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Abstract In the first part of this paper a universal fluid

velocity based algorithm for simulating hydraulic

fracture with leak-off was created for a penny-shaped

crack. The power-law rheological model of fluid was

assumed and the final scheme was capable of tackling

both the viscosity and toughness dominated regimes of

crack propagation. The obtained solutions were shown

to achieve a high level of accuracy. In this paper simple,

accurate, semi-analytical approximations of the solution

are provided for the zero leak-off case, for a wide range

of values of the material toughness and parameters

defining the fluid rheology. A comparison with other

results available in the literature is undertaken.

Keywords Penny-shaped crack � Hydraulic
fracture �Universal algorithm � Power law fluid � Leak-
off � Numerical solution

1 Introduction

Hydraulic fracturing (HF) is the extension of a crack in

a solid through application of fluid pressure. It is

frequently encountered in both natural (e.g. subglacial

drainage) and industrial (e.g. fracking) processes,

necessitating a better understanding of the underlying

physical phenomena.

Of all the simple 1D models for examining HF, the

radial (penny-shaped) formulation is the most impor-

tant. This is because it is the only one with the potential

to accurately portray a three-dimensional system,

making it a perfectly suited point of comparison when

testing more advanced HF simulators. As a result,

having accurate benchmark data for the radial model is

of particular importance to the study of hydraulic

fracture.

Unfortunately there is not a substantial body of

suitable benchmarks available for the radial model.

One can mention here the work by Advani et al. [1],

where the approximate time-dependent solution for

both Newtonian and non-Newtonian fluids is given.

However, its accuracy has not been convincingly

proved. An early simulator of penny-shaped fracture

was presented in [2], where comparison with previous

results was also provided. However again, the error

level of the final results is unknown. In [3] the

asymptotic solutions for zero and large toughness

regimes were delivered for a Newtonian fluid. An

additional asymptotic solution for the toughness

dominated regime, for a Newtonian fluid, over small
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and large time scales was presented by Bunger et al.

[4]. These asymptotic solutions were later shown to

correspond reasonably well to experimental results

[5].

The field has become more active in the past year

however. There is a work of Kanaun [6], which

provides a discretized approach to the time-dependent

form of the problem. Unfortunately the model only

provides an approximate solution for Newtonian fluids

in the toughness dominated regime without fluid leak-

off. There has also been an experimental paper by Lai

et al. [7], which examined the growth of a penny-

shaped fracture in a gelatin matrix. This study was able

to demonstrate the effect of varying experiment

parameters for small values of the fracture toughness,

and suggests that such fractures behave according to

the scaling arguments of Spence and Sharp [8] over

long times. Finally there is a recent numerical solution

provided by Linkov [9, 10], for the class of Newtonian

and shear-thinning fluids, but only in the viscosity

dominated case. Unfortunately, the accuracy of the

aforementioned penny-shape benchmarks is still to be

confirmed. Additionally, neither of the recalled solu-

tions takes the convenient form of a simple formula

(such as those for the KGD model from [11, 12]) that

can be easily used for comparison.

In part I of this paper, a numerical algorithm for the

simulation of HF, based on the scheme introduced in

[11–13], was provided. By employing an appropriate

method of fracture front tracing, utilizing the speed

equation approach [14], coupled with an extensive use

of information on the crack tip asymptotics and

regularization of the Tikhonov type (the technical

details of both concepts can be found in [15, 16]), it

was able to provide high accuracy solutions to the self-

similar variant of the penny-shaped model. The

relative numerical error of computations was shown

to be less than 10�7, when using N ¼ 300 nodal points

for the spacial mesh. An alternative measure of the

computational error, using the known rate of solution

convergence, was proposed. It should be noted that

this part can be read independently of the original

paper, with all relevant information being provided

(for a unified version of the text, see arXiv:1612.

03307).

The aim of this paper is to utilize the developed

high-accuracy algorithm to provide simple solution

approximations, which maintain a reasonable level of

accuracy, for the zero leak-off case. In addition, the

numerical simulations will be used to analyze the

accuracy of other benchmarks available in the

literature.

The paper is organized as follows. To ensure that

both parts of the paper can be read independently, a

summary of the results from part I which are needed

for this work is provided in Sect. 2, including the

definitions and terminology used to describe problem

parameters, comprehensive information about the

solution asymptotics and a brief overview of the

performance of the numerical algorithm. In Sect. 3

numerical reference solutions are given for the variant

of an impermeable solid. Simple and accurate solution

approximations are delivered for various fixed values

of the material toughness, over the whole range of the

fluid behaviour index. Next, the computational algo-

rithm is used to verify other solutions available in the

literature. Sect. 4 contains the final discussion and

conclusions. Some additional information concerning

the limiting cases of Newtonian and perfectly plastic

fluids, together with respective models of the approx-

imation, is collected in the ‘‘Appendix’’.

2 Self-similar formulation, the speed equation,

crack-tip asymptotics and proper variables

In this section we provide a summary of the important

relevant results of the first paper. This will include the

definition of the self-similar formulation and com-

ments on the function of the algorithm.

2.1 Problem outline and parameters

We examine the problem of a penny-shaped hydraulic

fracture. Fluid is pumped in through a source at the

fracture opening (r ¼ 0), with the injection rate being

denoted Q0. Because of this, the fracture will grow

axisymmetrically about this point and thus modeling

through the use of a 1D cross-section is sufficient to

describe the problem.

The fracture’s dimensions will be given by the

aperture,w(r, t), and half-length l(t).We assume that it

begins from a pre-existing crack, giving the initial

conditions: wðr; 0Þ ¼ w�, lð0Þ ¼ l�. The net fluid

pressure within the fracture, p(r, t), is defined as:

p ¼ pf � r0, where pf is the total pressure applied to
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the fracture walls by the fluid and r0 is the confining

stress. Fluid leak-off into the surrounding rock, ql, is a

predefined smooth function which is bounded at the

fracture tip, although no specific formulation is taken

during the derivation of the self-similar scheme.

The rheological behaviour of the fluid within the

fracture is approximated using a power-law formula-

tion, such that:

s ¼ M _�n; ð1Þ

where s denotes the shear stress, _� is the shear strain

rate, 0� n� 1 is the fluid behaviour index andM is the

consistency index. This two-parameter model is too

simple to fully incorporate all of the rheological

effects associated with hydraulic fracture, however

current higher order theories are largely incompatible

with the classical representation of penny-shaped HF

examined here. Additionally, the power-law formula-

tion is the standard rheological model used when

performing analytical examinations of HF. For a fuller

description of this, the authors direct the reader to

[12, 17].

For simplicity, the following notation is introduced:

M0 ¼ 2nþ1ð2nþ 1Þn
nn

M; E0 ¼ E

1� m2
; ð2Þ

where M0 denotes the modified fluid consistency

index.

2.2 The speed equation

In order to facilitate the analysis we shall utilize an

additional dependent variable, v, which describes the

average speed of fluid flow through the fracture cross-

section [14]. It will be referenced to in the text as the

fluid velocity and is defined as:

vðr; tÞ ¼ qðr; tÞ
wðr; tÞ ; vnðr; tÞ ¼ � 1

M0 w
nþ1 op

or
: ð3Þ

We assume that the leak-off ql is such that the fluid

velocity is finite at the crack tip, meaning that v has the

following property:

lim
r!lðtÞ

vðr; tÞ ¼ v0ðtÞ\1: ð4Þ

Additionally, given that the fracture apex coincides

with the fluid front (no lag), and that the tip singularity

of the leak-off function is weaker than in the Carter

law variant, the so-called speed equation [18] takes the

form:

dl

dt
¼ v0ðtÞ: ð5Þ

This Stefan-type boundary condition constitutes an

explicit method, as opposed to an implicit level set

method [19, 20], and can be effectively used to

construct an alternative mechanism of fracture front

tracing. The advantages of implementing such a

condition have been shown in [10–12].

2.3 Self-similar formulation

We define the computational domain in terms of the

normalized parameters:

~r ¼ r

lðtÞ ;
~t ¼ t

tn
; Lð~tÞ ¼ lðtÞ

l�
; tn ¼

M0

E0 ; ð6Þ

such that ~r 2 ½0; 1�, while l� is chosen for convenience.
We introduce the following separation of variables:

wðr; tÞ ¼ l�Wð~tÞŵð~rÞ;

qðr; tÞ ¼ l2�

t
1
n
n

W
2þ2

nð~tÞ
L

2
nð~tÞ

q̂ð~rÞ;

Q0ðtÞ ¼
l3�

t
1
n
n

W
2þ2

nð~tÞ
L

2
n
�1ð~tÞ

Q̂0;

ð7Þ

qlð~r;~tÞ ¼
l�

ct
1
n
n

W
0ð~tÞq̂lð~rÞ;

where Wð~tÞ is a smooth continuous function. By

separating the variables in this manner it becomes

possible to reduce the problem to a time-independent

formulation whenW is described by an exponential or

a power-law type function. From here on the spatial

components will be marked by a ’hat’-symbol, and

will describe the self-similar quantities. It is worth

noting that the separation of spatial and temporal

components given in (7) ensures that the qualitative

behaviour of the solution tip asymptotics remains the

same as in the time-dependent variant.

In the following analysis we takeW in the form of a

power-law (Table 1):
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Wð~tÞ ¼ aþ ~tð Þc: ð8Þ

This form of W, alongside the value of a and c, are

taken to ensure consistency with previous examina-

tions in the literature (e.g. [3, 10]). In this case, the

fracture length is given by:

Lð~tÞ ¼ 1þ 2

n

� �

qv̂0

� � n
nþ2

aþ ~tð Þcþ
n

nþ2;

q ¼ n

c nþ 2ð Þ þ n
:

ð9Þ

2.3.1 Crack tip asymptotics

Viscosity dominated regime (K̂Ic ¼ 0):

In the viscosity dominated regime the crack tip

asymptotics of the aperture and pressure derivative

can be expressed as follows:

ŵð~rÞ ¼ ŵ0 1� ~r2
� �a0þŵ1 1� ~r2

� �a1þŵ2 1� ~r2
� �a2

þ O 1� ~r2
� �a2þd
� 	

; ~r ! 1;

ð10Þ

dp̂

d~r
ð~rÞ ¼ p̂0 1� ~r2

� �a0�2þp̂1 1� ~r2
� �a0�1þO 1ð Þ;

~r ! 1:

ð11Þ

The asymptotic behaviour of the pressure function can

be derived from the above, however, this form is given

due to its use in computations (see the first part of this

paper [21] for more details).

As a consequence the fluid velocity behaves as:

v̂ð~rÞ ¼ v̂0 þ v̂1 1� ~r2
� �b1þO 1� ~r2

� �b2
� 	

; ~r ! 1:

ð12Þ

Note that we require v̂0[ 0 to ensure the fracture is

moving forward. Additionally, it can easily be shown

that the following relationship exists between the

aperture and fluid velocity tip asymptotics:

v̂0 ¼
2n

ðnþ 2Þ2
cot

np

nþ 2

� �

ŵnþ2
0

" #1
n

: ð13Þ

The values of constants ai, bi are given in Table 2. The

general formulae for the limiting cases n ¼ 0 and n ¼
1 remain the same as (10)–(12), with the respective

powers ai, bi again being determined according to

Table 2.

Toughness dominated regime ( ~KIc [ 0):

Near the fracture front the form of the aperture and

fluid velocity asymptotics remains the same as in the

viscosity dominated regime (10), (12), however, the

Table 1 List of notation Symbol Denotes

w(r, t) Fracture aperture

l(t) Fracture length

p(r, t) Net fluid pressure

q(r, t) Fluid flow rate

qlðr; tÞ Fluid leak-off, assumed smooth and bounded at the crack tip

v(r, t) Fluid velocity

Q0ðtÞ Fluid injection (pumping) rate

KIðtÞ Stress intensity factor

KIcðtÞ Fracture toughness

E Young’s modulus

M Fluid consistency index

n Fluid behaviour index

ai ith exponent of aperture asymptotics

bi ith exponent of fluid velocity asymptotics

m Poisson ratio

Xðr; tÞ Modified fluid pressure derivative

Uðr; tÞ reduced fluid velocity

WðtÞ Smooth continuous function defining the self-similar formulation
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multiplier of the aperture leading term can be stated

explicitly:

ŵ0 ¼
4
ffiffiffi

p
p K̂I ; ð14Þ

alongside a new relation between the asymptotic

terms:

v̂0 ¼
ð3� nÞð1� nÞ

4
tan

np

2

� 	

ŵnþ1
0 ŵ1

� �1
n

: ð15Þ

Meanwhile, the pressure derivative asymptote yields:

dp̂

dr̂
ð~rÞ ¼ p̂0 1� ~r2

� �a1�2þp̂1 1� ~r2
� �a2�2þO 1ð Þ;

~r ! 1:

ð16Þ

The values of ai, bi for this regime are provided in

Table 2. The asymptotics in the limiting cases n ¼ 0

and n ¼ 1 is given in ‘‘Appendix’’ (Eqs. (44) and (40)

respectively).

2.3.2 Behaviour as K̂Ic ! 1

In the previous paper [21], the behaviour of the

solution as K̂Ic ! 1 was shown to take the form:

ŵð~rÞ� 4
ffiffiffi

p
p K̂I

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

; p̂ð~rÞ�
ffiffiffi

p
p

2
K̂I ;

v̂0 �
3

8
ffiffiffi

p
p

K̂Ið3� qÞ
;

ð17Þ

~rv̂ð~rÞ ¼ v̂0 ~r2 þ 3� q

3
1� ~r2
� �

� �

þ O K̂
�1

Ic

� 	

; ð18Þ

~rq̂ð~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

2p

3~r2

3� q
þ 1� ~r2
� �

� �

þ O K̂
�1

Ic

� 	

;

ð19Þ

where q, for the case when W is defined by (8), is as

stated in (9).

2.3.3 The numerical algorithm

The separation of variables used in the self-similar

formulation, description of the crack tip asymptotics

and limiting behaviour in the case of infinite toughness

(given above) provide all of the details we need to

define the semi-analytical approximations of numer-

ical solutions and perform comparisons with other

benchmarks available in the literature. The full set of

governing equations (both the standard and self-

similar forms), alongside a complete description of

the computational algorithm used to obtain the

numerical reference data, are provided in part I of

this paper [21] and will not be repeated here.

It should however be stated that the accuracy of the

numerical scheme was tested against newly con-

structed analytical benchmarks and alternative error

measures based on the rate of solution convergence.

The relative error of the obtained solution is below

10�7 for all parameters when taking N ¼ 300 nodal

points to define the fracture. The computations

converge to the final result in under 20 iterations,

obtaining the solution in under 30 seconds when

taking N ¼ 300 boundary nodes. As such, the solution

accuracy is more than sufficient to provide a reliable

benchmark.

3 Numerical results

In this section, the algorithm described in part I of this

paper [21] is used to deliver highly accurate numerical

benchmark solutions. A comparative analysis with

other data available in the literature is given.

Table 2 Values of the basic constants used in the asymptotic expansions for ŵ and v̂ for 0\n\1

Crack propagation regime a0 a1 a2 b1 b2

Viscosity dominated 2

nþ 2

nþ 4

nþ 2

2nþ 6

nþ 2

1 2nþ 2

nþ 2

Toughness dominated 1

2

3� n

2

5� 2n

2

2� n

2

1
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3.1 Impermeable solid-reference solutions

With a suitable measure for testing the solution

accuracy in place we move onto examining the

solution variant most frequently studied in the liter-

ature, the case with a zero valued leak-off function and

with Q̂0 ¼ 1. Although there is no analytical solution

to this variant of the problem, due to its relative

simplicity, it is commonly used when testing numer-

ical algorithms. For this reason it is very important that

credible reference data is provided for this case, which

can be easily employed to verify various computa-

tional schemes. Both the viscosity and toughness

dominated regimes (for different values of the material

toughness: K̂Ic ¼ 1; 10; 100f g) will be investigated. In
the next subsection, accurate and simple approxima-

tions of the obtained numerical solutions will be

provided.

3.1.1 Semi-analytical benchmark solutions

While the numerical simulator constructed in the first

part of the paper [21] is capable of providing high

quality reference data, it is not necessarily in a form

which can be easily utilized when testing various

computational algorithms. Following the idea from

[12], we shall also deliver simple and accurate semi-

analytical approximations of the numerical solutions,

which can easily be used as benchmark examples

without the need for advanced computational pro-

grams. We provide below formulae mimicking the

crack aperture, the fluid velocity and the net fluid

pressure.

All the proposed relations preserve the proper

asymptotic behaviour at both the fracture origin and

tip. They were computed by taking solutions between

n ¼ 0:05 and n ¼ 0:95, with a step-size of n ¼ 0:05,

and defining approximating functions which predicted

each parameter to a desired accuracy. These approx-

imate solution components were then tested against

numerical results with a step-size of n ¼ 0:025, to

ensure that the predictions were accurate over the

whole range. Respective coefficients (provided in the

supplementary material for this paper) used in the

approximations have no set length (i.e. the number of

significant figures to which they are stated), as the final

accuracy of the solution was the deciding factor in

their construction.

As a result of this approach each approximated

parameter should be treated independently, which

means that the guaranteed accuracy does not embrace

the mutual interrelations between respective variables

(e.g. the fluid velocity computed according to (3) from

the approximate ŵ and p̂ is not expected to give the

same accuracy as that provided by the approximation

for v̂). Moreover, the high level of accuracy of the

approximate formulae is guaranteed over the follow-

ing interval of the fluid behaviour index:

0:05\n\0:95. The approximations for the limiting

cases n ¼ 0 and n ¼ 1 are given separately in

‘‘Appendix’’.

All semi-analytical benchmarks are obtained in the

power-law form of the self-similar solution (8), with

the following values for the constants:

a ¼ 0; c ¼ 1

3
1� 2n

nþ 2

� �

: ð20Þ

• Viscosity dominated regime (KIc ¼ 0)

For the viscosity dominated regime we propose the

following approximations of the dependent variables:

ŵapxð~r;nÞ ¼w0

�

ð1� ~r2Þa0 þw1ð1� ~r2Þa1 þw2f2ð~rÞ

þw3ð1� ~r2Þa1þ1
~r2�n

þ w4ð1� ~r2Þa1þ2
~r2�nþw5ð1� ~r2Þ5=2~r3�n

þw6f1ð~rÞ
�

;

ð21Þ

~rv̂apxð~r; nÞ ¼ v1 þ v2ð1� ~r2Þ þ v3~r
2�n þ v4ð1

� ~r2Þb2~r2; ð22Þ

p̂apxð~r; nÞ ¼ ĈpðnÞ þ p1~r
1�n þ p2~r 1� ~r2

� �a0�1

þ p3

n
þ p4~r

ffiffiffiffiffiffiffiffiffiffiffi

1� ~r
p

þ p5

n
1� ~rð Þa1�1þp6 1� ~rð Þa1 ;

ð23Þ
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v̂0;apxðnÞ ¼
X

7

i¼0

Cin
i; ĈpðnÞ ¼

P1
i¼0 Din

i

P3
k¼0 Xknk

; ð24Þ

with:

f1ð~rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

� 2

3
ð1� ~r2Þ3=2

� ~r2 log
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

~r

�

�

�

�

�

�

�

�

�

�

; ð25Þ

f2ð~rÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

þ ~r2 log
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

 !

: ð26Þ

The coefficientswiðnÞ, viðnÞ, piðnÞ,Ci,Di,Xk are given

in the supplementary material, while a0, a1 and b2 can

be found in Table 2. This formulation is valid for all

0:05\n\0:95, with any modifications required in the

limiting cases n ¼ 0 and n ¼ 1 being outlined in

‘‘Appendix’’.

Although the self-similar crack propagation speed

v̂0 can be obtained by evaluating the general formula

(22) at the fracture front, an alternative expression

(24)1 has been introduced. This is to ensure the highest

possible level of accuracy for this important param-

eter, which is needed both to compute the fracture

length Lð~tÞ, as well as the transformations to alterna-

tive schemes from the literature [e.g. (33)].

Graphs demonstrating the accuracy of approxima-

tions for the aperture, fluid velocity and pressure are

provided in Fig. 1. The respective error measures are

defined as:

dŵapxð~r; nÞ ¼
jŵnð~rÞ � ŵapxð~r; nÞj

ŵnð~rÞ
;

dv̂apxð~r; nÞ ¼
jv̂nð~rÞ � v̂apxð~r; nÞj

v̂nð~rÞ
;

ð27Þ

dv̂0;apxð~nÞ ¼
jv̂0;n � v̂0;apxðnÞj

v̂0;n
;

dp̂apxð~r; nÞ ¼ jp̂nð~rÞ � p̂apxð~r; nÞj;
ð28Þ

where ŵnð~rÞ, v̂nð~rÞ, v̂0;n and p̂nð~rÞ are the benchmark

solutions obtained by the computational algorithm for

a given value of the fluid behaviour index n.

It can easily be seen that the relative accuracy of the

formulae for ŵapx, v̂apx, and absolute accuracy for p̂apx,

are of the order 10�4 over almost the entire interval of

n. Only for n ¼ 0 does the error of ŵapx slightly exceed

10�3, while the accuracy of the pressure

approximation falls below 10�3 for specific values of

n[ 0:8. The accuracy of v̂0;apx, computed from (24)1,

is reported in Fig. 2. It shows that the relative error is

below 2� 10�6 for any value of the fluid behaviour

index.

• Toughness dominated regime (KIc[ 0)

In this case the form of the self-similar crack

propagation speed approximation, v̂0;apx, remains as

in (24)1. The other solution components are given in

the form:

ŵapxð~r;nÞ ¼ŵ0

�

ffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

þw1ð1� ~r2Þa1

þw2ð1�~r2Þ3=2 logð1� ~r2Þ

þw3ð1� ~r2Þ3=2þw4~rð1� ~r2Þa2 þw5f1ð~rÞ
�

;

ð29Þ

~rv̂apxð~r; nÞ ¼ v1 þ v2ð1� ~r2Þb1 þ v3~r
2�n þ v4ð1

� ~r2Þ;
ð30Þ

p̂apxð~r; nÞ ¼ p1 þ p2f3ð~r; nÞ þ p3ð1� ~r2Þa1�1

þ p4~r
1�n; ð31Þ

with:

f3ð~r; nÞ ¼ a1
ffiffiffi

p
p Cða1Þ

Cða1 þ 1=2Þ 2F1 1;
n� 2

2
;
1

2
; r2

� �

;

ð32Þ

where ŵ0 is given by (14), f1 takes the form (25), and

a1 is in Table 2. The coefficients wiðnÞ, viðnÞ, piðnÞ, Ci

are given in the supplementary material for

K̂I ¼ 1; 10f g. For n ¼ 0; 1f g some parameters require

alternate representations, which are outlined in

‘‘Appendix’’.

This time the quality of approximations is better

than those for the viscosity dominated regime (see

Figs. 3, 4). For K̂Ic ¼ 1 the approximation errors do

not exceed 3� 10�4, regardless of the considered

variable or the value of the fluid behaviour index

n. When analyzing the case K̂Ic ¼ 10 one can see that

the accuracy of approximations improved even fur-

ther, being up to two orders of magnitude better than

that for K̂Ic ¼ 1.
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3.1.2 Verification of other results from the literature

In the following, using our highly accurate numerical

scheme, we will verify the results provided so far by

other authors. Unfortunately, there are only a handful

of papers where respective data is provided in a form

which enables comparison. In most cases only graphs

of the dependent variables are given. In order to make

sure that respective results are comparable, the zero

leak-off case will again be examined, taking fixed

Q̂0 ¼ 1, with transformations between the schemes

outlined as necessary. Throughout this section we will

use N ¼ 300 nodal points, which in previous the first

paper (Part I) [21] we have shown is accurate to 7

significant digits.
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Fig. 1 Relative error of the

approximations of the

numerical solution for a the

aperture (21), b the fluid

velocity (22), and the

absolute error of

approximation of the

numerical solution for c the

fluid pressure (23), in the

viscosity dominated regime

(K̂Ic ¼ 0)
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We begin by analyzing the solution delivered by

Linkov in [10] for the viscosity dominated regime

(K̂Ic ¼ 0). Note that, as slightly different normaliza-

tions are used to obtain the self-similar solution, the

following transformations are required to obtain a

comparison between the results:

ŵð~rÞ ¼ f
n

nþ2ŵLð~rÞ; p̂ð~rÞ ¼ f
n

nþ2p̂Lð~rÞ;

v̂ð~rÞ ¼ fv̂Lð~rÞ; Q̂0 ¼
1

n3�;n
f
2 n2þ2ð Þ

nþ2 Q̂
L

0 ;

q̂lð~rÞ ¼ f
n

nþ2q̂Ll ð~rÞ; n�;n ¼ 2p

Z 1

0

1ŵLð1Þ d1
� ��1

3

;

ð33Þ

where

f ¼ 3v̂0 nþ 2ð Þ
2nþ 2

: ð34Þ

Here n�;n is Linkov’s normalized fracture length when

Q0 ¼ 1. It can easily be shown using the equation for

fracture length (9) that, in order for the two formula-

tions to coincide, the following scaling condition must

be met:

n�;n ¼ f
2 nþ1ð Þ
3 nþ2ð Þ: ð35Þ

The values of the self-similar fracture opening, crack

propagation speed and fracture half-length are shown

in Table 3. The results obtained in [10] are included

for completeness, and denoted with a superscript L.

The notation ŵTð0Þ represents the transformed crack

opening computed according to (33)1 [this value is to

be compared with ŵLð0Þ].
It can easily be seen that there is a high level of

correspondence between the results in this paper and

those provided by Linkov for different values of the

fluid behaviour index n. The maximum relative

discrepancy is of the order 4:3� 10�4, which consid-

ering the accuracy of our solution demonstrated in the

previous paper, describes the level of accuracy

achieved by the solution from [10]. We note that, in

our approach, it is sufficient to take merely N ¼ 40

points to have a similar accuracy.

Another solution to be analyzed is that from

Savitski and Detournay [3], which provides asymp-

totic approximations for both the viscosity and tough-

ness dominated regimes in the case of a Newtonian

fracturing fluid. The interrelations between the self-

similar crack opening and crack propagation speed

given in [3] and our results are as follows:

�Xm;0ð~rÞ ¼
4

9v̂0

� �1
3

ŵð~rÞ; Vð~rÞ ¼ 4

9v̂0
v̂ð~rÞ: ð36Þ

Savitski and Detournay specify the following asymp-

totic approximation for the self-similar aperture:

�Xm;0ð~rÞ ¼ 2
1
3 � 3

1
6 1� ~r2
� �

2
3þO 1� ~r2

� �
5
3

� 	

; ~r ! 1:

ð37Þ

Using the relevant transformations yields:

ŵð~rÞ ¼ 2
1
3 � 3

1
6
9v̂0

4

� �1
3

1� ~r2
� �

2
3þO 1� ~r2

� �
5
3

� 	

;

~r ! 1:

ð38Þ

Note that interrelation between ŵ0 and v̂0 resulting

from (38) is exactly the same as the one given by (13)

based on the speed equation. Thus, any solution in the

viscosity dominated regime (for n ¼ 1) preserving the

latter will be equivalent in terms of ŵ0 and v̂0 to the

data provided in [3].

For the toughness dominated regime it is unfortu-

nately not possible to perform the same comparison as
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Fig. 2 Relative error of approximation for the self-similar crack

propagation speed v̂0 when evaluated using the specialized

equation for v̂0;apxð24Þ1
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above with the results from [3]. This is due to the fact

that Savitski and Detournay’s solution is only self-

similar in the limiting casesKI ¼ 0;1f g, and is a time

dependent function of KIðtÞ in the interim.

It is however possible to check the ratio between the

fracture pressure and aperture with the following

equality:

ŵð~rÞ
p̂ð~rÞ ¼

Xkð~rÞ
c0Pkð~rÞ

; ð39Þ

where Xk is Savitski and Detournay’s normalized

aperture, Pk is the normalized pressure and c0 ¼
3=p

ffiffiffi

2
p� �

2
5 is the first term of the normalized asymp-

totic expansion of the fracture length [3]. Noting that
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the paper gives the limiting values for KIc ! 1 as

being Xk;0 ¼ 3=8pð Þ15
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

and Pk;0 ¼ p p=ð
12Þ15=8, one can easily determine from (17) that ratio

(39) is satisfied in the limit. As such, we can evaluate

the validity of the asymptotic fromulae from [3] by

examining the relative ratio between the two sides of

(39), which we will label dS. The results for this

metric, pertaining to the values

K̂I ¼ 1; 2; 5; 10; 100f g, are provided in Fig. 5.
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It is evident from this comparison that there is a

clear correspondence between the results of this paper

and those obtained by Savitski and Detournay. The

disparity between respective data in the large tough-

ness case, K̂Ic ¼ 100, is compatible with the error of

our solution demonstrated for this model in the

previous paper. This is a strong verification of the

validity of the asymptotic formulae from [3]. How-

ever, the accuracy of those approximations diminishes

greatly for lower values of the fracture toughness, with

an error of order 10�1 when K̂I ¼ 1. This, in turn,

provides us with an estimate of when the formula in [3]

loses its practical applicability.

4 Conclusions

In this paper, highly accurate numerical reference

solutions for a penny-shaped hydraulic fracture in the

case of an impermeable solid have been delivered.

Simple and accurate approximate formulae mimicking

these solutions, over whole range of the fluid

behaviour index, have been given for fixed values of

the material toughness. These constitute a set of

accurate and easily accessible reference solutions

when investigating the performance of other compu-

tational algorithms. Verification of other results

available in the literature has been performed.
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Appendix: Asymptotics and semi-analytical

approximations for the limiting cases: Newtonian

and plastic fluids

Newtonian fluid: n ¼ 1

Basic formulae

In the case of a Newtonian fluid the majority of the

results remains the same as in the general case (setting

n ¼ 1), but a few constants and functions will take

alternate forms. These are detailed below.

The crack tip asymptotics in the viscosity domi-

nated regime can be described by general relations

(10)–(12). However, in the toughness dominated mode

one has:

ŵð~rÞ ¼ ŵ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

þ ŵ1 1� ~r2
� �

þ ŵ2 1� ~r2
� �

3
2log 1� ~r2

� �

þ O 1� ~r2
� �

3
2

� 	

; ~r ! 1;

ð40Þ

dp̂

d~r
¼ p̂0 1� ~r2

� ��1þp̂1 1� ~r2
� ��1

2þO 1ð Þ; ~r ! 1:

ð41Þ

Semi-analytical approximation

The semi-analytical approximations for the aperture

and fluid velocity remain the same as those presented

in Sect. 3.1.1, however, the form of the pressure

function must be modified. We now have:

• The viscosity dominated regime (KIc ¼ 0):

Here the form of the aperture approximation (21)

remains the same as in the general case, but the

approximations of the fluid velocity and pressure now

become:

p̂apxð~r; nÞ ¼ ĈpðnÞ þ p1 logð~rÞ þ p2~r 1� ~r2
� ��1

3þp3

þ p4~r
ffiffiffiffiffiffiffiffiffiffiffi

1� ~r
p

þ p5 1� ~rð Þ23þp6 1� ~rð Þ53;
ð42Þ

with ĈpðnÞ defined by (24)2.

• The toughness dominated regime (KIc[ 0):

The form of the aperture (29) and fluid velocity (30)

approximations are the same as in the general case, but

the approximation of the pressure is now:

p̂apxð~r; nÞ ¼ p1 þ p2 logð1� ~r2Þ þ p3 logð~rÞ
þ p4~r

ffiffiffiffiffiffiffiffiffiffiffi

1� ~r
p

: ð43Þ

Perfectly plastic fluid: n ¼ 0

Basic formulae

The crack tip asymptotics in the viscosity dominated

regime remains in the same form as was outlined in

(10)–(12). In the toughness dominated mode however

it now yields:

ŵð~rÞ ¼ ŵ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

þ ŵ1 1� ~r2
� �

3
2log 1� ~r2

� �

þ ŵ2 1� ~r2
� �

3
2þO 1� ~r2

� �
5
2

� 	

; ~r ! 1;

ð44Þ

dp̂

d~r
¼ p̂0 1� ~r2

� ��1
2þO 1ð Þ; ~r ! 1: ð45Þ
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Semi-analytical approximation

As a result of these changes to the system behaviour

and asymptotics, the semi-analytical approximations

presented in Sect. 3.1.1 take the following form when

n ¼ 0:

• The viscosity dominated regime (KIc ¼ 0):

Here the formof the aperture approximation (21) remains

the same as in the general case, however, the approxi-

mations of the fluid velocity and pressure are now:

~rv̂apxð~r; nÞ ¼ v1~r þ v2ð Þ= ~r3 ¼ þv3~r
2 þ v4~r þ v5

� �

;

ð46Þ

p̂apxð~r; nÞ ¼ ĈpðnÞ þ p1~r þ p2~r log 1� ~rð Þ þ p3

þ p4~r
ffiffiffiffiffiffiffiffiffiffiffi

1� ~r
p

þ p5 1� ~r2
� �

log 1� ~r2
� �

þ p6 1� ~rð Þ
þ p7 1� ~rð Þ2; ð47Þ

with ĈpðnÞ defined by (24)2.

• The toughness dominated regime (KIc[ 0):

The pressure approximation (31) is the same as in the

general case, however, the aperture and fluid velocity

approximations become:

ŵapxð~r; nÞ ¼ ŵ0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ~r2
p

þ w1ð1� ~r2Þ3=2

þ w2ð1� ~r2Þ3=2 logð1� ~r2Þ
þ w3ð1� ~r2Þ3 logð1� ~r2Þ
þ w4ð1� ~r2Þ5=2~r2 þ w5fXÞ;

ð48Þ

~rv̂apxð~r; nÞ ¼ v1 þ v2ð1� ~r2Þ2 logð1� ~r2Þ þ v3ð1
� ~r2Þ2 þ v4ð1� ~r2Þ2~r2 logð~rÞ;

ð49Þ

with fX being given in (25) and ŵ0 in (14).
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