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Fluid Surface Damping: 

A Technique for Vibration 

Suppression of Beams 

A fluid sUrface damping (FSD) technique for vibration suppression of beamlikestructures 

is proposed. The technique is a modification of the surface layer damping method. Two vis

coelastic sUrface layers containing fluid-filled cavities are attached symmetrically to the 

opposite sUrfaces of the beam. The cavities on one side are attached to the corresponding 

cavities on the other side via connection passages. As the beam vibrates, the fluid is pumped 

back and forth through the connecting passages. Therefore, in addition to the viscoelastic 

damping provided by the sUrface layers, the technique offers viscous damping due to the 

fluidflow through the passage. A mathematical model for the proposed technique is devel

oped, normalized, and solved in the frequency domain to investigate the effect of various 

parameters on the vibration suppression of a cantilever beam. The steady-state frequency 

response for a base white-noise excitation is calculated at the beam's free tip and over a 

frequency range containing thefirstfive resonantfrequencies. The parameters investigated 

are the flow-through passage viscous resistance, the length and location of the layers, the 

hydraulic capacitance of the fluid-filled cavities, and inertia of the moving fluid (hydraulic 

inertance). Results indicate that the proposed technique has promising potential in the field 

of vibration suppression of beamlike structures. With two FSD elements, all peak vibration 

amplitudes can be well suppressed over the entire frequency spectrum studied. 

INTRODUCTION 

Vibration control of thin structures is of great impor

tance to the automobile, aircraft, and space industries. 

The surface layer damping method has been used as a 

simple and reliable means of controlling the vibration 

of such structures (Nashif et aI., 1985; Cremer et aI., 
1988). In particular, constrained layer damping (CLD) 

has been widely used because of the relatively high 

damping it provides (Harrison et aI., 1994; Henze et 

aI., 1990; Tomlinson, 1990). In this method a layer of 

a viscoelastic material is bonded to the surface of the 

structure and constrained by a stiff constraining layer. 

Upon vibration of the structure the viscoelastic layer 

deforms and dissipates the excessive energy of vibra

tion of the structure. The method, although successful, 

is effective over a limited range of temperatures and 

frequencies. A viscous fluid layer has been utilized for 

vibration control of plates (Ingard and Akay, 1987). In 

this application, a thin layer of fluid is trapped between 

the plate and a rigid back block. Upon vibration of the 

plate, the fluid is pumped from regions of compression 

to regions of rarefaction. The energy required to over

come the friction drag on the fluid is supplied by the 

plate engendering the damping effect. The high sensi

tivity of the technique to the operating conditions and 
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FIGURE 1 Schematic of a beamlike structure treated with a fluid surface damping element. 

system parameters (Onsay, 1994) as well as the need 

for the backing block restricts the technique to very 

special applications. 

Active control techniques have also been applied 

to control the vibration of thin structures. Active con

trol using an electrorheological sandwiched beam was 

proposed and shown to reduce the transient response 

of the beam (Rahn and Joshi, 1994). The extreme 

high voltage required renders the technique impracti

cal. Piezoelectric elements, used as actuators and/or 

sensors, were introduced for the active vibration con

trol of beam- and platelike structures (Liao and Sung, 

1991; Dosch et aI., 1992; Hollkamp and Napolitano, 

1994). These active techniques are more effective than 

the CLD method; however, unreliability, instability, 

complexity, and cost are some of the disadvantages 

that limit their use. 

To overcome some of these disadvantages, hybrid 

techniques, which integrate the CLD into active con

trol methods, were recently proposed. One such tech

nique, the intelligent constrained layer (ICL), replaces 

the constraining layer of the CLD with a piezoelectric 

layer that acts as an actuator (Agnes and Napolitano, 

1993; Nostrand et aI., 1993; Shen, 1994). Baz and Ro 

(1993) introduced a modified ICL technique, active 

constrained layer damping (ACLD), in which an ad

ditional piezoelectric layer is sandwiched between the 

viscoelastic constrained layer and the structure. This 

additional piezoelectric layer acts as a sensor. The ad

vantages of the modified technique over the conven

tional CLD were clearly demonstrated analytically and 

experimentally by Baz and Ro (1994) for a cantilever 

beam and over a considerable range of temperatures. 

Another hybrid technique was also proposed: Elec

tromechanical surface damping (EMSD). This tech

nique integrates the shunted piezoelectric damping 

method (introduced by Hagood and Von Flotow, 1991 

into the CLD method). In this case the constraining 

layer of the conventional CLD is replaced by a shunted 

piezoelectric ceramic. Tuning the shunting piezoelec

tric circuit to one or more of the resonant frequencies 

of the structure renders a greater suppression of the 

resonant vibration amplitudes and/or a wider effective 

range of the vibration control as compared to the con

ventional CLD (Ghoneim, 1995). 

In this article a simple, passive, and reliable tech

nique for vibration suppression of beamlike structures 

is proposed, the fluid surface damping (FSD) tech

nique. It is a modification of the surface layer damp

ing method. A schematic of a FSD element applied 

to a beamlike structure is illustrated in Fig. 1, and the 

corresponding physical and hydraulic models that il

lustrate the fundamental working principal of the FSD 

element are presented in Fig. 2. Two viscolelastic sur

face layers containing fluid-filled cavities are attached 

symmetrically to the opposite surfaces of the beam. 

The cavities on one side of the beam's neutral axis are 

connected to the corresponding cavities on the oppo

site side via narrow passages. When the beam bends, 

the layer attached to one side of the beam contracts 

and the opposite layer stretches, causing the respec

tive cavities to contract and expand and the fluid to be 

pumped from the contracting to the expanding cavi

ties through the connecting passages as illustrated in 

Fig. 2. As the beam vibrates, the fluid is pumped back 

and forth through the connecting passages dissipating 

part of the excessive energy of vibration. Therefore, in 

addition to the viscoelastic damping provided by the 

surface layers, the technique offers viscous damping 

due to the fluid flow through the passages. 

A rather simple mathematical model is proposed 

for the FSD portion of the treated beam. The model 

is normalized and solved, using the finite element, in 

the frequency domain in order to find the frequency 
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FIGURE 2 (a) Physical and (b) hydraulic models of the 

FSD element. 

response of a cantilever beam subject to a white

noise displacement excitation at the base. A paramet

ric study is conducted to investigate the effect of some 

parameters: the viscous resistance, length, and loca

tion of the viscoelastic layers; the hydraulic capaci

tance of the fluid-filled cavities; and the inertia of the 

moving fluid (hydraulic inertance). Results are dis

cussed and the potential of the technique for the vibra

tion suppression of beamlike structures is examined. 

MATHEMATICAL MODEL 

Basic Assumptions 

Development of the governing equations for the FSD

treated portion of the beam is based on the following 

assumptions: 

• small displacements and strains; 

• perfect bonding between the surface 

viscoelastic layers and the beam; 

• plane cross sections remain plane; 

• all transverse displacements of all points of the 

surface layers and the beam on any cross 

section are the same and equal to the transverse 

displacement of the midplane of symmetry (i.e., 

no transverse normal strains); 

• no axial loading and consequently the midplane 

of the beam does not experience any axial 

displacement; 

• the initial axial displacement due to the fluid 

pressure inside the cavities is considered 

negligible; 

• rotary inertia and shear deformation are 
negligible (Bernoulli-Euler beam); 

• linear, isotropic, elastic material behavior for 
the beam and viscoelastic material behavior for 

the surface layer; 
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• incompressible, laminar flow; 

• the pressure inside the cavities is uniform; that 

is, the pressure drop along the axes of the 

cavities due to the fluid flow inside the cavities 

is negligible; and 

• viscous damping due to the fluid flow through 
the passage is the dominant source of hydraulic 

damping. 

To satisfy the last two assumptions, some design 

consideration of the fluid circuit must be fulfilled. The 

hydraulic resistance of the connecting passage must 

be much larger than that of the cavities. That is 1/ d4 , 

where 1 and d respectively stand for the length and di

ameter, of the connecting passage must be much larger 

than that of the cavities. This would ensure that the 

pressure drop due to the axial flow inside the cavi

ties is negligible compared to the pressure drop due to 

the flow through the connection passage. A connecting 

passage with a high slender ratio (length to diameter 

ratio) would also reduce the minor losses (exit and en

trance losses) relative to the major one due to viscous 

damping. Well-rounded entrances at the connections 

between the passages and the cavities (Fig. 1) further 

reduce these minor losses and render the last assump

tion more realistic. 

Governing Equations 

Based on the above-mentioned assumptions and from 

the dynamic equilibrium of the differential element 

shown in Fig. 3, we have 

(1) 

where pA is the mass per unit length of the composite 

beam (pA = LPiAi), w is the transverse displace
ment, and x is the axial coordinate. The bending mo

mentM is 

where (J is the axial stress; E I Ir the flexure rigidity 

of the beam; E2 the extensional-relaxation modulus 

of the surface layers' viscoelastic material; h the mo

ment of inertia of the surface layers' cross-sectional 

area, A2, about the neutral axis of the beam; and Q the 

first moment of the fluid cavities' cross-sectional areas 

of one layer about the neutral axis, Q = fA /2 Y dA = 
yA3/2, with y being the perpendicular distance be

tween the beam's neutral axis and the center line of 
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FIGURE 3 A differential element of the treated beam with an illustration of the different cross

sectional areas. 

the cavity (Fig. 1). The cross-sectional areas AI, A2, 
and A3 pertain to the beam, surface layers, and fluid 

cavities, respectively (Fig. 3). The symbol ® stands 

for the heredity (Boltzmann) integrals (Christensen, 

1982), A ® B = J~ A(t - ~)(aB/a~)d~. The pres

sure drop across the connecting passage, I::!..p, can be 

expressed as 

I::!..p=K®q, (3) 

where K is the equivalent hydraulic bulk-relaxation 

modulus of the fluid circuit [Fig. 2(b)] and q is the 

fluid volumetric flow induced by bending, 

q = (A3/2)(Ua - Ub) 

= -(A3/2)y{ (aw/ax)a - (aw/axh} (4) 

= -Q(8a - 8b) = -QI::!..8, 

where U and 8 are the average axial displacement and 

angular rotation of the surface layer's cross-sectional 

plane. The subscripts a and b designate the axial lo

cations at which U and 8 are measured, i.e., as shown 

in Fig. 2(a), at Xa and Xb, respectively. Substituting (3) 

and (4) into (2), we get 

M = EIII(a2w/ax2)+E2lz®(a2w/ax2)+Mu, (5) 

where M u is the hydraulic moment generated by the 

fluid circuit, 

(6) 

Substituting (5) and (6) into (1), we get the governing 

equation of the FSD-treated portion of the beam, 

(7a) 

noindent subject to 

Clearly, the problem of a beam treated with an FSD el

ement is equivalent to the classical problem of a beam 

treated with a surface damping layer plus a couple of 

equal and opposite viscous moments, M u, applied at 

both ends of the FSD element [Fig. 2(a)]. 

FREQUENCY ANALYSIS AND PARAMETRIC 

STUDY 

Effect of the FSD treatment on the frequency response 

of a cantilever beam subjected to white-noise displace

ment excitation at the base was investigated. The re

sponse was found at the beam's free tip and over a 

wide range of frequencies covering the first five reso

nmit frequencies. A parametric study was conducted to 

assess the impact of various parameters on the damp

ing effectiveness of the technique as measured by the 

magnitude of the peak vibration amplitudes. The pa

rameters considered in the current analysis were the 

viscous resistance R, the length and location of the 

FSD element, the hydraulic capacitance of the upper 

and lower cavities C, and the fluid inertia (hydraulic 

inertance) If. N ondimensional variables and param

eters were adopted to facilitate the parametric study 

task. 

In the frequency domain, the governing equations, 

Eq. (7), becomes 

(8a) 



subject to 

where 

In (8) Wo is the amplitude of the transverse dis

placement (w = woe iwt ), B is the amplitude of the 

angular displacement (8 = Be iwt ), cv is the excitation 

frequency, and EI(cvi) = Elh + Ei(cvi)h where Ei 

is the complex Young's modulus of the surface layers' 

viscoelastic material. Based on the assumptions stated 

earlier and the hydraulic model shown in Fig. 2(b), the 

hydraulic complex bulk modulus, K*(cvi), of the FSD 

elementis 

I::!..p I { -Ifcv2 +rcvi } 
K*(cvi) = - = -

q Ce -Ifcv2 + Rcvi + liCe 

_.! (~)2 + cvi 
_ R r Wn 

- I (W)2 .' 
- Wn + rCVl 

(9) 

In the above equation r is the hydraulic time constant 

(r = RCe ), CVn is the hydraulic natural frequency 

(cvn = I/JlfCe ), and Ce is the equivalent hydraulic 
capacitance of the connected cavities (Ce = C /2, for 
identical cavities). 

For the parametric study, the following nondimen

sional variables and parameters we adopted: X is the 

nondimensional axial coordinate, X = x / L; W is 

the nondimensional transverse displacement, wo/ L; 

M is the nondimensional bending moment, M = 

M L / E I h; a is the nondimensional complex flexure 

rigidly, a = E I / Ell I; p, is the nondimensional mass 

per unit length, p, = pA/PIAI; 0 is the nondimen

sional frequency, 0 = cv/cvo; where L is the length of 

the beam and CVo = JElh/PIAIL4. Notice that for 
the untreated portions of the beam, a = p, = 1. Upon 
normalization of the governing equation, Eq. (8), we 

get 

subject to 

,....; ,..... ,...., ......., 

M(Xa) = -Mv and M(Xb) = M v, 

where 

(lOb) 

The nondimensional complex modulus, K(Oi), is ex

pressed as 

R(Oi) = R T Qn , { 
_.l(.R)2 + Oi } 

_1(~)2 + TOi 
(11) 
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where R is the nondimensional hydraulic resistance of 

the connecting passages (R = RQ2/PIAIL3cvO), T 

is the nondimensional time constant (T = rwo), and 

On is the nondimensional natural frequency (On 

cvn/WO). 

RESULTS AND DISCUSSION 

The frequency response of the treated cantilever beam 

was determined for different lengths and locations of 

the FSD element and for different values of R, T, and 

On. Samples of the results are shown in Figures 4-

11. The vertical axis in all these figures represents the 

amplitude ratio between the amplitude of the displace

ment response at the beam's free tip and the input dis

placement amplitude at the base. All numerical results 

were obtained over the frequency range b = 0-15, 

where b = v'Q, that covers the first five natural fre

quencies, and for a = 1.25 + O.25i and p, = 1.6. 

The response was determined using the finite element 

method. Twenty beam elements with cubic Hermite 

shape functions (Reddy, 1993) were adopted in all the 

examples presented. The finite element results using 

20 elements for the case shown in Fig. 4 are compared 

with the corresponding analytical ones using the pro

gram Mathematica, and excellent agreement was ob

tained. When displayed graphically, both results are 

indistinguishable and consequently the analytical re

sults are not presented. 

The introduction of the nondimensional variable b 

enhances the frequency response displayed in the fig

ures and allows a direct comparison between the finite 

1.4 

1.2 

Q1.0 

Cii 
a: 
~0.8 

~ 
Ci. 
EO.6 

~ 
Cl 

.3 0.4 

0.2 

0.0 

° 

1\ 
! \ 

2 

-R=O 

------- R=1.0 
---_. R=5.0 

!-R=0.25 

i\ 

/1 
! ~ 1\ 

! ! 

n 
i' 

1\ 

4 6 8 10 12 14 

Frequency b 

FIGURE 4 The frequency responses of the beam treated 
with an FSD element placed at t:J.X = [0.0-0.1] for differ
ent values of the nondimensional viscous damping, ii, and 

fore = If = O. 
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FIGURE 5 The frequency responses of the beam treated 

with an FSD element placed at fl.X = [0.0-0.2] for differ

ent values of the nondimensional viscous damping, ii, and 

for C = If = O. 
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FIGURE 6 The frequency responses of the beam treated 

with an FSD element placed at fl.X = [0.2-0.4] for differ
ent values of the nondimensional viscous damping, ii, and 

forC = If = O. 

element results and the corresponding analytical ones, 

which are readily determined in terms of b. The val

ues of a and /L roughly represent an aluminum beam • 

(EI = 70 Gpa and PI = 2700 kg/m3) with viscoelas

tic layers of Soundcoat DYAD 609 (Ej ~ 700 + 
700i Mpa and P2 = 1000 kg/m3) , having approxi

mately the same thickness of the beam. The choice of 

these materials is one of the options intended for the 

experimental work. However, it should be mentioned 

that the analysis conducted was qualitative and aimed 

at investigating a window within which the method is 

effective. Consequently, exact values of a and /L are 

not crucial at this stage of the analysis. 
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FIGURE 7 The frequency responses of the beam treated 
with an FSD element placed at fl.X = [0.4-0.6] for differ

ent values of the nondimensional viscous damping, ii, and 

forC = If =0. 
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FIGURE 8 The frequency responses of the beam treated 

with two FSD elements placed at fl.X = [0.0-0.2] and 

fl.X = [0.7-0.9]. 

Damping Mechanism 

It is useful to emphasize that the FSD treatment dis

sipates the excessive energy of the vibrating beam via 

two damping mechanisms. 

1. Viscoelastic damping inherent in the surface 

layer material is proportional to the loss of 

Young's modulus of the viscoelastic material 

and to the strain energy captured by the surface 

layer. This is a reason why for best vibration 

suppression the layer should be placed at 

locations of high strain energy. 
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FIGURE 9 The frequency responses of the beam treated 
with an FSD element placed at AX = [0.0-0.1] for differ
ent values of the nondimensional hydraulic time constant, T, 

and for Ii = 0.1. 
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FIGURE 10 The frequency responses of the beam treated 
with an FSD element placed at AX = [0.0-0.1] for dif
ferent values of the nondimensional frequency, bn, and for 
T = 0.005 and Ii = 0.5. 

2. It can be shown that viscous damping 

emanating from the fluid flow through the 

passages, the energy dissipation per cycle, b.E, 

is proportional to b.e2, 

(12) 

Consequently, for best performance at a given 

frequency of the FSD element, it should be 
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FIGURE 11 The frequency responses of the beam treated 
with an FSD element placed at AX = [0.0-0.1] and tuned 
to the first resonant frequency. 

placed such that the difference between the 

angular displacements, b.e, at both ends of the 

element is maximum. 

EffectofVrscous Damping. Figures 4-7 demonstrate 

the effect of R on the frequency response of the beam 

treated with an FSD element of different lengths and 

placed at different locations. In all these figures the 

hydraulic capacitance, C, and inertance, If, are con

sidered negligible. The figures indicate that for given 

location and length of the FSD element there is a range 

of R that considerably reduces the peak vibration am

plitudes over the frequency spectrum under consider

ation. Within this range, there is an optimum value of 

R, R*, that suppresses the peak vibration amplitude(s) 

of a specific resonant frequency or frequencies the 

most. The higher the resonant frequencies, the smaller 

is the value of R*, and vice versa. For example, an 

FSD element, with Lb = 0.1, placed at the vicinity 

of the clamping end (Fig, 4) achieves optimum damp

ing at the third-to the fifth resonant frequencies when 

R* = 0.25 and at the second resonant frequency when 

R* = 1.0. Similarly, in Fig. 5 for Lb = 0.2, R* = 1.0 
more or less optimizes damping at the first three res

onant frequencies while R* = 0.1 is the optimum for 

the fifth resonant frequency. 

Effect of Length and Location of FSD Element. The 

length of the FSD element affects the vibration sup

pression in two ways. As the length increases, the 

element captures and dissipates, via the viscoelas

tic damping mechanism, more strain energy. Conse

quently, the longer the FSD element, the more vibra

tion suppression it provides. As the length increases, 

b.e changes and consequently the energy dissipation 
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FIGURE 12 The first five nondimensional modal (a) e 
diagram and (b) strain energy diagram of a cantilever beam. 

via viscous damping changes too. Because .6.8 may 

increase or decrease, vibration suppression of the peak 

vibration amplitudes may improve or deteriorate. The 

change in .6. 8 at a given resonant frequency can be 

approximately predicted from the modal 8 diagram 

[Fig. 12(a)] as will be discussed next. 

Figures 4 and 5 show the frequency response of the 

beam treated with FSD elements of different lengths 

located at the vicinity of the clamping end. When vis

cous damping is ignored (i. = 0), the peak vibra

tion amplitudes are reduced with increasing length of 

the FSD element, Lb. This is because of the increas

ing strain energy captured by the element, as depicted 

by the thin solid lines in Figs. 4 and 5. At R* (thick 

solid lines), .6.8 is the major factor that controls vi

bration suppression. For Lb = 0.1, .6.8 increases 

with the increasing order of the resonant frequency 

[Fig. 12(a)], and consequently higher resonant peaks 

are suppressed more (Fig. 4). At X = 0.2, Fig. 12(a) 

shows that the fourth mode experiences a node; conse

quently viscous damping has little effect on the fourth 

resonant peak vibration amplitude when Lb = 0.2 as 

shown in Fig. 5. 

Samples of the frequency responses of the beam 

treated with an FSD element having the a length 

Lb = 0.2 and placed at different locations are shown 

in Figs. 5-7. The axial locations presented are at 

.6.X = [0.0-0.2], [0.2-0.4], and [0.4-0.6], respec

tively. The effect of the location on the peak vibra

tion amplitudes is also governed by the two damping 

mechanisms and consequently depends on the strain 

energy captured by the element and the value of .6.8. 

Viscoelastic damping via the surface layer becomes 

more effective when the FSD element is placed at lo

cations of maximum strain energy and vice versa. The 

modal strain energy diagram is shown in Fig. 12(b) for 

the first five modes. Notice that the first modal strain 

energy (thick-solid line) is maximum at the clamping 

end and monotonically decreases with the increasing 

axial location, X. Consequently, in the absence of the 

fluid viscous damping (R = 0), the ability of the FSD 

element to suppress the first peak is maximum when 

the element is located at the base and is reduced as 

the element is located further away from the clamp

ing surface. This abating vibration suppression ability 

is responsible for increasing the magnitude of the first 

peak as the FSD element is placed farther away from 

the clamping end (Figs. 5-7). Also, notice that at loca

tion 2, .6.X = [0.2-0.4], the second modal strain en

ergy is small and the third is maximum. Consequently, 

viscoelastic damping reduces the second peak the least 

and the third the most as shown by the thin solid line 

(R = 0) in Fig. 6. The effect of .6.8 on the peak vi

bration amplitudes is demonstrated in Fig. 7 when the 

FSD element is placed at location 3, .6.X = [0.4-0.6]. 

At this location .6.8 is minimum for the third and fifth 

modes and maximum for the fourth. Consequently R 

has very little effect on the th~d and fifth peak vibra

tion amplitudes, while when R = 0.1 the FSD treat

ment almost eliminates the fourth peak. 

Clearly the effect of the FSD treatment on the vi

bration suppression of the beam is to some extent 

predictable, which facilitates the task of designing 

an efficient FSD treatment. From the modal 8 and 

strain energy diagrams, it can be predicted that a full 

treated beam will produce a good vibration suppres

sion. A FSD element covering the entire length of the 

beam captures all the possible strain energy and ren

ders high .6. 8 for all modes. In addition to the non

desirable extra weight introduced by this treatment, 

the high length to diameter ratio of the fluid cavities 

will cause a violation of the uniform cavity pressure 



assumption and render the present analytical model 
incorrect. An alternative efficient design may be ac
complished by using multielements. A possible de
sign is to use two elements located at the base, /).X = 

[0.0-0.2], and near the tip, /).X = [0.7-0.9]. The fre
quency response of such a design is shown in Fig. 8. 
The responses due to each patch are also included 
as thin solid and dashed lines, respectively. The first 

patch effectively suppresses the first three peak vibra

tion amplitudes and has little effect on the fourth and 
fifth peaks. The second patch, on the other hand, co
incides with a near maximum /). E> for the fourth and 
fifth modes [Fig. 12(a)] substantially reducing the cor
responding peaks. This location, however, is virtually 

ineffective over the first and second modes. Using both 
patches produces a very effective vibration suppres
sion over the entire spectrum as demonstrated by the 
thick solid line in Fig. 8. 

Effect of Hydraulic Capacitance and Inertance. The 

effect of C and If are presented for the case when 

the FSD element is placed at the base and Lb = 0.1. 
Figure 9 displays the frequency responses for differ

ent values of T and when If = 0 and R = 0.1. 
Clearly, the effect of C is detrimental. As T increases, 
the peak vibration amplitudes across the spectrum in
crease. This effect is expected, because the volumet
ric flow through the connecting passages decreases as 
the compliance of the cavities increases (C increases), 
rendering less viscous energy dissipation. Similarly, 
the effect of the hydraulic inertance is in general detri

mental. Figure 10 shows the effect of bn (bn ~ ~) 

on the frequency response for the case when R = 0.5 

and T = 0.005. Notice that as Q n decreases, If in
creases and the effect of the inertance becomes more 
pronounced. Some limited improvement, however, can 
be accomplished for a given combination of R, C, and 
If where the peak vibration amplitude can be reduced 

at one or two frequencies at the expense of a pro
nounced increase at the other frequencies. 

It should be pointed out that when C and If are sig
nificant, the FSD element can be used as a damped ab
sorber and tuned to suppress a specific peak vibration 
amplitude. Figure 11 demonstrates the effect of the 
FSD element on the frequency response of the beam 

when R, C, and If are tuned to the first natural fre
quency (bn = 2.16). Clearly, a considerable suppres

sion of the peak is achieved. However, this improve
ment is at the expense of the response at the second 
resonant frequency. 

CONCLUSION 

A simple and passive technique for the vibration sup
pression of beamlike structures is proposed where two 
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viscoelastic surface layers with connected fluid-filled 

cavities are attached to the opposite surfaces of the 

beam. In addition to the viscoelastic damping of the 

surface layers, the technique provides viscous damp

ing due to the fluid flow through the connecting pas

sages. A mathematical model of a FSD-treated can

tilever beam is developed and solved. A parametric 

study is conducted to investigate and assess the effec

tiveness of the technique. The investigation reveals the 

following. 

1. Best performance (vibration suppression) of the 

method is attained under the following 

condition: 

• an optimum value of the 
flow-through-passage viscous resistance; 

• negligible hydraulic capacitance and 

inertance; and 

• the length and location of the FSD element 
are such that it captures the maximum strain 

energy, and the difference between the 

angular displacements at both ends of the 

element is maximum. 

2. With two elements attached at the base and near 

the tip of the beam, all peak vibration 

amplitudes over the entire frequency domain 

studied can be well suppressed. 

3. The effect of the hydraulic capacitance and 

inertance are, in general, detrimental. However, 

for certain values, the FSD element acts as a 

damped absorber and can be tuned to suppress 

the vibration at a specific frequency. 

In brief, the investigation showed that the proposed 

technique has promising potential in the field of vibra

tion suppression of beamlike structures. Experimental 

work to bolster the current claim will be conducted. 
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