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[1] We present a new computational modeling framework, Fluidity, for application to a range of two‐ and
three‐dimensional geodynamic problems, with the focus here on mantle convection. The approach centers
upon a finite element discretization on unstructured simplex meshes, which represent complex geometries
in a straightforward manner. Throughout a simulation, the mesh is dynamically adapted to optimize the
representation of evolving solution structures. The adaptive algorithm makes use of anisotropic measures
of solution complexity, to vary resolution and allow long, thin elements to align with features such as
boundary layers. The modeling framework presented differs from the majority of current mantle convection
codes, which are typically based upon fixed structured grids. This necessitates a thorough and detailed val-
idation, which is a focus of this paper. Benchmark comparisons are undertaken with a range of two‐ and
three‐dimensional, isoviscous and variable viscosity cases. In addition, model predictions are compared to
experimental results. Such comparisons highlight not only the robustness and accuracy of Fluidity but also
the advantages of anisotropic adaptive unstructured meshes, significantly reducing computational
requirements when compared to a fixed mesh simulation.
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1. Introduction

[2] Mantle convection can be approximated as a fluid
dynamical process, involving a number of com-
plicated physical effects [Turcotte andOxburgh, 1967;
McKenzie et al., 1974]. These include the following:
(1) strain localization and brittle failure at the surface;
(2) exothermic and endothermic mineralogical phase
changes; (3) potential chemical stratification/lateral
heterogeneity; (4) a complex rheology that depends
strongly on pressure, temperature, composition,
stress, grain size, volatile content, and material phase;
and (5) both internal heating from radioactivity and
substantial basal heating from the core [e.g., Bunge
et al., 1997]. Several of these effects are becoming
well constrained through experimental procedures,
observational data and numerical simulation. How-
ever, others remain poorly understood. This is largely
because realistic simulations of global mantle con-
vection, incorporating all necessary dynamical com-
plexities, are often unfeasible, due to limitations in
numerical methods and computational resources. For
example, excluding a few notable exceptions [e.g.,
Stadler et al., 2010; Alisic et al., 2011], global mantle
convection models do not fully utilize constraints on
mantle and plate boundary rheology, as numerical
simulation at the required resolution is not possible
with most current methods [e.g., Zhong et al., 2000;
Tackley, 2008; Davies and Davies, 2009]. Similar
problems occur with global adjoint/data assimilation
techniques [Bunge et al., 2003]: detailed regional
geological constraints are often ignored as the
underlying computational grid is too coarse to reliably
assimilate the information. As a result, most adjoint
studies, thus far, have utilized high‐resolution
regional models, which have limitations [e.g., Liu et
al., 2008]. The examples presented highlight two
common themes within the geodynamical modeling
community: (1) the need to resolve a range of length
and time scales, within a single model, and (2) the
failure of most current solution methods at doing so.

[3] Adaptive mesh refinement methods, where the
underlying computational grid is modified as the
simulation evolves, provide a means to address
these issues. Their applicability to geodynamics has
already been examined: in 2‐D, Davies et al. [2007,
2008] show that unstructured adaptive mesh
refinement methods significantly improve the effi-
ciency of thermal and thermochemical mantle
convection simulations. Burstedde et al. [2008]
extend this work to 3‐D petascale parallel
domains, via structured adaptive mesh refinement,
thus allowing for global‐scale mantle convection
simulations with a local resolution of 1 km [Stadler

et al., 2010; Alisic et al., 2011]. Although built
upon different foundations (unstructured versus
structured discretizations), the success of these
studies indicates that adaptive mesh refinement
methods have a fundamental role to play in future
geodynamical simulations. However, it should be
noted that such methods are only advantageous in
simulations where (1) regions of dynamic signifi-
cance are of limited spatial extent and (2) the
location and/or extent of these regions varies in
time. In simulations requiring high‐resolution
globally, fixed uniform meshes are often the most
suitable. Alternatively, if the location of dynamically
significant regions is known a priori and such
regions are of limited spatial extent, fixed nonuniform
meshes often suffice [e.g., Syracuse et al., 2010].

[4] In this paper, we present Fluidity, a new com-
putational framework for geodynamical modeling,
principally developed by the Applied Modelling
and Computation Group at Imperial College
London [e.g., Pain et al., 2001; Piggott et al., 2008].
The code has several state‐of‐the‐art features that
offer significant benefits for geodynamical simu-
lations: (1) it uses an unstructured mesh, which
enables straightforward multiresolution represen-
tation of complex geometry domains; (2) it
dynamically optimizes this mesh, providing increased
resolution in areas of dynamic importance, thus
allowing for accurate simulations, across a range of
length scales, within a single model. Mesh opti-
mization is enhanced using anisotropic elements;
(3) it utilizes implicit solvers, which allow for large
time steps (advection at Courant numbers greater
than one) with minimal loss of accuracy. These
attributes allow Fluidity to simulate mantle con-
vection accurately and efficiently.

[5] The goals of this paper are threefold: (1) to
introduce Fluidity, and its unique numerical capa-
bilities, to the community, (2) to validate the code
against known benchmark and laboratory solutions,
and (3) to further demonstrate the applicability of
mesh adaptivity for geodynamical flows. Although
Fluidity is optimized to run on parallel archi-
tectures and performs parallel mesh adaptivity (the
subdomains used in parallel computing automati-
cally adjust themselves to balance the computa-
tional load on each processor, as the mesh evolves
[Catalyurek et al., 2007; Piggott et al., 2008;
Gorman et al., 2009]), we focus here upon serial
simulations. The structure of the paper is as
follows: we begin by presenting an overview of
Fluidity, covering the discretizations and solution
strategies employed within the code, in addition to
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the mesh optimization methodologies. This is fol-
lowed by results from 2‐D [Blankenbach et al.,
1989] and 3‐D [Busse et al., 1994] benchmark
problems. The new computational framework is
subsequently applied to simulations of laboratory
generated plumes [Vatteville et al., 2009]. In
addition to providing a thorough validation of
the code, which complements standard benchmark
tests, these final simulations demonstrate the sig-
nificant benefits of adaptivity for simulating mantle
convection and geodynamical flows in general.

2. Fluidity: Equations, Discretization,
and Solution Strategies

2.1. Governing Equations

[6] The equations governing mantle convection are
derived from conservation laws of mass, momentum
and energy. The simplest mathematical formulation
assumes incompressibility and the Boussinesq
approximation [McKenzie et al., 1974]. Under this
formulation, the nondimensional momentum and
continuity equations are

X

j

@j�ij þ Ra0Tk̂ i ¼ 0; ð1Þ

X

j

@juj ¼ 0; ð2Þ

where ui, sij and T are the velocity, stress and
temperature, respectively, k̂ i is the unit vector in the
direction opposite to gravity and Ra0 denotes the
dimensionless Rayleigh number, which quantifies
the vigor of convection:

Ra0 ¼
�0�DTgd3

�0�
: ð3Þ

Here, r0 denotes reference density, a is the thermal
expansion coefficient, DT is the characteristic
temperature change across the fluid layer, g is the
gravitational acceleration, d is the characteristic
length, m0 is the reference dynamic viscosity and �
is the thermal diffusivity. Note that the above
nondimensional equations are obtained from the
following characteristic scales: length d; time d2/�;
and temperature DT.

[7] When simulating incompressible flow, it is
convenient to decompose the full stress tensor,
sij, into deviatoric and volumetric components,
according to

�ij ¼ �ij � p�ij; ð4Þ

where tij is the deviatoric stress tensor, p is dynamic
pressure and dij is the Kronecker delta function.
Substituting (4) into (1) and utilizing the following
constituative relation, which relates the deviatoric
stress tensor, tij, to the strain rate tensor, _"ij:

�ij ¼ 2� _"ij ¼ � @jui þ @iuj
� �

ð5Þ

yields
X

j

@j � @jui þ @iuj
� �� �

� @ipþ Ra0Tk̂ i ¼ 0: ð6Þ

The viscous flow problem can therefore be posed in
terms of pressure, p, velocity, ui, and temperature,
T. The evolution of the thermal field is controlled
by the following advection‐diffusion equation:

@T

@t
þ
X

i

ui@iT ¼
X

i

@i �@iTð Þ: ð7Þ

These governing equations are sufficient to solve
for the three unknowns, together with adequate
boundary and initial conditions.

2.2. Discretization Schemes

[8] Analytical solutions to this coupled system of
equations are generally unavailable, except in
simple scenarios. However, their complexity can be
reduced by discretizing the equations and approx-
imating their solutions on a mesh of points. We
focus here on finite element discretization methods,
which form the heart of Fluidity and are ideally
suited to unstructured meshes.

2.2.1. Finite Element Discretization of the
Stokes Equations

[9] The Galerkin finite element discretization,
applied to (6) and (2) starts from the weak form of
the equations. We choose a collection of functions,
M, to test the continuity equation, and vector val-
ued functions, Ni, to test the momentum equation,
and require that
Z

X

i; j

@jNi

� �

� @jui þ @iuj
� �

þ Ni@ip
� �

¼
Z

X

i

NiRa0Tk̂ i;

ð8Þ

Z

X

j

@jM
� �

uj ¼ 0; ð9Þ

for all test functions Ni and M. Note that we have
integrated by parts the viscosity term in the
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momentum equation and the divergence term in the
continuity equation, but left out the boundary terms

Z

@W

X

i; j

Ni� @jui þ @iuj
� �

nj ð10Þ

and

Z

@W

X

j

Mujnj; ð11Þ

respectively. Here, nj is the outward pointing
normal to the boundary ∂W. These boundary terms
are dealt with in combination with the boundary
conditions.

[10] For no‐slip boundary conditions all velocity
components, ui, are strongly enforced to be zero.
This means that all test and trial functions with
nonzero components at the boundary are eliminated
from the test and trial space and, hence, both (10)
and (11) disappear. For free‐slip conditions com-
bined with a no‐normal flow condition, this is done
only in the normal direction and (11) disappears.
However, tangential velocity components are left
free in both test and trial space. In this case, the
no‐normal stress condition, ∑j njsij = 0, is substi-
tuted in (10) and again the integral disappears.

[11] Finite element discretization then proceeds by
restricting the solution fields, ui and p, to a finite‐
dimensional function space, the trial space. Trial
spaces are constructed by generating a mesh, thus
dividing the domain into a set of polygonal ele-
ments, and restricting the functions to be poly-
nomials of a certain degree within each element.
Fluidity offers a range of element pairs. However,
in this paper, we exclusively use the P2‐P1 dis-
cretization, which consists of piecewise quadratic
functions (P2) for velocity and piecewise linear
functions (P1) for pressure. The P1 basis is denoted
by Ma, where a is the index of the associated ver-
tex, while the basis of P2 is denoted by Nb, where b
ranges over all quadratic nodes in an element. The
discrete velocity and pressure solutions can then be
written as linear combinations of Nb and Ma,
respectively:

ui ¼
X

b

ubiNb and p ¼
X

a

paMa; ð12Þ

where the coefficients ubi and pa represent values of
these functions at the associated nodes.

[12] Substitution of these trial functions into (8)
and (9) and using the same Nb and Ma as test
functions, generates a linear system of the form

K G

GT 0

� �

u

p

� �

¼ f

0

� �

; ð13Þ

where u and p are vectors of the coefficients ubi
and pa. The matrices K and G and right‐hand side
vector f are given by

Kbicj ¼
Z

@jNb

� �

� @iNcð Þ þ
X

k

@kNbð Þ� @kNcð Þ�ij;

Gabj ¼
Z

@jMa

� �

Nb;

f
bi

¼
Z

NbRa0Tk̂ i:

2.2.2. Solution of the Discretized System

[13] This system of equations is indefinite and,
hence, specialized solution algorithms are required
(for an excellent overview of some popular solution
schemes, see May and Moresi [2008]). The method
adopted by the Stokes solver within Fluidity is
based upon a full‐projection/pressure‐correction
approach. In this algorithm, the velocity and pres-
sure solutions are obtained as follows. Note that it
is assumed we know the state of all variables at the
nth time step and that we wish to calculate their
value at the (n + 1)th step.

[14] 1. Given an initial pressure field p0 (we use the
pressure from the previous time step or iteration),
solve for a preliminary velocity u* in

Ku* þ Gp
0
¼ f : ð14Þ

[15] 2. The resulting velocity will, in general, not
be divergence free. To project back to a divergence
free solution, the pressure is corrected pn+1 = p0 +
Dp, where Dp is obtained from the following
pressure correction equation:

GTK�1GDp ¼ GTu*: ð15Þ

[16] 3. A velocity correction is performed, given by

unþ1 ¼ u* � K�1GDp: ð16Þ

[17] It is easily verified that the resulting un+1 and
pn+1 are solutions of (13). This solution procedure
is equivalent to the Schur Complement Reduction
method in the study by May and Moresi [2008].

[18] In Fluidity, iterative methods are utilized to
solve these equations. Due to the slow convergence
of stationary iterative methods, we consider pre-
conditioned Krylov subspace methods only [e.g.,
Elman et al., 2005; May and Moresi, 2008; Geenen
et al., 2009]. For this we rely on the Portable
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Extensible Toolkit for Scientific Computation
(PETSc) library [Balay et al., 1997].

[19] For the evaluation of (14) and (16) we solve a
linear system with the symmetric positive definite
matrix K. For this we use the Conjugate Gradient
(CG) method with an algebraic multigrid (AMG)
preconditioner, based on the smoothed aggregation
method of Vanek et al. [1996]. Fluidity implements
its own version of this algorithm [Kramer et al.,
2010].

[20] The pressure correction equation (15) is solved
using the FGMRES Krylov method [Saad, 1993],
preconditioned with a pressure mass matrix, scaled
by the local inverse of viscosity (see Verfurth
[1984], Benzi et al. [2005], and May and Moresi
[2008] for further details). In solving (15), we
adopt a matrix‐free representation of GTK−1G, as
an explicit construction of this Schur complement
matrix would be expensive due to the presence of
K−1. This requires one additional inner solve of K,
for every iteration of the FGMRES method, for
which we again use CG preconditioned with AMG.

2.2.3. Discretization and Solution of the
Advection‐Diffusion (Temperature) Equation

[21] When applied to (7), the Galerkin finite ele-
ment discretization yields the following matrix
equation:

MT þ A uið ÞT þ DT ¼ 0: ð17Þ

Here M, A and D are the mass, advection and
diffusion matrices, respectively, given by

Mab ¼
Z

NaNb; ð18Þ

A uið Þab¼
Z

X

i

Naui@iNb; ð19Þ

Dab ¼
Z

X

i

@iNað Þ� @iNbð Þ; ð20Þ

and T is the vector of coefficients, Ta, such that T =
∑aTaNa. Although available in Fluidity, the results
presented here were found to be sufficiently
smooth that no stabilization of the Galerkin dis-
cretization (e.g., SUPG [Hughes and Brooks, 1982])
was required, whilst also allowing the use of a P2
discretization for T. Dirichlet boundary conditions
are imposed strongly and homogeneous Neumann
boundary conditions ∑j nj∂jT = 0 weakly so that no
additional boundary terms are necessary in A and D.

[22] Temporal discretization is achieved via a classic
	 scheme:

M
T nþ1 � Tn

Dt
þ A unþ	nli

� 	

T nþ	T þ DTnþ	T ¼ 0: ð21Þ

Here

T nþ	T ¼ 	TT
nþ1 þ 1� 	Tð ÞTn; 0 ⩽ 	T ⩽ 1: ð22Þ

[23] Equation (21) depends on the solution of (13)
for the advective velocity. Vice versa the resulting
temperature feeds back into (13) via the buoyancy
term, and in some cases the viscosity. The non-
linear coupling between these equations is solved
via a simple Picard iteration, where, in each itera-
tion, the latest available values for the nonlinear
terms are used. For the solution of (21), if ~ui

n+1 is
the velocity field obtained in the previous solution
of (13), the advective velocity is given by

unþ	nli ¼ 	nl~u
nþ1
i þ 1� 	nlð Þuni ; 0 ⩽ 	nl ⩽ 1: ð23Þ

[24] Using equation (22), (21) can be rearranged
as a single matrix equation for the unknown vector
Tn+1:

Mþ 	TDt A unþ	nli

� 	

þ D
� 	h i

Tnþ1

¼ M� 1� 	Tð ÞDt A unþ	nli

� 	

þ D
� 	h i

Tn: ð24Þ

We use a GMRES Krylov subspace method to
solve this system [Saad, 1993], with successive
over relaxation (SOR) preconditioning. In all
results that follow, 	nl = 	T = 0.5. Our time stepping
algorithm therefore reduces to the well‐known
Crank‐Nicholson scheme.

3. Anisotropic Mesh Adaptivity

3.1. Background and Motivation

[25] Once the discretization underlying the model-
ing framework is in place, a robust method to adapt
the computational mesh is required. Mesh optimi-
zation is used to best represent evolving solution
structures and to reduce discretization errors. Our
approach is motivated by the need to identify
anisotropy so that such information can be built
into the eventual adapted mesh.

[26] Isotropic unstructured meshes enforce the same
grid point spacing in all directions. Certain dynam-
ical features, however, are highly anisotropic, as
material properties vary only in specific directions.
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For example, at a boundary layer, properties vary
rapidly normal to the boundary, but are often rel-
atively smooth along the boundary. The most
suitable grid point spacing would therefore be
smallest normal to the boundary layer. However, an
isotropic mesh will also impose this grid point
spacing along the length of the boundary, thus
increasing the computational requirements of the
simulation. Allowing resolution to vary in different
directions means that the grid point spacing can be
at its smallest normal to a boundary layer, but
larger along its length. Such unstructured, aniso-
tropic meshes aim to represent boundary layers and
one‐dimensional flow features with the minimum
required number of grid points, thus providing
a significant advantage over structured/isotropic
meshes, such as those utilized by Burstedde et al.
[2008].

[27] The approach described here is a metric based
formulation, built upon the Hessian matrix. This
allows element size/edge length to be controlled by a
specified interpolation error. Hessian based inter-
polation errors are cheap to compute, yield direc-
tional information and give a good guide to problem
complexity [e.g., Lohner et al., 1985; Peraire et al.,
1987; Wu et al., 1990; Pain et al., 2001; Davies
et al., 2007; Piggott et al., 2008]. Following con-
struction of the metric, a functional, which gauges
mesh quality in terms of element size and shape, is
optimized, by locally adjusting mesh connectivity
and nodal positions. The final result is a mesh that
represents the solution to the desired interpolation
error, within a given tolerance.

3.2. Estimates of Discretization Error:
The Metric

[28] To optimize the mesh a solution‐dependent
error indicator, which varies in space and time and
yields the desired mesh resolution, is required. In
Fluidity, this is achieved via the construction of a
metric tensor field that is built upon the Hessian
matrix for each solution component and user‐
defined definitions of (potentially spatially varying)
desired errors. In 1‐D, the interpolation error, ",
may be approximated by

" ¼ h2e
@2 

@x2

























; ð25Þ

where he is the length of element e and y is the
solution variable. In multiple dimensions

" ¼
X

i; j

vj Hj jijvi ð26Þ

with a Hessian matrix, Hij = ∂i∂jy, and vector, vi,
representing the length and desired direction, which
may be arbitrarily oriented. Note that once Hij is
evaluated (see section 3.3), signs of the curvatures
are removed by taking absolute values of the
eigenvalues of Hij (only the magnitude of the cur-
vature is significant).

[29] For a specified interpolation error, "̂, a metric,
Mij, is defined such that an element size (edge
length) is unity if it has the desired interpolation
error. Thus

Mij ¼
1

"̂
Hj jij: ð27Þ

The length of vi with respect to Mij is then calcu-
lated from

kvikMij
¼

X

i; j

vjMijvi

 !1=2

: ð28Þ

Thus, in 1‐D, for an element e, of length he in
Euclidian space, the length, khekMij

, with respect to
Mij is

khekMij
¼ h2e

1

"̂

@2 

@x2

























� �1=2

: ð29Þ

Thus, if khekMij
is less than one, " is lower than the

desired interpolation error, "̂, and the mesh may be
locally coarsened. Conversely, if khekMij

is greater
than one the desired interpolation error is not
attained and the mesh must be refined.

[30] The metric, Mij, is subsequently modified to
take into account maximum and minimum element
sizes, in addition to bounds on the aspect ratio of
elements. The metric also incorporates controls on
edge length gradation (i.e., the maximum allowable
jump in edge length from element to element) and
it is possible to advect the metric forward in time,
thus providing an estimate of mesh requirements in
the future and reducing the number of adaptive
steps required as the simulation evolves [Wilson,
2009; Hiester et al., 2011].

[31] For the problems examined herein, and those
typically examined in geodynamics, more than one
solution field exists (e.g., temperature, velocity and
pressure). Each field has its own metric, reflecting
its own required mesh resolution. Each field can
also have its own error requirements, which will, in
turn, be reflected in the metric associated with that
field. In simulations where the metric is constructed
for more than one field, metrics are superimposed,
so that the adaptivity algorithm only deals with a
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single metric field. This is achieved by locally
prescribing the finest mesh resolution, in a partic-
ular direction, dictated by any of these fields under
consideration (for further information, see Pain
et al. [2001]).

3.3. Hessian Calculation

[32] Galerkin methods are repeatedly applied to
calculate the first derivatives of a solution field, y.
At each vertex a of the mesh, first derivatives are
approximated by

@i ja � qai ¼ L�1
a

Z

Ma@i ; ð30Þ

where Ma are the P1 finite element basis functions
defined in section 2.2.1 and La is the lumped P1
mass matrix [see Zienkiewicz and Taylor, 1991].
The second‐order terms of the Hessian are then
approximated by applying the same procedure to
the first derivative field, qj = ∑b Mbqbj as follows:

@i@j ja � Haij ¼ L�1
a

Z

X

b

Ma@iMbqbj ; ð31Þ

to obtain the numerical discretization, Haij
, of the

Hessian at node a.

3.4. Mesh Quality Functional

[33] Following construction of the metric, a func-
tional is formed that is optimized to improve mesh
quality. Multiple choices are available for such a
mesh quality functional. When one considers
anisotropic mesh optimization, it is common to
form a functional that depends on both the shape
and size of elements forming the mesh. In the two‐
dimensional results presented here, the objective
functional of Vasilevski and Lipnikov [1999] is used.
The functional of Pain et al. [2001] is utilized for
all three‐dimensional cases (the three‐dimensional
algorithm is the focus of all subsequent discussion).
This takes the form

FejM ¼ 1

2

X

l2Le

�ljM
� �2þ qejM

� �2
; ð32Þ

where Fe is the functional associated with element
e, and Le is the set of edges of element e. The first
term in this functional gauges the size of an ele-
ment, whilst the second term gauges its shape. For
the mesh quality functional to yield variable‐
resolution anisotropic meshes, the element quanti-
ties dl∣M and qe∣M are actually measured with
respect to the non‐Euclidean metric, Mij (hence

the presence of the subscript M in (32)). In this
equation, dl∣M for edge l is defined as

�ljM ¼ rljM � 1; ð33Þ

where rl∣M is the length, with respect to the metric,
of edge l, whilst qe∣M in (32), is defined as

qejM ¼ 


rsjM
� 1

� �

; ð34Þ

where b = 1/(2
ffiffiffi

6
p

) and rs∣M is the radius of the
inscribed sphere of element e, with respect to the
metric. The scalar b is chosen such that qe∣M = 0
for an ideal element (aspect ratio of unity in rela-
tion to the metric). Similarly, when all edge lengths
are unity, with respect to M, dl∣M = 0. Minimiza-
tion of (32) thus ensures a mesh with appropriately
shaped and sized elements: they are equilateral
elements in metric space.

3.5. Mesh Optimization

[34] Having calculated the mesh quality functional,
an optimization procedure, which visits elements in
the mesh and performs topological operations on
local connectivity, is then utilized to drive down
this functional and, hence, adapt the mesh. The
operations permitted on the mesh are as follows
(see Figure 1 for illustration).

[35] 1. Edge split is when a node is inserted on a
preexisting edge in the mesh and surrounding ele-
ments, with improved shape/size characteristics
compared with the original elements, are created
(for example, in 2‐D, two triangular elements
become four). While the location of this new node
along the preexisting edge can be optimized, it is
common to simply split it at its midpoint.

[36] 2. Edge collapse is the inverse of edge split-
ting; this involves the removal of a node and the
merging of elements. In cases where one of the
nodes defines the domain geometry or an internal
structure, the nodes are collapsed to that point. If
both nodes define some geometrical structure this
operation is not permitted.

[37] 3. Edge‐edge swap preserves the number of
nodes, but manipulates the edge lengths and ele-
ment shapes by changing the configuration of an
edge between two elements (two dimensions)/four
elements (three dimensions).

[38] 4. Edge‐face swap is a three‐dimensional oper-
ation: if two tetrahedra share a common face, and
provided their combined interior is convex, the face
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is deleted and a new edge is introduced between
the two nodes not shared, thus producing three
tetrahedra with different alignments. The inverse
operation, where an edge is replaced by a face, is
also allowed.

[39] 5. Node/vertex movement is when the local
topology of the mesh is preserved, but mesh quality
is improved by visiting each node and applying a
hill climbing algorithm to relocate the node to a
position that minimizes the maximum functional
value of the surrounding elements.

[40] The mesh optimization process proposes a new
configuration, which is a small change in the mesh,
using one of the above operations. This is accepted
as the current mesh configuration if the change in
the maximum functional associated with all ele-
ments affected by the change is negative and less
than a smallness parameter, g. In addition, if the
maximum functional value of all elements that
would be affected by a local mesh transformation is
less than a certain threshold value, Ft, then this

mesh transformation is not considered. In all three‐
dimensional results that follow, g = −0.01 and Ft =
0.15. Further discussion of the adaptivity algo-
rithms in two and three dimensions can be found in
the studies by Vasilevski and Lipnikov [1999] and
Pain et al. [2001], respectively.

3.6. Interpolation

[41] Following mesh optimization, two distinct
meshes exist: the old mesh (mesh A) and a new
mesh (mesh B). Mesh A was optimal for conditions
that existed at a previous period in time and con-
tains up to date information about fields at the
current time. Mesh B, on the other hand, has just
been created and is optimal for the current condi-
tion of the fields. Other than describing the same
domain, the meshes will, in general, be unrelated.
However, for the simulation to proceed, it is nec-
essary to transfer old information from mesh A to
mesh B. Although several options are available in
Fluidity (see Farrell et al. [2009] and Farrell and

Figure 1. Topological operations performed on a local cluster of elements to optimize a mesh. See section 3.5 for
further details.
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Maddison [2010] for further details), consistent
interpolation is utilized in all adaptive simulations
presented herein [Hassan et al., 1995; Davies et al.,
2007]: information is transferred using the under-
lying basis functions of each field. Solution nodes
of mesh B are located in mesh A using the R tree
search spatial index library [Manolopoulos et al.,
2006]. Field values are then interpolated from the
solution nodes of mesh A to these locations, using
the field basis functions of mesh A as interpolants.
As noted in section 2, for all simulations examined
herein, P2 basis functions are used for velocity and
temperature. Pressure, which is discretized using
P1 functions, is not interpolated.

4. Validation and Verification

[42] In this section we compare the numerical
predictions of Fluidity with well‐established two‐
and three‐dimensional cartesian geometry bench-
mark results. Note that, although spherical shell
geometry presents additional challenges when
representing domain boundaries and interpolating
between successive meshes, unstructured, aniso-
tropic adaptive mesh refinement techniques are
equally applicable in such domains. For direct
quantitative comparisons with the benchmark
results of Blankenbach et al. [1989] and Busse
et al. [1994], we calculate the Nusselt Number
(Nu) and RMS velocity (VRMS), once a steady state
has been achieved (the variation in the infinity
norm of the velocity, pressure and temperature
fields is <10−7, between consecutive time steps).
The Nusselt Number is defined as

Nu ¼ �zmax

R

z¼zmax

P

i ni@iT
R

z¼0
T

; ð35Þ

where zmax is the maximum z coordinate of the
domain,

R

z=zmax denotes the integral over the top
surface of the domain and

R

z=0 denotes the integral
over the bottom surface of the domain. The RMS
velocity is given by

VRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

V

Z

X

i

u2i

s

: ð36Þ

Here, V denotes the domain volume/area.

4.1. Two‐Dimensional Convection
Benchmarks

[43] The first examples considered are steady state
convection in a two‐dimensional square domain, of
unit dimensions. Boundary conditions for temper-
ature are T = 0 at the surface (z = 1), T = 1 at the

base (z = 0), with insulating (homogeneous Neu-
mann, ∂xT = 0) sidewalls. For velocity, free‐slip and
no‐normal flow boundary conditions are specified
at all boundaries.

[44] Three isoviscous cases are examined, at Ra0 =
104, 105 and 106 (cases 1a–1c: Blankenbach et al.
[1989]), on both structured (uniform resolution)
and adaptive unstructured meshes. A variable vis-
cosity case is also examined, where viscosity varies
as a function of temperature (Ra0 = 104, case 2a:
Blankenbach et al. [1989]), according to the relation

� ¼ �0 exp ln 1000ð ÞT½ �; ð37Þ

where m0 is the reference viscosity. For the adaptive
simulations, specified minimum edge lengths,
maximum edge lengths and desired interpolation
errors are varied, depending on the requirements of
the simulation. However, for all adaptive cases, the
maximum aspect ratio of elements is limited to 10.
Separate metrics are constructed for velocity, pres-
sure and temperature fields and these are super-
imposed, as described in section 3.2.

[45] Results are presented in Figures 2–3 (note that,
excluding the location of upwelling flow at x = 0 or
x = 1, these results are insensitive to the initial
condition). They show excellent agreement with
the benchmark predictions of Blankenbach et al.
[1989]. On uniform, structured meshes, solution
accuracy improves with increased resolution, as
expected, with all high‐resolution cases achieving
solutions that lie within 0.5% of benchmark values.
On adaptive, unstructured meshes, solution accu-
racy is improved, when compared to uniform me-
shes with a similar number of grid points.

[46] The metric and associated optimization algo-
rithm focusses resolution around zones of high
solution curvature (Figures 4a–4c and 5a–5c). Ele-
ments also become highly anisotropic, with their
long edges aligning parallel to the direction of one‐
dimensional flow features (Figures 4d and 5a–5c).
As noted previously, such anisotropic meshes aim
to represent the problem with the minimum required
number of grid points. Comparison with a near‐
isotropic mesh illustrates this point (Figures 5d–5f):
placing an aspect‐ratio bound of 1 (isotropic) on
the metric increases the number of nodes required
to represent the problem (case 1c: Blankenbach
et al. [1989]), from 16,699 to 94,133. Anisotropic
meshes therefore dramatically reduce the computa-
tional cost of a simulation. Note that the benefits of
unstructured mesh optimization increase with con-
vective vigor (Ra0) and varying viscosity, owing
to finer scale, more localized higher‐gradient fea-
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Figure 2. Results from 2‐D, isoviscous square convection benchmark cases. (a) Nusselt number versus number of
triangle vertices, at Ra0 = 1 × 104 (case 1a: Blankenbach et al. [1989]), for a series of uniform, structured meshes
(open circles) and adaptive unstructured meshes (filled squares); (b) RMS velocity versus number of triangle vertices,
at Ra0 = 1 × 104; (c, d) as with Figures 2a and 2b but at Ra0 = 1 × 105 (case 1b: Blankenbach et al. [1989]); (e, f)
Ra0 = 1 × 106 (case 1c: Blankenbach et al. [1989]). Benchmark values are denoted by horizontal dashed lines.

Geochemistry
Geophysics
Geosystems G

3
G

3 DAVIES ET AL.: FLUIDITY—MODELING GEODYNAMICAL FLOWS 10.1029/2011GC003551

10 of 20



tures, which are more difficult to resolve on coarser/
uniform grids. In addition, this optimization, which
clearly has a positive effect on global measures (i.e.,
VRMS), has a more dramatic effect on the accuracy of
local diagnostics (i.e., Nu). This is consistent with
the findings of Davies et al. [2007].

4.2. Three‐Dimensional Convection
Benchmarks

[47] We next compare our results with three‐
dimensional benchmarks, for steady state cases with
both constant (case 1a from Busse et al. [1994])
and temperature‐dependent viscosity (case 2 from
Busse et al. [1994]). The domain is a box of
dimensions a × b × 1. Boundary conditions for
temperature are T = 0 at the surface (z = 1) and T = 1
at the base (z = 0), with insulating (homogeneous
Neumann) sidewalls. No‐slip velocity boundary
conditions are specified at the top surface and base
of the domain, with free‐slip and no‐normal flow
boundary conditions on all sidewalls. Initial con-
ditions are chosen to produce a single ascending and
descending flow, at x = y = 0 and (x = a), (y = b),
respectively. For the constant viscosity case, a =
1.0079, b = 0.6283, whilst Ra0 = 3 × 104. For the
variable viscosity case, the domain is a cube of unit
dimensions (a = b = 1), whilst Ra0 = 2 × 104,
defined by the viscosity at T = 0.5. For the vis-
cosity, we adopt the following law:

� ¼ �0 exp
Q

T þ G
� Q

0:5þ G

� 

; ð38Þ

where Q = [255/ln(r)] − 0.25 ln(r), G = [15/ln (r)] −
0.5, and r = 20. Note that the final steady state
solution showed strong sensitivity to the initial
condition for this variable viscosity case. Results
are presented in Figures 6 and 7, demonstrating an
excellent agreement with benchmark values. As
expected, and consistent with the two‐dimensional
cases, simulations on anisotropic adaptive unstruc-
tured meshes display more accurate solutions when
compared to simulations on uniform meshes with a
similar number of grid points.

[48] From these benchmark comparisons, we con-
clude that Fluidity is accurate for both two‐ and
three‐dimensional, steady state, isoviscous and
variable viscosity simulations. In addition, aniso-
tropic adaptive unstructured meshes represent the
problem with significantly fewer grid points than
uniform, structured meshes. However, the true
value of adaptive meshes only becomes apparent
for time‐dependent problems, where the mesh can
evolve with the dynamics of the underlying flow
field. The applicability of Fluidity to such a prob-
lem is demonstrated in the following section.

5. Application to Mantle Plumes

[49] Vatteville et al. [2009] performed laboratory
experiments initiating thermal plumes in a square
tank of silicone oil at several heater powers.
Approximating the domain to be cylindrically

Figure 3. As in Figure 2 but for a variable viscosity benchmark case, on a series of uniform, structured meshes (open
circles) and adaptive unstructured meshes (filled squares): Ra0 = 1 × 104 (case 2a: Blankenbach et al. [1989]).
(a) Nusselt number versus number of triangle vertices; (b) RMS velocity versus number of triangle vertices.
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Figure 4. (a) Steady state temperature field from an isoviscous simulation at Ra0 = 1 × 106 (case 1c: Blankenbach
et al. [1989]). Contour intervals = 0.025; (b) warped illustration of the temperature field; data defined on the x − z
plane is perturbed in the y direction, in proportion to temperature. The point at the right‐hand limit of Figure 4b lies
at x = z = 1. Regions of strong solution curvature become apparent. (c) The mesh optimization algorithm associates
such regions with a small desired minimum edge length. Note that for this simulation, no artificial bounds were
applied for minimum and maximum edge lengths. (d) The desired aspect ratio of elements. Where the desired edge
length showed a strong directional variation, the element aspect ratio was limited to 10. The resultant underlying
adapted mesh is shown in Figure 5a.
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Figure 5. (a) Anisotropic, adapted unstructured mesh (maximum element aspect ratio = 10, number of triangle ver-
tices = 16,699), from the simulation shown in Figure 4; (b, c) high‐resolution images of specific mesh sections,
illustrating anisotropic elements within the thermal boundary layer; (d) a near‐isotropic unstructured mesh (maximum
element aspect ratio = 1, number of triangle vertices = 94,133), with the same minimum edge length as the mesh
displayed in Figure 5a; (e, f) high‐resolution images of specific mesh sections. Placing an aspect ratio bound of
1 (isotropic) on the metric dramatically increases the number of nodes required to represent the problem.
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symmetric, they demonstrated that the experimen-
tal results could be reproduced numerically in two
dimensions. In this section, we validate Fluidity
against these combined laboratory and numerical
experiments, presenting both fixed and adaptive
mesh simulations of the experiments, with a more
accurate description of the tank geometry. This
direct comparison provides thorough validation and
verification of the solvers and adaptive strategies
employed by Fluidity, in a time‐dependent, three‐
dimensional simulation, where regions of dynamic
significance, and hence, for adaptive simulations,
the mesh, are constantly evolving.

[50] Model parameters are summarized in Tables 1
and 2. We exploit some symmetries of the system
and simulate a quarter (0.075 m × 0.075 m ×
0.161 m) of the full experimental tank (0.15 m ×
0.15 m × 0.161 m), with a 0.009 m radius and
0.003 m high heater (located in the center of
the full tank). Our simulations are fully three‐
dimensional. We examine four cases, at different
heater power levels (0.6, 1.0, 1.7 and 3.3 W,
respectively; see Table 2). Boundary conditions are
chosen to mimic those of the laboratory tank:
no‐slip conditions are specified on the bottom
(including the heater) and external sidewalls of the

Figure 6. Results from 3‐D benchmark cases, on a series of uniform, structured meshes (open circles) and adaptive
unstructured meshes (filled squares). (a, b) An isoviscous case, at Ra0 = 3 × 104 (case 1a: Busse et al. [1994]); (c, d) a
variable viscosity case, at Ra0 = 2 × 104 (case 2: Busse et al. [1994]). Benchmark values are denoted by horizontal
dashed lines.

Geochemistry
Geophysics
Geosystems G

3
G

3 DAVIES ET AL.: FLUIDITY—MODELING GEODYNAMICAL FLOWS 10.1029/2011GC003551

14 of 20



domain, whilst free‐slip and no‐normal flow con-
ditions are specified at the top and internal reflect-
ing sidewalls (planes of mirror symmetry). For
temperature, the external sidewalls and top bound-
ary are kept at room temperature. The bottom
boundary is also held at room temperature, except at
the heater itself, where we prescribe the measured
time‐dependent evolution of heater temperature,
from the laboratory experiments (this is available as
supplementary material to the study by Vatteville
et al. [2009]). Homogeneous Neumann conditions
are specified for all internal reflective sidewalls. We
consider the temperature dependence of viscosity,
following the relation in Table 1.

[51] Simulations are performed using both fixed
and adaptive unstructured meshes, allowing for
separate validation of both strategies. For adaptive
simulations, we optimize the mesh every 5 time
steps and restrict the minimum edge length to that
of the fixed mesh cases (0.0004 m), thus allowing
for simple comparison. Other controlling para-
meters of interest are: "̂(ui) = 0.0002 m s−1; "̂(p) =
0.25 Pa; "̂(T) = 0.4°C. Adaptive time stepping
targets a maximum Courant number of 2.5. Note
that only one nonlinear Picard iteration was used
for the results presented: it was verified that
increasing the number of iterations had a negligible
influence on results.

[52] Results are presented in Figures 8 and 9. In
Figure 8a, we plot the maximum velocity along the

plume conduit, as a function of time, for the
experimental data and for fixed and adaptive mesh
simulations. The experimentally measured velocity
field is slightly noisy, due to the statistical nature of
Particle Image Velocimetry (PIV), but compares
quantitatively well with the velocity field predicted
by Fluidity, over a range of supplied powers and,
hence, over a range of heater temperatures. We
consistently observe that the near‐steady plume
conduit velocity predicted numerically is higher
than the laboratory measurements. Identical dis-
crepancies were observed between the numerical
and laboratory results of Vatteville et al. [2009].

[53] One critical aspect of the laboratory measure-
ments is that the PIV method uses an averaging
window that is necessary to compile statistically

Figure 7. Temperature isosurfaces (red = 0.7; blue = 0.3) for 3‐D benchmark cases. (a) Case 1a: Busse et al. [1994],
constant viscosity; (b) case 2: Busse et al. [1994], a modestly temperature‐dependent viscosity.

Table 1. Material Properties of Fluid (Silicone Oil) Used in

Laboratory Plume Experimenta

Parameter Value Units

r0 991 kg m−3

a 9.4 × 10−4 K−1

m exp(−7.11 + 1892./T) Pa s
k 0.17 W m−1 K−1

Cp 1460 J kg−1 K−1

Pr 4.5 × 103 —

aValues for thermal expansivity, a, dynamic viscosity, m, and
thermal conductivity, k, are measured at 20°C. Reference density,
r0, is measured at 0°C. Note that in the dynamic viscosity law, the
temperature, T, is absolute temperature, in Kelvin. Cp denotes
specific heat capacity, whilst Pr is the Prandtl number.
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Table 2. Characteristics of Laboratory Plume Simulationsa

Parameter

Heater Power (W)

0.6 1.0 1.7 3.3

Room T (°C) 21.47 19.56 19.69 20.63
Max T (°C) 42.4 45.8 56.2 74.2
Viscosity at Room T (Pa s) 0.504 0.526 0.524 0.513
Viscosity at Max T (Pa s) 0.329 0.309 0.256 0.19
Rayleigh Number 1.23 × 107 1.47 × 107 2.06 × 107 3.08 × 107

aAs expected, the temperature difference, Rayleigh number and viscosity contrast increase with increasing power.
The height of the fluid above the heater (158 mm) is used in defining the Rayleigh number (3).

Figure 8. (a) Maximum velocities versus time in the laboratory experiments (data taken from Vatteville et al. [2009])
and the fixed and adaptive mesh numerical simulations using Fluidity. Following Vatteville et al. [2009], the
numerical data is averaged in 5 mm squares over one of the internal reflective sidewalls to mimic the effect of
laboratory data collection. The effect of this averaging is also visible in (b) velocity profiles of the numerical and
laboratory data above the heater. In Figures 8a and 8b, excellent agreement can be seen both between the numerical
and laboratory data and between (c) the fixed and adaptive mesh simulations, despite the adaptive simulations having
significantly fewer vertices (note the logarithmic scale). (d) Averaged peak velocities from fixed and adaptive mesh
isoviscous and temperature‐dependent viscosity (TDV) simulations. The temperature dependence of the viscosity is
small (for details see Vatteville et al. [2009]); however, it must be included to match the laboratory data set.
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meaningful velocities (see Vatteville et al. [2009]
for further details). To mimic the effects of this
averaging, we postprocess numerical results by
averaging in 5 mm squares over one of the internal
reflective sidewalls. This two‐dimensional plane
mimics the laser sheet used for the PIV measure-
ments in the experiments. Averaging has the effect
of reducing the discrepancy between experimen-
tally sampled and numerically predicted velocities
(Figure 8b). However, as the average is based on
the number of data points within a square, slight
differences are introduced between postprocessed
fixed and adaptive mesh results (Figure 8a).

[54] Figure 8d demonstrates the importance of
including a temperature‐dependent viscosity, by
comparing the averaged peak velocities of fixed
and adaptive mesh isoviscous and temperature‐
dependent simulations. As expected, the differences
between isoviscous, where the viscosity is taken
as the value at room temperature (see Table 2)
throughout the domain, and temperature‐dependent
viscosity results increase with increasing power
and temperature. At the highest power (3.3 W)
there is a significant mismatch in the final velocity
and plume development is delayed.

[55] Figure 9 illustrates plume development and
evolution, for adaptive meshes, at three different
power levels. For comparison, the final time frame
from a fixed mesh simulation, using the same

minimum element edge length as the adaptive mesh
simulation, and a similar, though extruded, mesh to
Vatteville et al. [2009], is shown. An excellent
agreement is observed between the fixed and
adaptive mesh simulations, despite the adaptive
simulations having significantly fewer nodes (see
Figure 8c). Adaptivity (including metric assembly,
mesh optimization and subsequent interpolation)
took an insignificant portion of the run time (∼2%,
see Table 3).

[56] While the minimum, maximum and average
number of vertices (see Table 3) do not vary sig-
nificantly for the majority of the simulation, the
spatial distribution of resolution changes dramati-
cally (see Figure 9 (i‐iv)). High‐resolution zones
are based on the location of maxima in the field
curvatures, which do not necessarily coincide with
the field maxima themselves. Additionally, though
the minimum edge length is limited to allow
comparison with the fixed mesh results, achieving
the desired interpolation error does not require
attaining this lowermost bound throughout the
entire simulation. These considerations, coupled
with a Courant number defined time step, lead to
a decrease in the number of time steps required
(see Table 3), further reducing the computational
cost.

[57] Considering the reduction in both the number
of nodes and time steps as well as the insignificant

Table 3. Number of Vertices, P2 Nodes, and Time Steps in Each Simulationa

Heater
Power (W) Mesh

Vertices P2 Nodes
Average

Time
Steps

Wall Time
Adaptivity %Average Minimum Maximum

0.6 Fixed 113,158 113,158 113,158 825,990 626 —

0.6 Adaptive 6650 2447 7856 46,024 275 1.9
1.0 Fixed 113,158 113,158 113,158 825,990 728 —

1.0 Adaptive 7989 2484 9192 55,856 341 1.9
1.7 Fixed 113,158 113,158 113,158 825,990 956 —

1.7 Adaptive 10,306 2536 12,020 73,042 492 1.7
3.3 Fixed 113,158 113,158 113,158 825,990 1295 —

3.3 Adaptive 13,062 2580 15,367 93,476 776 1.8

aIn adaptive simulations the average number of vertices and P2 nodes are per time step. The number of vertices as a function of simulation time
can be seen in Figure 8c. The percentage of wall time taken by adaptivity (including metric assembly, mesh optimization, and subsequent
interpolation) is also shown for the adaptive cases.

Figure 9. Several time frames showing isosurfaces of the temperature field, T, and underlying computational mesh,
from the simulation of a thermal plume using Fluidity. A quarter of the experimental tank (0.075 m × 0.075 m ×
0.161 m with a 0.009 m radius and 0.003 m high heater) is simulated, in three dimensions, using an adaptive mesh
(i‐iv) at three example heater power levels: (a) 0.6 W, (b) 1.7 W, (c) and 3.3 W. For comparison, a time frame from a
fixed mesh simulation using the same minimum element edge length as the adaptive mesh simulations and an equiv-
alent resolution to Vatteville et al. [2009] is shown (v). In the adaptive simulations elements become anisotropic, with
their long edges aligned in the direction of upwelling flow, reducing the number of nodes required to represent the
plume conduit (note that the number of vertices utilized for adaptive simulations are presented in Figure 8c). Iso-
surfaces are shown at the same temperatures in all time frames, for all heater power levels.
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cost of mesh optimization, these results clearly
demonstrate the advantages of mesh adaptivity for
time‐dependent problems, dramatically reducing
the computational cost of a simulation, whilst
maintaining solution accuracy.

6. Conclusions

[58] We have presented Fluidity, a finite element
based computational modeling framework, which
has several attributes ideally suited to geodynami-
cal modeling: (1) the code uses an unstructured
mesh, which enables the straightforward multi-
resolution representation of complex geometry
domains; (2) it dynamically optimizes this mesh,
providing increased resolution in areas of dynamic
importance, allowing for accurate simulations,
across a range of length scales, within a single
model. Mesh optimization is enhanced via aniso-
tropic elements, which, as demonstrated herein,
resolve one‐dimensional flow features efficiently;
(3) it uses implicit solvers, thus allowing for large
time steps (advection at Courant numbers greater
than one) with minimal loss of accuracy.

[59] Fluidity differs substantially from the major-
ity of current mantle convection models, which
are typically based upon fixed structured grids.
Nonetheless, in this paper we have demonstrated
the robustness and accuracy of Fluidity for simu-
lations of mantle convection, via comparisons with
a range of benchmark and experimental solu-
tions. Furthermore, the significant advantages of
anisotropic adaptive unstructured meshes have been
shown: they dramatically reduce the computational
cost of a simulation, whilst maintaining solution
accuracy.
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