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Fluid Structure Interaction Problems: the Necessity

of a Well Posed, Stable and Accurate Formulation

Jan Nordström1,2,3,∗and Sofia Eriksson3

1 School of Mechanical, Industrial and Aeronautical Engineering, University of the
Witvatersrand, Johannesburg, WITS 2050, South Africa
2 Department of Aeronautics and Systems Integration, FOI, The Swedish Defense
Research Agency, SE-164 90 Stockholm, Sweden
3 Department of Information Technology, Divison of Scientific Computing, Uppsala
University, SE-751 05 Uppsala, Sweden

Abstract. We investigate problems of fluid structure interaction type and aim for a
formulation that leads to a well posed problem and a stable numerical procedure. Our
first objective is to investigate if the generally accepted formulations of the fluid struc-
ture interaction problem are the only possible ones.
Our second objective is to derive a stable numerical coupling. To accomplish that we
will use a weak coupling procedure and employ summation-by-parts operators and
penalty terms. We compare the weak coupling with other common procedures. We
also study the effect of high order accurate schemes.
In multiple dimensions this is a formidable task and we start by investigating the sim-
plest possible model problem available. As a flow model we use the linearized Euler
equations in one dimension and as the structure model we consider a spring.

AMS subject classifications: 65M12, 65M06,65M30,65M20,74F10,35Q35

Key words: fluid structure interaction, well posed, finite difference, high accuracy, stability

1 Introduction

Fluid structure interaction (FSI) problems occur in many different areas including aero-
dynamics ( [2], [4], [8]), acoustics ( [3], [7], [24]) and medicine ( [9], [12], [15], [14]). The
specific FSI phenomenon called aerodynamic flutter is very dangerous and can cause ac-
cidents. It deserves attention in its own right, but it is also an example of a problem where
most of the activity is due to the interaction between two separate physical problems.

Unless the coupling between these two problems is well posed and stable, either un-
physical growth or damping can occur. (Some formulations try to avoid or decrease the

∗Corresponding author. Email addresses: Jan.Nordstrom@it.uu.se (J. Nordström)
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Figure 1: A one-dimensional flow problem interacting with a spring.

coupling problem, see for example [10]). The unphysical growth could result in expen-
sive counter measures while the unphysical damping can provide a false sense of safety.
We will investigate well-posedness and stability in detail and due to the complexity, we
will start in one dimension and focus on the spatial problem.

First we investigate if the generally accepted formulation of the FSI problem is the
only possible one (uniqueness) and such that it does not generate artificial energy growth.
In short we will make sure that the coupling is well posed (see [11] for various concepts
of well-posedness). Next, given that the problem is well posed, we will make sure that
the numerical approximation is accurate and stable. We will study both the linear and
non-linear problem.

The rest of the paper proceeds as follows. In section 2 we formulate the problem
mathematically. Section 3 deals with the linear problem and well-posedness while the
non-linear problem is discussed in section 4. In section 5 we construct stable approxima-
tions for the linear semi-discrete approximation and describe the non-linear approxima-
tion. Section 6 presents the numerical experiments and conclusions are drawn in section
7.

2 Mathematical formulation

Our model problem is schematically depicted in Figure 1. The flow part to the left of
x1(t) influence the structural part to the right and vice versa. The governing equations
for the flow problem are the symmetric and linearized Euler equations in one dimension

Ut+AUx =0, 0≤ x≤ x1(t) (2.1)

where

A=









ū c̄/
√

γ 0

c̄/
√

γ ū c̄
√

γ−1
γ

0 c̄
√

γ−1
γ ū









, U =





U1

U2

U3



=





c̄2ρ/
√

γ

c̄ρ̄u

ρ̄T/
√

γ(γ−1)M4
∞



. (2.2)

In (2.2), ρ, u and T represents the perturbation from the mean value of the density (ρ̄),
velocity (ū) and temperature (T̄) respectively. Furthermore, c̄,M∞ and γ stands for the
speed of sound at reference state, the Mach number at reference state and the ratio of
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specific heats. The equation of state is p = c̄2ρ/γ+ ρ̄T/(γM2
∞). For more details on how

to obtain (2.1),(2.2), see [1], [19].

To simplify the analysis we transform equation (2.1) to a fixed domain using ξ =x/x1

and τ = t. We get

x1(τ)Uτ +(A−ξ ẋ1)Uξ =0 0≤ ξ≤1. (2.3)

The structural model, the spring equation, is given by

m∆̈x+b∆̇x+k∆x= f (U) (2.4)

where ∆x = x1(t)−xE, xE = 1 being the equilibrium position of the spring. m > 0 is the
mass of the ”surface” of the spring, b≥ 0 is the damping friction coefficient and k > 0 is
the spring constant. f (U) is the net external force imposed by the flow. Let V =[V1V2]T =
[∆x ẋ1]

T and rewrite (2.4) on first order system form as

MVt+KV = F(U) (2.5)

where

M=

[

k 0
0 m

]

, K =

[

0 −k
k b

]

, F=

[

0
f

]

. (2.6)

Equation (2.5) governs the structural part of the FSI problem.

Equations (2.3) and (2.5) must be coupled in order to describe the FSI problem cor-
rectly. One of the coupling terms is the forcing function F(U) in (2.5). The other is the
boundary condition for the flow equation (2.3) at ξ =1 which we formulate as

BU =GV. (2.7)

The final form of the non-linear problem in terms of the dependent variables U and V
(and changing notation from τ to t) are

(1+V1)Ut+(A−ξV2)Uξ = 0, 0≤ ξ≤1,

MVt+KV = F(U), ξ =1 (2.8)

BU = GV. ξ =1

The problem (2.8) describes the coupling problem with the unknown forcing function
F(U) and coupling condition BU = GV. Boundary conditions at the left boundary and
initial conditions must also be supplied. The linearized version of (2.8) is obtained by
letting V1 =V2 =0 in the first equation.

We will consider both the linear and non-linear version of (2.8). The two versions
differ at the right boundary where the coupling occurs but require the same treatment at
the left boundary.
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2.1 Well posed problems

We will use the energy method as our main analysis tool and derive an equation for the
energy-rate. We will give well posed boundary conditions at the left boundary but really
focus on the interface coupling at the right boundary. At that boundary no external data is
provided and for that reason, the following definition for well-posedness is appropriate.

Definition 2.1. The continuous problem (2.8) with homogeneous boundary conditions at
the left boundary is well posed if a minimal number of boundary and coupling conditions
are used and

d

dt
‖W‖2

2≤0, (2.9)

where W = (U,V)T and ‖W‖2
2 =

∫ 1
0 WTWdξ. The equality sign can only be valid if the

damping in the structure problem is zero (b=0).

Remark 2.1. Definition 2.1 does not allow for temporal solution growth, as would be
necessary in order to bound arbitrary source terms, boundary data and non-linear terms.
However, the only source of growth (both in the linear and non-linear case) in (2.8) is the
coupling procedure at the interface. Our definition is therefore well suited for establish-
ing well posedness of the coupling procedure, our primary goal. See [5] for a similar use
of this definition.

Remark 2.2. Note that time integration of (2.9) leads to an estimate of the solution in
terms of initial data and leads to the standard form of well posedness where the boundary
data and forcing functions are assumed zero. See [11] for a discussion of various versions
of well posedness.

Remark 2.3. The inequality (2.9) implies that the spatial operator in (2.8) is semi-bounded,
see [11] for a discussion on semi-boundedness.

2.2 Well posed boundary condition at the left boundary

We use the energy method on the linear version of the first equation in (2.8) to arrive at
the estimate

d

dt
‖U‖2

2 =−UT AU|ξ=1
ξ=0 =−

(

c̄
(uρ̄c̄+p)2

2
− c̄

(uρ̄c̄−p)2

2

)

|ξ=1
ξ=0 =−2c̄2ρ̄up|ξ=1

ξ=0. (2.10)

We have used ‖U‖2
2=

∫ 1
0 UTUdξ, ū=0 (zero mean flow) and p= c̄2ρ/γ+ρ̄T/(γM2

∞). Con-
sider the left boundary at ξ = 0. In general, a set of well posed boundary conditions are
obtained by specifying the ingoing characteristic variable as a function of the outgoing
variables and data on the boundary. In this case we use

(uρ̄c̄+p)=α(uρ̄c̄−p)+g(t). (2.11)
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which in the other variables become

LU = g(t), L=

[

(1+α)

√

1

γ
,(1−α),(1+α)

√

γ−1

γ

]

. (2.12)

With g(t)=0 we obtain UT AU|ξ=0=(α2−1)c̄(uρ̄c̄−p)2/2|ξ=0 which implies that −1≤
α≤1 to obtain a non-positive contribution in line with Definition 2.1 . The most appealing
choices of α is 0,−1 and +1, since that corresponds to giving boundary data to uρ̄c̄+p, u
and p respectively.

3 The linear problem and well-posedness

We will derive the coupling conditions at the right boundary for the linear problem in
two distinctly different ways and start with the more conventional technique.

3.1 Physical coupling approach at the right boundary

The flow is adjacent to the spring which means that the velocity of the flow is equal to the
velocity of the spring, i.e. u(1,t)= ẋ1. The external force from the flow onto the spring is
ap1, where a is the surface size (for simplicity we use a=1) and p1 is the pressure at ξ =1.
In summary the coupling conditions derived by physical reasoning are

u(1,t)= ẋ1, f = p(1,t). (3.1)

To make sure that the conditions in (3.1) are reasonable we must investigate well-posedness.
If we multiply the second equation in (2.8) by VT we obtain

d

dt
‖V‖2

1 =2V2 f −2bV2
2 , (3.2)

where ‖V‖2
1 = kV2

1 +mV2
2 . A linear combination of the estimates (2.10) and (3.2), the cou-

pling (3.1), and ignoring terms at ξ =0 leads to,

d

dt
(‖U‖2

2+δ‖V‖2
1)=−UT AU|ξ=1+δ(2V2 f −2bV2

2 )=2ẋ1 p1(−2c̄2ρ̄+δ)−2δbẋ2
1. (3.3)

With 2c̄2ρ̄=δ we cancel the indefinite term and arrive at a well posed coupling.

3.2 Mathematical coupling approach at the right boundary

In this section we will replace the specific physical coupling assumption (3.1) and only
assume that the coupling conditions are linear relations, i.e.

f (U)=αTU, αT =[α1,α2,α3], (3.4)
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BU = βTU =GV =γTV, βT =[β1,β2,β3], γT =[γ1,γ2]. (3.5)

Our objective is to see if we automatically arrive at the correct coupling conditions by
demanding well-posedness.

The energy-method applied to the linear version of (2.8), ignoring terms at ξ =0 and
a linear combination of the results lead to

d

dt
(‖U‖2

2+δ‖V‖2
1)=−UT AU|ξ=1+2δ( f V2−bV2

2 ). (3.6)

The absence of V1 implies that we can take γ1 = 0 and γ2 = 1. This means that we can
solve for V2 = ẋ1 in terms of U and arrive at

d

dt
(‖U‖2

2+δ‖V‖2
1)=−UT[A−δ(βαT +αβT)]U−2δbUT ββTU. (3.7)

For zero damping (b = 0) in the system, the symmetric matrix [A−δ(βαT +αβT)] must
vanish for well-posedness. We have the condition









−2δα1β1 c̄/
√

γ−δ(α1β2+α2β1) −δ(α1β3+α3β1)

c̄/
√

γ−δ(α1β2+α2β1) −2δα2β2 c̄
√

γ−1
γ −δ(α2β3+α3β2)

−δ(α1β3+α3β1) c̄
√

γ−1
γ −δ(α2β3+α3β2) −2δα3β3









=0.

By inspection we find that the boundary matrix [A−δ(βαT +αβT)] vanish for

α2 = β1 = β3 =0, α1 =
1

δβ2

c̄√
γ

, α3 =
1

δβ2
c̄

√

γ−1

γ
(3.8)

or

β2 =α1 =α3 =0, β1 =
1

δα2

c̄√
γ

, β3 =
1

δα2
c̄

√

γ−1

γ
. (3.9)

The relations in (3.8) and (3.9) lead to the following two alternative forms of coupling
conditions

ẋ1 =(β2ρ̄c̄)u, f =(
c̄

δβ2
)p or ẋ1 =(α2ρ̄c̄)p, f =(

c̄

δα2
)u. (3.10)

The two relations in (3.10) are obtained without any physical knowledge at all.
To sort out the correct formulation we must add the requirement that the fluid is

adjacent to the spring i.e. u = ẋ1. That condition removes the second set of conditions in
(3.9) and leads to the scaling β2 =1/(ρ̄c̄). The choice δ= ρ̄c̄2 yield f = p.

Both the physical and mathematical coupling approach lead to the following formu-
lation for the relations f (U) and BU =GV in terms of the matrices αT,βT and γT as,

f (U)=αTU, αT =

[
√

1

γ
,0,

√

γ−1

γ

]

, B= βT =

[

0,
1

ρ̄c̄
,0

]

, G=γT =[0,1]. (3.11)
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We summarize the result so far for the linear problem (2.8) in the following proposi-
tion.

Proposition 3.1. The linearized version of (2.8) (obtained by letting V1 =V2 =0 in the first
equation) combined with the boundary condition (2.11),(2.12) and the coupling condition
(3.1),(3.11) is well posed in the sense of Definition 2.1

Remark 3.1. To arrive at the correct coupling condition (3.1), (3.11) by only demanding
well-posedness was not possible. That lead to two possible versions of coupling condi-
tions in (3.9). The physical condition u = ẋ1 (which can be seen as an accuracy require-
ment) had to be imposed in order to sort out the correct version.

Remark 3.2. The left boundary condition (2.11),(2.12) lead to a dissipative boundary
treatment and a well posed problem in the sense of Definition 2.1. Other types of bound-
ary conditions that do not lead to a norm decay are possible, and might lead to a well
posed problem in some other sense.

3.3 The continuous spectrum

In the linear setting with ū = 0 the system (2.1) have one zero eigenvalue and we can
reduce our problem to a 2×2-system where ρ and T are linearly dependent. We get
c̄2(γ−1)M2

∞ρ− ρ̄T = constant. To simplify further we will keep a linear combination of
them, namely the pressure p. We get the reduced system

Wt+

(

0 c̄
c̄ 0

)

Wx =0, W =

(

uρ̄c̄
p

)

, (3.12)

which on diagonal form becomes

wt+Λwx =0, w=
1√
2

[

uρ̄c̄−p
uρ̄c̄+p

]

, Λ=

[

−c̄ 0
0 c̄

]

. (3.13)

By Laplace transforming (3.13) we obtain sŵ+Λŵx = 0. The Ansatz: ŵ = Ψeλx leads
to (sI+λΛ)Ψ = 0. A non-trivial solution yields λ1,2 =±s/c̄, Ψ1 = [1 0]T, Ψ2 = [0 1]T and
finally

ŵ=σ1Ψ1eλ1x+σ2Ψ2eλ2x =
(

σ1e+sx/c̄,σ2e−sx/c̄
)T

. (3.14)

The coefficients σ1 and σ2 will be determined by the boundary conditions.
At the left boundary we consider the boundary condition (2.11) with α = +1,−1,0

respectively. That leads to
√

2p̂|0 =ŵ2|0−ŵ1|0 =σ2−σ1 =ĝ1 (3.15)
√

2ρ̄c̄û|0 =ŵ2|0+ŵ1|0 =σ2+σ1 =ĝ2 (3.16)

(ρ̄c̄û|0+ p̂|0)/
√

2=ŵ2|0 =σ2 =ĝ3 (3.17)
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At the right boundary we specify the velocity (required for well-posedness), hence
√

2ρ̄c̄û|1 = ŵ2|1+ŵ1|1 =σ2e−s/c̄+σ1es/c̄ = ĝ4 =
√

2ρ̄c̄V̂2 (3.18)

The data g4 is obtained from the the structural part which we consider next.
The Laplace transform of (2.5) yields

sV̂+

[

0 −1
k/m b/m

]

V̂ =

[

0
p̂|1/m

]

⇒ V̂ =
p̂|1

ms2+bs+k

[

1
s

]

. (3.19)

The boundary conditions (3.18) now yields

s(ŵ2|1−ŵ1|1)√
2(ms2+bs+k)

=
ŵ2|1+ŵ1|1√

2ρ̄c̄
⇒ ŵ1|1(1+ϕ)+ŵ2|1(1−ϕ)=0, (3.20)

where ϕ(s)= ρ̄c̄s/(ms2+bs+k) and ŵ1|1 =σ1es/c̄ and ŵ2|1 =σ2e−s/c̄.
The linear equations system for determining the coefficients σ1 and σ2 can formally

be written
C(s)σ= ĝ (3.21)

where

C(s)=

[ −α 1

(1+ϕ)es/c̄ (1−ϕ)e−s/c̄

]

, σ=

[

σ1

σ2

]

, g=

[

ĝi

0

]

. (3.22)

A unique solution is obtained for

|C(s)|=−(es/c̄(1+ϕ)+e−s/c̄α(1−ϕ)) 6=0. (3.23)

The s values that lead to a singular matrix C(s) gives the spectrum or the eigenvalues of
the problem. The value of α = 1 corresponds to giving data to p, α =−1 to u and α = 0
to ρ̄c̄u+p. If the damping of the system is zero (b = 0) and data is given to either u or
p, then all eigenvalues will be on the imaginary axis. Each eigenvalue correspond to an
eigenfrequency of the coupled system.

4 The non-linear problem and well-posedness

The full non-linear representation of the flow system is given by (2.3) or equivalently the
first equation in (2.8) . The energy method gives

d

dt

(

(1+V1)‖U‖2
2

)

=−UT (A−V2 I3)U|ξ=1+UT AU|ξ=0. (4.1)

In comparison with the linear case, the norm is slightly modified and at the interface
between the fluid and the spring, an additional term V2UTU|ξ=1 is added on. The condi-
tions at the left boundary is the same as in the linear case. The term V2UTU|ξ=1 is indef-
inite since V2 changes sign. This means that the non-linear problem is not well-posed in
the sense of Definition 2.1. We summarize this as follows.
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Proposition 4.1. The non-linear problem (2.8) combined with the boundary condition
(2.11),(2.12) and the coupling condition (3.1),(3.11) is not well posed in the sense of Defi-
nition 2.1.

Remark 4.1. Note that we do not claim that the non-linear problem (2.8) is ill-posed. It
does not satisfy the requirements in Definition 2.1 and hence it is not well posed in that
sense. However, it might be well posed in some other sense.

5 The semi-discrete approximation and stability

We will do numerical calculations using both the linear and the non-linear equations.
For both cases we will use the linear coupling treatment developed above. With a slight
abuse of notation we use U,V both for the continuous and discrete vectors.

5.1 The semi-discrete linear formulation

The discrete version of the linearized flow equation in (2.8) with the boundary and inter-
face conditions (2.11),(2.12) (3.1),(3.11) imposed as penalty terms is written as

Ut+(P−1Q⊗A)U =(P−1E0⊗Π)(U−G0)+(P−1EN⊗Σ)(U−GN). (5.1)

The grid in (5.1) consist of N+1 equidistant grid points and the solution is organized as
U =(U0,U1,..,Ui,..,UN−1,UN)T with Ui =(U1,U2,U3)i.

We have used a summation-by-parts (SBP) difference operator P−1Q (see [13], [23])
and imposed the boundary conditions weakly using the SAT technique [6]. The SBP
difference operators satisfy the relations

P= PT
>0, Q+QT = EN−E0 =diag(−1,0,...0,1), (5.2)

and hence they mimic integration by parts perfectly. More details on the weak imposition
of boundary and interface conditions using the SAT technique will be given below. For a
read-up on this technique see [6], [17], [21], [22].

The left penalty term on the right-hand side of (5.1) is connected to the left continuous
boundary condition (LU = g) by the following relations.

(P−1E0⊗Π)(U−G0)=(P−1e0⊗τ0)(eT
0 ⊗L)(U−G0)=(P−1e0⊗τ0)(LU0−g). (5.3)

The boundary condition at the utmost right in (5.3) is defined in (2.12), e0 =(1,0,..0,0)T,
e0eT

0 = E0, Π = τ0L, G0 = (g0,0,...,0)T,g0 = (g0,g1,g2)T and g = Lg0. The penalty matrix
Π has an undefined component τ0 = (τ0

1 ,τ0
2 ,τ0

3 ) which will be determined by stability
requirements.

The right penalty term on the right-hand side of (5.1) is connected to the right contin-
uous interface condition (BU =GV) by the following relations.

(P−1EN⊗Σ)(U−GN)=(P−1eN⊗τN)(eT
N⊗B)(U−GN)=(P−1eN⊗τN)(BUN−GV). (5.4)
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The interface condition at the utmost right in (5.4) is defined in (3.11), eN = (0,0,..0,1)T,
eNeT

N = EN , Σ=τN B, GN =(0,0,...,0,gN)T, GV = BgN =V2 and gN =(U1
N ,ρ̄c̄V2,U3

N)T . The
penalty matrix Σ has an undefined component τN = (τN

1 ,τN
2 ,τN

3 ) which will be deter-
mined by stability requirements.

By multiplying (5.1) with UT(P⊗ I3) from the left, adding the transpose and using the
relation (5.2) we obtain

d

dt
‖U‖2

P̄+UT((−E0+EN)⊗A)U =2UT
0 Π(U0−g0)+2UT

NΣ(UN−gN), (5.5)

where ‖U‖2
P̄
= UT P̄U. For convenience we have introduced the notation P̄ = P⊗ I3. By

adding the estimate for the structure part using the same scaling δ as in the continuous
case we find

d

dt
(‖U‖2

P̄+δ‖V‖2
1)=UT

0 AU0+2UT
0 Π(U0−g0)

−UT
N AUN +2UT

NΣ(UN−gN)+2δ f V2−2δbV2
2 . (5.6)

5.2 The semi-discrete non-linear formulation

In the non-linear discrete case we have an additional matrix operator Ξ which models
the impact of the coordinate ξ. Since the matrices Q and Ξ do not commute we must split
the derivative terms in a symmetric and skew-symmetric part, see [20] for more details.
Consider the first equation in (2.8). We split the term as

ξUξ =(ξUξ)/2+((ξU)ξ−U)/2, (5.7)

and use the following discrete representations

AUξ ∼ (P−1Q⊗A)U, ξUξ ∼ (ΞP−1Q⊗ I3)U, (ξU)ξ ∼ (P−1QΞ⊗ I3)U.

We have used ξ∼Ξ=diag(0 1/N 2/N ··· 1). The semi-discrete version of the non-linear
flow equation in (2.8) is written as

(1+V1)Ut + (P−1Q⊗A)U−V2

(

(ΞP−1Q⊗ I3)+(P−1QΞ⊗ I3)−(IN⊗ I3)
)

U/2

= (P−1E0⊗Π)(U−G0)+(P−1EN⊗Σ)(U−GN). (5.8)

The energy rate is given by multiplying (5.8) from the left by UT(P⊗ I3), adding the
transpose, using (5.2), adding the spring estimate and observing that (1+V1)t = V2. We
have

d

dt

(

(1+V1)‖U‖2
P̄+δ‖V‖2

1

)

=UT
0 AU0+2UT

0 Π(U0−g0) (5.9)

−UT
N(A−V2 I3)UN +2UT

NΣ(UN−gN)+2δ f V2−2δbV2
2 .

The difference between the linear (5.6) and non-linear (5.9) estimates is the form of the
norm and the additional term V2UT

NUN (the same difference as in the continuous case).



11

5.3 Stability

We will define stability in a similar manner as we defined well posedness for the contin-
uous problem. We focus on the interface coupling at the right boundary (even though
the imposition of the boundary conditions at the left boundary are also considered). At
that interface no external data is provided and for that reason, the following definition of
stability is appropriate.

Definition 5.1. Consider the linear (5.1) and non-linear (5.8) numerical approximations
of the problem (2.8) with homogeneous boundary conditions at the left boundary. These
approximations are stable if

d

dt
‖W‖2

3≤0, (5.10)

where W =(U,V)T. In the linear case, see (5.6), we have the norm ‖W‖2
3 =‖U‖2

P̄
+δ‖V‖2

1.

The norm in the non-linear case, see (5.9), is ‖W‖2
3 =(1+V1)‖U‖2

P̄
+δ‖V‖2

1.

Remark 5.1. Just as in the continuous case (see Remark 2.1), Definition 5.1 does not allow
for a general temporal solution growth but is well suited for establishing stability of the
coupling procedure. See [5] for a similar use of this definition.

Remark 5.2. Time integration of (5.10) leads to an estimate of the solution in terms of
initial data and the standard form of stability. See Remark 2.2 and [11] for a discussion
of various stability concepts.

Remark 5.3. The inequality (5.10) implies that the spatial operator in (2.8) is semi-bounded,
see Remark 2.3 and [11] for a discussion on semi-boundedness.

5.4 A stable left boundary procedure

Consider the boundary terms (BT) of (5.6) at ξ=0 and the boundary condition (2.11),(2.12).
By assuming that g(t)=0 we obtain,

BT =UT(A+Π+Π
T)U, Π=τ0L=





τ0
1 L1 τ0

1 L2 τ0
1 L3

τ0
2 L1 τ0

2 L2 τ0
2 L3

τ0
3 L1 τ0

3 L2 τ0
3 L3



.

Recall that the boundary operator L = (L1,L2,L3) is a function of the parameter α, see
(2.12), which lead to well posedness if −1≤ α≤+1. Recall also that α =−1,0,+1 corre-
sponds to giving boundary data to uρ̄c̄+p, u and p respectively.

The specific choices of α together with the requirement that BT must be negative
semi-definite lead to the following three penalty coefficients,

τ0
u =

c̄

2







− 1√
γ

τ

−
√

γ−1
γ






, τ0

p =
c̄

2







τ 1√
γ

−1

τ
√

γ−1
γ






, τ0

ρ̄c̄u+p =τc̄







1√
γ

1
√

γ−1
γ






. (5.11)
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For stability reasons, the semi-bounded parameter τ in (5.11) has to be negative semi-
definite for τ0

u ,τ0
p and less than −1/4 for τ0

ρ̄c̄u+p.
The penalty coefficients in (5.11) above lead to the following three penalty matrices,

Πu = c̄







0 − 1√
γ 0

0 τ 0

0 −
√

γ−1
γ 0






, Πp = c̄









τ 1
γ 0 τ

√
γ−1
γ

− 1√
γ 0 −

√

γ−1
γ

τ
√

γ−1
γ 0 τ γ−1

γ









, τ≤0 (5.12)

Πρ̄c̄u+p = τc̄











1
γ

1√
γ

√
γ−1
γ

1√
γ 1

√

γ−1
γ√

γ−1
γ

√

γ−1
γ

γ−1
γ











, τ≤−1

4
. (5.13)

The penalty matrices in (5.12) and (5.13) lead to a stable left boundary treatment for both
the linear and non-linear case. The choice of τ on the stability borders (0 for (5.12) and
−1/4 for (5.13)) give a minimal numerical damping.

5.5 A stable right boundary procedure for the linear case

Consider the coupling terms (CT) at the right boundary where ξ =1. We have

CT =−UT
N AUN +2UT

NΣ(UN−gN)+2ρ̄c̄2 f V2−2ρ̄c̄2bV2
2 .

The coupling conditions f = pN , gN =(U1
N ,ρ̄c̄V2,U3

N)T, Σ=τN B and zero damping (b=0)
leads to

CT = −2ρ̄c̄2uN pN +2UT
N





0 τN
1 /ρ̄c̄ 0

0 τN
2 /ρ̄c̄ 0

0 τN
3 /ρ̄c̄ 0









0
(U2)N− ρ̄c̄V2

0



+2ρ̄c̄2V2 pN

= 2(uN−V2)(−ρ̄c̄2 pN +UT
NτN). (5.14)

Clearly, τN = ρ̄c̄2(1/
√

γ,0,
√

(γ−1)/γ)T leads to CT=0 and a stable boundary treatment
for the right boundary. The final form of Σ is

Σ=







0 c̄/
√

γ 0
0 0 0

0 c̄
√

γ−1
γ 0






. (5.15)

Remark 5.4. Note the similarity between the matrix elements in the penalty matrices
(5.12),(5.13),(5.15) and the matrix elements of A in (2.2)

Just as in the continuous case (see Theorem 3.1), we summarize the result so far for
the linear approximation in the following proposition.
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Proposition 5.1. The semi-discrete approximation (5.1) of the linear version of (2.8) is
stable in the sense of Definition 5.1 if the penalty matrices (5.12),(5.13) and (5.15) are used
to impose the boundary condition (2.11),(2.12) and the coupling condition (3.1),(3.11),
respectively.

Remark 5.5. Just as in the continuous case, see Remark 3.2, other types of less restrictive
stability definitions are of course possible.

5.6 The right boundary procedure in the non-linear case

By applying the exact same procedure (the penalty matrix in (5.15) with the same data)
for the non-linear case we obtain

CT =V2UT
NUN . (5.16)

Clearly this cannot be shown to be stable since the sign of the right-hand-side varies. We
vill investigate numerically what this means and come back to this issue.

We summarize the result so far as follows.

Proposition 5.2. The semi-discrete approximation (5.8) of the non-linear version of (2.8)
together with the the penalty matrices (5.12),(5.13) and (5.15) is not stable in the sense of
Definition 5.1.

Remark 5.6. Note that we do not claim that the approximation (5.8) of the non-linear
problem (2.8) is unstable. It does not satisfy the requirements in Definition 5.1 and hence
it is not stable in that sense. However, it might be stable in some other sense.

6 Numerical simulations

The semi-discrete FSI problem was integrated in time as a large system of ordinary dif-
ferential equation of the form yt = M(t)y+g(t), where y = [U;V] and g(t) includes the
boundary data. To integrate the system in time we used the classical 4th order Runge-
Kutta method. In the linear case, M is a constant (3N+5)×(3N+5) matrix. In the non-
linear case, M = M(t) is slightly modified. The structure of the matrix M depend on the
boundary and coupling conditions. For details, see Appendix A. In all the calculations
below we have used the parameters m=0.1, b=0, k=1, ρ̄= c̄=1,ū=0,γ=1.4.

6.1 Verification of the numerical approximation

We start by verifying that our numerical approximation (5.1) together with the second
equation in (2.8) is correct by checking it using the method of manufactured solutions.
We construct our manufactured solution such that the interface relation U2 = ρ̄c̄V2 or
equivalently, u(1,t) = ẋ1(t) is satisfied. Next we insert forcing functions that balance
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Figure 2: Convergence rates obtained using the method of manufactured solutions.

the residuals from the manufactured solutions on the right-hand-side in the equations.
Finally we compute the L2 error in time for the position V1=∆x(t), and plot it against the
number of grid points N in space. The L2 error is computed on a grid with n time levels.
As can be seen in Figure 2, the results converge with the correct orders of accuracy.

We also verify our numerical approximation by making sure that the numerical eigen-
values (or eigenfrequencies) converge to the spectrum of the continuous operator. With
the damping coefficient of the spring b being zero and specifying the pressure p at the
left boundary, the continuous spectra is purely imaginary.

In Figure 3, the eigenvalues of the linear discrete (second order accurate) operator M
are shown together with the continuous spectra. The position of the continuous eigenval-
ues s are marked as dashed lines. The numerical eigenvalues converge to the continuous
ones as the number of grid points increases (plus a number of additional purely numer-
ical eigenvalues). The eigenvalues are purely imaginary and symmetrically distributed
around the real axis (we use the penalty matrix in (5.12) for the pressure p with zero
numerical damping (τ =0)). Only the ones with positive imaginary part are shown.

The eigenvectors corresponding to the first four eigenvalues for N =16 are shown in
Figure 4. Note that the eigenvectors related to the continuous spectrum are smooth while
those related to the purely numerical (spurious) eigenvalues are highly oscillatory.

In Figures 5 and 6 we show the difference between the second, fourth and sixth order
accurate schemes when computing eigenfrequencies. The higher order ones are more
accurate and converges faster. In Figure 6 we have only kept the numerical eigenvalues
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that converge to the real eigenvalues. The purely numerical ones are removed for clarity,
cf Figure 3 where all the eigenvalues are shown.

To further check our numerical scheme we gave the spring a small displacement
(V1(0)=∆x(0)=0.1) as initial data, used the pressure boundary condition with zero data
and recorded the time history of the position x1(t) of the spring. Fourier transformation
in time gave us the frequency response in Figure 7. We used the same parameter val-
ues as above and the angular frequencies correspond to the discrete spectra. We also see
the convergence of the numerical spectrum to the continuous one in the sense that the
frequencies with high amplitudes in the numerical solution correspond to the eigenfre-
quencies of the continuous problem.

6.2 Numerical simulations in the linear case

The calculations so far has been done with the weak penalty implementation of the
boundary and interface conditions. In that case we can prove stability by energy esti-
mates as was done in sections 5.4 and 5.5 above. This is not the most common way to
implement coupling or boundary conditions. Often, so called strong implementation (or
injection) is used, see [16].

In the injection method, the values of the boundary conditions and coupling condition
are directly given to the appropriate variable. For the coupling procedure this means that
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explodes shortly after t=40 while the weak calculation remains stable. Note that π is not an eigenfrequency.

the value of the spring velocity V2 is directly given to the velocity of the flow problem as
uN =V2. With injection, specific numerical boundary conditions must also be employed
(they are pre-computed and integrated in the SBP operator). We have used extrapolation
for both the density and temperature as ρN =αρN−1+βρN−2 and TN =αTN−1+βTN−2. For
first order extrapolation we use α=1,β=0, and for second order α=2,β=−1.

The effect of the strong boundary procedure along with a stable calculation using the
weak form with SBP operators can be seen in Figure 8, where the second order extrapola-
tion has been used. At the left boundary we specify the velocity with an amplitude of 0.1
and the frequency ω = π. Note that π is not an eigenfrequency. Clearly the weak treat-
ment with SBP operators is superior. The incorrect boundary treatment for the injection
method leads to an instability that resembles and can be mistaken for flutter.

Next we study the effect of higher order schemes. High order of accuracy is especially
important when dealing with high eigenfrequencies and long time calculations. Figure
9 show that quite different results are obtained using second and fourth order accurate
methods. The second order method completely misses the long time growth that is cap-
tured by the fourth order accurate method.
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Figure 9: The second order method misses the long time growth of the high frequency mode (ω =
5.88659330731852) that is captured by the fourth order accurate method.

6.3 Numerical simulations in the non-linear case

In this section we return to the difference between the linear and non-linear version of the
equations. We start by studying the example shown in Figures 10-12. In these calculations
we have used exactly the same boundary and coupling conditions and we are feeding in
the pressure at an eigenfrequency of the linear problem at the left boundary. The time-
step is the same for the linear and non-linear calculation in each Figure, but varies from
figure to figure. In Figures 10-12 we use ∆t = 2/100,2/200,2/300 respectively. In space
we use N = 64 grid points. The maximum time-step is well below the stability limit for
the 4th order Runge-Kutta scheme applied to the linear problem. We also made sure that
the time-step was continuously monitored and kept sufficiently small for the non-linear
case, where the spectral radius varies with time.

As expected the linear problem grows linearly in time in all three figures. The non-
linear problem does not. The difference is due to the remaining source term (5.16) which
changes sign in an oscillatory manner. For large and medium time-steps, see Figure 10-
11, the non-linearity does not cause an explosion, instead the growth compared to the
linear case is damped. The smallest time-step however, see Figure 12, cause an unlimited
growth and a sudden explosion. Note also the higher frequency content in the non-linear
calculations.

We investigated this phenomena further and the role of the non-linear term (5.16) is
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Figure 10: The linear and non-linear response when feeding in pressure variations at the left boundary at an
eigenfrequency (ω =0.83756479484021) of the linear problem. A large time step, ∆t=2/100, is used.
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Figure 11: The linear and non-linear response when feeding in pressure variations at the left boundary at an
eigenfrequency (ω =0.83756479484021) of the linear problem. A medium time step, ∆t=2/200, is used.
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Figure 12: The linear and non-linear response when feeding in pressure variations at the left boundary at an
eigenfrequency (ω =0.83756479484021) of the linear problem. A small time step, ∆t=2/300, is used.

clarified in Figure 13 where the eigenvalue with maximum real part is shown as a func-
tion of time. The eigenvalues were computed from the matrix in the non-linear equation
(5.8) which is formulated more clearly in (A.13). (We are aware of the fact that a non-
linear problem does not have eigenvalues in the same sense as a linear problem and that
uniqueness is an issue).

Note that the real part of the non-linear ”eigenvalues” become positive and large
when ẋ1 >0. Not visible in Figure 13 is the fact that the eigenvalues shift sign as ẋ1 shifts
sign. Also hardly visible is the fact the there are always eigenvalues with positive real
part, although small when ẋ1 <0. It is not completely clear why a sufficiently small time
step causes an explosion (maybe because the exponential growth can take full advantage
of the positive eigenvalues), but it does.

To investigate the unlimited growth in Figure 12 we computed the eigenvalues for
that case and the result is shown in Figure 14. The explosion at approximately t=110 can
clearly be correlated with a sudden large growth of the maximum positive real part of
the eigenvalues. Figure 14 reveals another interesting aspect. While the position x1 has
a rather mild behavior with small amplitudes all the way to explosion, the speed of the
spring ẋ1 oscillates wildly already at early times.

As a final investigation of the results in Figures 10-12 we added artificial dissipation
of the form

−θ∆x(P⊗ I3)
−1DTDU. (6.1)
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Figure 13: The linear/nonlinear response of pressure variations at the left boundary at an eigenfrequency
(ω=0.83756479484021). The real part of the non-linear ”eigenvalues” become positive and large when ẋ1 >0.
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Figure 15: The nonlinear response of pressure variations at the left boundary at an eigenfrequency (ω =
0.83756479484021). Five different grids and θ =0, no artificial dissipation is used.

to the right-hand side of (5.8). The operator D is an undivided difference operator of
the appropriate order. The form (6.1) guarantees that accuracy and stability (if it exist) is
preserved (see [18] for more details). The results for the final time t = 40, five different
grids (N = 32,64,128,256,512), the time-step ∆t = 4/3200 and four different amounts of
artificial dissipation (θ = 0,1,2,10) are shown in Figures 15-18. Note that solutions with
many grid-points become non-smooth before solutions with fewer grid-points and that
the oscillatory behavior is gradually reduced by increasing the artificial dissipation. For
θ =10, most of the oscillations in the solutions are gone. By reducing the time-step even
further, we made sure that this phenomenon was not time-step related.

The non-linear explosion in Figure 12 can now be reasonably well understood. The
non-linear term in (5.8) generates higher and higher wave-numbers and without dissi-
pation and a stability bound, they can grow and lead to an explosion. Once sufficiently
high wave numbers have been generated, no accuracy remains and virtually any result
can be obtained (see Figures 10-12). By adding artificial dissipation as in Figures 15-18 we
can delay that process. In fact, as long as the solution remains smooth, we have design
order of accuracy. However, for a sufficiently fine mesh (and consequently a sufficiently
small artificial dissipation term), the potential instability will reappear and might cause
an explosion.

Another way of looking at the linear and non-linear problem is shown in Figures 19
and 20 where the effect of a small and large initial displacement is shown. The figures
are obtained in the same way as in Figure 7. The spring is given an initial displacement,
the pressure boundary condition with zero data is used and the time history of the po-
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Figure 16: The nonlinear response of pressure variations at the left boundary at an eigenfrequency (ω =
0.83756479484021). Five different grids and θ =1, a small amount of artificial dissipation is used.
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Figure 17: The nonlinear response of pressure variations at the left boundary at an eigenfrequency (ω =
0.83756479484021). Five different grids and θ =2, an intermediate amount of artificial dissipation is used.



25

0 5 10 15 20 25 30 35 40
0.8

0.9

1

1.1

1.2

1.3

Time t

P
o

s
it
io

n
 x

1

 

 

N=32

N=64

N=128

N=256

N=512

Figure 18: The nonlinear response of pressure variations at the left boundary at an eigenfrequency (ω =
0.83756479484021). Five different grids and θ =10, a large amount of artificial dissipation is used.

sition 1+V1 = x1(t) of the spring is recorded. Fourier transformation in time give us the
frequency response. Clearly, for small amplitudes, the linear theory describes the phe-
nomenon well, while the non-linear effects dominate for large deformations. No artificial
dissipation is used in Figures 19 and 20.

Finally we consider the linear and non-linear scheme for a frequency ω = 2 which is
not an eigenfrequency to the linear problem. We used the pressure boundary condition
at the left boundary and increased the amplitude to 0.3. Figure 21 shows the result.
The non-linear problem eventually explodes, the linear problem does not. No artificial
dissipation is used in Figure 21.

As was shown in section 4, the non-linear right hand side problem is not well posed
in the sense of Definition 2.1 due to the remaining term V2UTU at ξ=1 on the right-hand-
side in the energy estimate. The lack of well-posedness results (of course) in a lack of
stability as shown in section 5.6. This theoretical deficiency does not necessarily lead to
an unbounded growth which was exemplified in Figures 10-12 and 19-20.

One possibility to correct the lack of well-posedness would be to add a boundary
condition at the right boundary when V2 is positive. However, it is difficult to find a
(non-awkward) boundary condition that removes the growth term. Also, even if that
could be done, the data for the boundary condition do not really exist for the Euler case.
Another possibility would be to change equation set and use the Navier-Stokes equations
which naturally allows for more boundary conditions and types of data.

Our conclusion is that the lack of well-posedness cannot be corrected in a straight
forward manner for our problem. The lack of well-posedness and stability for this model
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Figure 19: The frequency response for a small initial displacement, ∆x=0.01.
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Figure 20: The frequency response for a large initial displacement, ∆x=0.10.
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Figure 21: The linear and non-linear response for a pressure variation at the left boundary at ω = 2 and the
amplitude=0.3. ω =2 is not an eigenfrequency. The non-linear problem explodes, the linear problem does not.

problem might exist even for three-dimensional FSI calculations using the Euler equa-
tions.

7 Summary and conclusions

We have investigated well-posedness of FSI problems. As a flow model we have used
the linearized Euler equations in one dimension and as the structure model, a spring. We
have studied both the non-linear and linear problem. The non-linearity stems from large
deflections and high speed of the spring.

It was shown that the generally accepted formulation of the linear FSI problem is the
only possible one. It was also shown that coupling in the linear case can be derived using
the demand for well-posedness as the main tool. The non-linear version of the problem
is not well-posed in the classical sense.

For the linear problem we derived and proved that the numerical coupling using
summation-by-parts operators and weak boundary conditions is stable. We verified our
numerical procedure by using the method of manufactured solutions and by showing
that the numerical eigenfrequencies converge to the analytical eigenfrequencies (the spec-
trum) of the coupled partial differential equations.

We compared our numerical procedure with the common way of using injection to
impose the boundary and coupling conditions for the linear problem. Our procedure is
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stable and gave correct results while the injection procedure can lead to instabilities that
easily can be interpreted as flutter. The effect of higher order schemes was studied. It was
shown that the higher order accurate approximations converges faster and more easily
capture the effects related to the higher eigenfrequencies.

Non-linear calculations using exactly the same coupling procedures as in the linear
case were performed. It was found that the non-linear and linear calculations agree well
for small deflections, which verified the non-linear scheme also, since the linear scheme
is provable correct. It was also shown that for large deflections and high speed of the
spring, clear differences exist.

The lack of well-posedness (and stability) for the non-linear problem did not lead to
an unbounded growth for all the cases we studied. In fact, the growth in the non-linear
problem could be modified in various ways, for example by the choice of time step. For
large time steps (although within the linear stability limit), no growth was observed. On
the other hand, for sufficiently small time steps, unbounded growth was obtained.

It was concluded that higher and higher wave-numbers were generated in the non-
linear problem. Without dissipation and a stability bound, they can grow and lead to
explosions. Once sufficiently high wave numbers have been generated, no accuracy re-
mains and virtually any result can be obtained. By adding artificial dissipation, that
process can be modified and delayed but not removed.

Finally, the comparison between the linear and non-linear problem was discussed and
it was concluded that it would be difficult to correct the lack of well-posedness for this
problem. It was also noted that the lack of well-posedness and stability for this model
problem might very well exist even for realistic three-dimensional FSI calculations using
the Euler equations.
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A The time integration procedure

We start by constructing the scheme for the linear problem. The non-linear scheme is
easily obtained by a few small modifications.
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A.1 The linear scheme

We will integrate the coupled system as one large system of ordinary differential equa-
tions. The formulation including boundary conditions is

Ut =−(P−1Q⊗A)U+(P−1E0⊗Π)(U−G0)+(P−1EN⊗Σ)(U−GN) (A.1)

Vt =−B̃V+ F̃(U), (A.2)

where

B̃= M−1K =

[

0 −1
k/m b/m

]

, F̃= M−1F=

[

0
pN/m

]

. (A.3)

By introducing the notation Ã=(P−1Q⊗A), Σ̃=(P−1Q⊗Σ) and Π̃=(P−1Q⊗Π) we can
rewrite the system as

Ut =(−Ã+Σ̃+Π̃)U−Π̃G0−Σ̃GN (A.4)

Vt =−B̃V+ F̃, (A.5)

where the coupling between (A.4) and (A.5) is included in Σ̃GN and F̃(U) as

Σ̃GN = P−1
NN ρ̄c̄2V2

[

0,···0, 1/
√

γ 0
√

(γ−1)/γ

]T

(A.6)

F̃(U)=

[

0,

(

U3N+1/
√

γ+U3N+3

√

(γ−1)/γ

)

/m

]T

. (A.7)

Next we form y = [U;V] as a vector of length 3(N+1)+2 where N+1 is the number
of grid-points. This gives us the final form of the system which is now ready for time
integration.

yt =

























−Ã+Σ̃+Π̃

0 0
...

... κ1

0
0 κ2

0 ··· 0
0 ··· 0

0 0
0 0
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0

0 0

...
...

0 0
0 ··· 0
0 ··· κ3 0 κ4

−B̃























y−





















Π̃G0

0
0





















. (A.8)

The coupling terms in (A.8) are

κ1 =−P−1
NN ρ̄c̄2

√
γ

, κ2 =−P−1
NN ρ̄c̄2

√

(γ−1)√
γ

, κ3 =
1

m
√

γ
, κ4 =

√

(γ−1)

m
√

γ
. (A.9)
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A.2 The non-linear scheme

The discrete version of the non-linear flow equation is written as

(1+V1)Ut =−ÃU+V2C̃U+Π̃(U−G0)+Σ̃(U−GN) (A.10)

where Ã,Σ̃ and Π̃ are defined above and C̃ =
(

ΞP−1Q+P−1QΞ− IN

)

⊗ I3/2. The corre-
sponding system to (A.4) and (A.5) in the nonlinear case becomes

(1+V1)Ut =(−Ã+V2C̃+Σ̃+Π̃)U−Π̃G0−Σ̃GN (A.11)

Vt =−B̃V+ F̃. (A.12)

The definitions of all the terms in (A.11) and (A.12) can be found in section A.1 above.
The non-linear coupled equations formulated as a single system corresponding to (A.8)
is

yt =

























−Ã+Σ̃+Π̃+V2C̃

0 0
...

... κ1

0
0 κ2

0 ··· 0
0 ··· 0

0 0
0 0

























y

1+V1
+























0

0 0
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...

0 0
0 ··· 0
0 ··· κ3 0 κ4

−B̃























y−























Π̃G0
1+V1

0
0























(A.13)

where the coupling terms in (A.13) are the same as the ones in (A.8) and given by (A.9).
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[18] K. Mattsson, M. Svärd, and J. Nordström. Stable and accurate artificial dissipation. Journal
of Scientific Computing, 21(1):57–79, 2004.

[19] J. Nordström. The use of characteristic boundary conditions for the Navier-Stokes equations.
Computers & Fluids, 24(5), 1995.

[20] J. Nordström. Conservative finite difference approximations, variable coefficients, energy
estimates and artificial dissipation. Journal of Scientific Computing, 29:375–404, 2006.

[21] J. Nordström and M. H. Carpenter. Boundary and interface conditions for high order finite
difference methods applied to the Euler and Navier-Stokes equations. Journal of Computa-
tional Physics, 148:621–645, 1999.

[22] J. Nordström and M. H. Carpenter. High-order finite difference methods, multidimensional
linear problems and curvilinear coordinates. Journal of Computational Physics, 173:149–174,
2001.

[23] B. Strand. Summation by parts for finite difference approximation for d/dx. Journal of
Computational Physic, 110(1):47–67, 1994.

[24] X. Wang and K.J. Bathe. Displacement/pressure based mixed finite element formulations
for acoustic fluid-structure interaction problems. International Journal for Numerical Methods
in Engineering, 40(11):2001–2017, 1998.


	Fluid structure interaction problems-TitlePage.pdf
	CiCP_FSI_final

