1= r2.

Appendix

Some identities of tridiagonal determinants

Here we give some identities of tridiagonal determinants (Muir [4]), which are useful in

determining the stationary buffer content distribution of the model under consideration.

Identity A.1.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A+ a0 a0

b1 A+ a1 + b1

. . .

A+ an−1 + bn−1 an−1

bn A+ bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n+1

= A×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 b1

a1 g2 b2

. . .

an−2 gn−1 bn−1

an−1 gn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n

,

(A.1)

where g j =A+ a j−1 + b j , j = 1,2, . . . ,n.
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Identity A.2.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ1 d1

−1 φ d2

−1 θ2 d3

. . .

−1 φ d2n−2

−1 θn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n−1

= 1

φ
×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 d1

d2 γ2 d3

d4 γ3 d5

. . .

d2n−4 γn−1 d2n−3

d2n−2 γn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n

,

(A.2)

where γ j = d2 j−2 + θ jφ+d2 j−1, j = 1,2, . . . ,n, with d0 = 0 and d2n−1 = 0.

Identity A.3.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

A a

b A a

. . .

b A a

b A

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=
n∏

j=1

(
A− 2

√
abcos

(
jπ

n+ 1

))
=
(√

ab
)n
Un

(
A√
ab

)
.

(A.3)

Identity A.4.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θ1 d1

−1 φ d2

−1 θ2 d3

. . .

−1 θn d2n−1

−1 φ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1 d1

d2 γ2 d3

d4 γ3 d5

. . .

d2n−4 γn−1 d2n−3

d2n−2 γn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n

, (A.4)

where γ j = d2 j−2 + θ jφ+d2 j−1, j = 1,2, . . . ,n, with d0 = 0.
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