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Abstract

2D image space methods are processing methods applied af-
ter the volumetric data are projected and rendered into the
2D image space, such as 2D filtering, tone mapping and com-
positing. In the application domain of volume visualization,
most 2D image space methods can be carried out more ef-
ficiently than their 3D counterparts. Most importantly, 2D
image space methods can be used to enhance volume visual-
ization quality when applied together with volume rendering
methods. In this paper, we present and discuss the appli-
cations of a series of 2D image space methods as enhance-
ments to confocal microscopy visualizations, including 2D
tone mapping, 2D compositing, and 2D color mapping. These
methods are easily integrated with our existing confocal visu-
alization tool, FluoRender, and the outcome is a full-featured
visualization system that meets neurobiologists’ demands for
qualitative analysis of confocal microscopy data.

Index Terms: J.3 [Life and Medical Sciences]: Biology and
genetics—; I.3.8 [Computer Graphics]: Application—

1 Introduction

In neurobiology research, laser scanning confocal microscopy,
which is capable of capturing 3D volumes and 4D time se-
quences of biological samples, is an essential tool for neu-
robiologists to study the structures of and structural differ-
ences between samples. The data acquired from confocal mi-
croscopy are abundant with finely detailed biological struc-
tures resulting from fluorescent staining. In order to faithfully
reconstruct the 3D structural relationships and enhance the
fine details from confocal volumes, specialized visualization
tools are always demanded by neurobiologists, and biologists
in general. FluoRender is such an interactive visualization
tool that we developed along with our neurobiologist collab-
orators. It has a specially designed volume transfer function
with suitable parameters for adjusting and fine-tuning visu-
alization results of confocal volumes; it incorporates three
render modes for combining and mixing of multiple confocal
channels; and it supports rendering semi-transparent polyg-
onal mesh together with volume data, for better definition
of important biological boundaries. A preliminary compari-
son [23] of an early version of FluoRender with other visual-
ization tools commonly used by neurobiologists has shown
its advantage for visualizing finely detailed biological data.

∗These authors contributed equally to this work.
†e-mail: wanyong@cs.utah.edu
‡e-mail: ostuna@neuro.utah.edu
§e-mail: chi-bin.chien@neuro.utah.edu
¶e-mail: hansen@cs.utah.edu

Since its initial release, we continued the development of
FluoRender with an emphasis on detail enhancement. The
user group of FluoRender has expanded beyond our collabo-
rating neurobiologists, and brought new challenges and prob-
lems that we have overlooked in our initial work. One prob-
lem that we started looking at were the features presented in
2D image processing packages, however commonly missing
from volumetric visualization tools. We noticed that most
biologists working with microscopy data are actually experts
on image processing packages such as Photoshop, which are
used for a variety of tasks including combining images, ad-
justing brightness and contrast, adding annotations, etc. They
also have been using tools such as Photoshop with volumetric
data visualization results including those from Maximum In-
tensity Projection (MIP) and Direct Volume Rendering (DVR).
The familiarity with results from MIP rather than DVR usu-
ally makes biologists regard MIP advantageous at rendering
sharp details, and this is more common with neurobiologists
working with confocal microscopy data, which have an abun-
dance of detail. We have convinced many that DVR can bring
out details even better with properly adjusted volume trans-
fer function settings, and will also correctly render the spatial
relationship of confocal data. However, users of FluoRender
still relied on image processing packages and attempted to
enhance details from their retouching work. The retouching
work with tools such as Photoshop is usually fraught with
frustrations, because the commonly used image file formats
for data exchange between the visualization tools and image
processing packages lack the precision needed for further ad-
justment, and these packages are designed for photography
rather than confocal data visualization.

The contributions of this paper are methods and techniques
that can easily be used for detail enhancement and integrated
into FluoRender. For easier brightness/contrast adjustments
and detail enhancement, we use 2D tone-mapping operators,
including gamma, luminance and scale-space equalization.
We improve 2D composting for multiple channels by the in-
troduction of groups. To enhance surface details and depth
perception, we use 2D compositing to combine a shading
and/or a shadow layer with MIP rendering. The rest of this
paper is organized as follows: Section 2 discusses related
work; Section 3 looks at the volume renderer within Flu-
oRender and discusses how we ensure rendering precision;
Section 4 presents the 2D image space methods that we choose
to integrate into FluoRender for confocal data visualization
enhancement; Section 5 discusses certain implementation de-
tails of the system; Section 6 demonstrates the improvements
by case studies; we then conclude in Section 7.

2 RelatedWork

As stated in the introduction, the work presented in this paper
is a continuation of our previous development of FluoRender.
In [23], we focused on customizing a volume renderer for con-
focal microscopy data visualization in neurobiology research.



Most of the techniques presented in [23] are applied in the
3D object space, such as transfer function design, rendering
volumetric data combined with semi-transparent polygonal
meshes with depth peeling, and mesh-based volume editing.
However, two of the three render modes proposed (layered
mode and composite mode) are 2D compositing methods ap-
plied after volumetric data are rendered, while only depth
mode is the rendering method for multi-channel data com-
monly found in similar visualization tools. In this paper, we
shift our focus to the applications of 2D image space methods,
such as 2D compositing, tone mapping, and filtering.

In addition to volume transfer function design, many meth-
ods have been proposed to enhance features of volume data.
Ebert and Rheingans [5] presented an object space volume
illustration approach, which uses nonphotorealistic render-
ing to enhance important features. Kuhn et al. [13] designed
an image-recoloring technique and applied it to volume ren-
dering for highlighting important visual details. To improve
visualization experiences for individuals with color vision de-
ficiency, Machado et al. [15] proposed a physiologically-based
model for re-coloring visualization results, including volume-
rendered scientific data. For illustrative visualization, Wang
et al. [24] presented a framework to aid users to select col-
ors for volume rendering, in which case color mixing effects
usually limit the choice of colors. While there are several
commercial and academic visualization packages that neuro-
biologists have been using for confocal microscopy data, such
as Amira [21], Imaris [2], and Volocity [17], 2D image space
methods for detail enhancement are generally absent from
these tools. In fact, choosing and designing proper 2D im-
age space methods and parameters, integration of 2D and 3D
methods, as well as their applications are interesting research
topics for volume visualization in general. In [4], Bruckner et
al. presented a framework for compositing of 3D renderings,
and use the framework for interactively creating illustrative
renderings of medical data. Tikhonova et al. [19] [20] pro-
posed visualization by proxy, which is a framework for visu-
alizing volume data that enables interactive exploration using
proxy images. For fast prototyping and method/parameter
searching, computer scientists often use comprehensive vi-
sualization and image processing libraries, such as VTK [11]
and ITK [10]. Experimental applications with customized vi-
sualization pipelines are generated. However this is often
regarded as impractical by neurobiologist users, since they
usually demand a reliable tool with seamlessly integrated
functions that are only relevant to their specific application
scenario. Furthermore, the high throughput confocal mi-
croscopy data generated in biological experiments, including
multi-channel data and time-sequence data, need customized
data I/O and processing in order to be loaded promptly and
visualized in real-time on typical personal computers.

3 High Precision Volume Renderer for Confocal Microscopy

Since the 2D image space methods discussed in this paper
are applied to the rendering results of the volume renderer in
FluoRender, it is worthwhile examining some of its features
that ensure faithful rendering. The fine details of confocal
microscopy data are prone to quality degeneration if the vol-
ume renderer’s precision is not adequate. We ensure the high
precision of our volume renderer using three approaches.

Input precision. Confocal laser scanning allows simulta-
neous acquisition of multiple channels of differently stained
biological structures. Depending on the model of the pho-
tomultiplier used with the microscope, the bit-depth of each
channel varies from 8-bit to 16-bit. FluoRender can directly
read most raw formats from confocal microscope manufactur-

ers, such as Olympus and Zeiss. 16-bit 3D textures are used
to store the confocal volume in graphics memory for render-
ing when the data file has greater than 8-bit depth. Many
confocal visualization tools require data format conversion
or perform down sampling and quantization, which not only
compromise precision but also cause great latency for data
loading. By minimizing data pre-processing and optimizing
codes for data reading, FluoRender has negligible latency for
common confocal datasets (cf. Figure 13), which is helpful
especially for multiple samples and 4D sequences.

Transfer function precision. FluoRender uses a two-
dimensional transfer function (Kniss et al. [12]) with five
parameters to adjust the rendering result for each confocal
channel (Figure 1). It is a common practice that the volume
transfer function is rasterized as a texture, and updated every
time the parameters change. Two problems may occur if the
texture transfer function is used. First, there is quantization
error, especially when the transfer function is nonlinear, since
texture lookup only uses linear interpolation. Second, it is
impractical to build a texture transfer function for 16-bit data
due to texture size limitations. Since our 2D transfer function
has only five customized parameters for confocal visualiza-
tion, we pass the parameters into the shader computing the
volume rendering result, and evaluate the volume transfer
function on the fly. The real-time evaluation of the transfer
function ensures the rendering quality of the low intensity
signals in confocal data. Figure 2 compares the resulting dif-
ference between pre-quantized and real-time evaluation of
the transfer function. While many other tools either do not
have the flexibility of changing volume transfer function, or
provide too many parameters and widgets that make evalu-
ation on the fly impossible, FluoRender lets its users quickly
adjust the volume transfer function for finely-detailed visu-
alizations.

Output precision. The volume rendering results of Fluo-
Render always output to 32-bit floating-point framebuffers,
and then all the 2D image space methods discussed subse-
quently are calculated with 32-bit precision. This is essential
to our tool for high-precision adjustments, but unnecessary
for other tools because of their lack of 2D image space meth-
ods.

Figure 1: An illustation of the 2D volume transfer function in Fluo-
Render. The colored arrows indicate the possible adjustments for
the parameters, which are: falloff, offset, gradient magnitude thresh-
old, low scalar intensity threshold and high scalar intensity threshold.
All parameters are adjusted with sliders as shown in Figure 10.

4 2D Image Space Methods

2D image space methods are processing methods applied af-
ter the volumetric data are projected and rendered into the
2D image space, including straightforward techniques such
as contrast and gamma corrections, and methods that re-
quire rendering and combining different customized layers.



Figure 2: Results from pre-quantized (A) and on the fly (B) evaluation
of the transfer function. The two results are generated with the same
transfer function settings. The pre-quantized transfer function clips
many details in the low intensity regions, which are preserved with on
the fly evaluation of the transfer function. The dataset shows tectal
neurons of a 5-day-post-fertilization (5dpf) zebrafish.

In this section, we chronicle the development of our work,
and discuss each technique that we found useful and thus
customized for confocal data visualization.

4.1 2D Tone Mapping

2D tone-mapping operators can be found in many image pro-
cessing packages but are absent from confocal visualization
tools and most volume visualization tools in general. When
only the volume transfer function is adjusted, neurobiologist
users sometimes found it difficult to achieve both satisfac-
tory brightness and details for volume rendering outputs.
They requested the use of tone mappings for the rendering
results. This can be explained with the volume rendering
integral. Consider the commonly used emission-absorption
model, where the resulting intensity is calculated as [16]:

I(D) =

∫ D

s0

q(s)e−
∫ D

s
κ(t)dtds (1)

In Equation 1, q is the emission term, and κ is the absorption
term. As shown in the two attached plots of Figure 3A and B,
when we apply a monotonic adjustment (for example, gamma
correction, which preserves the order of its input intensity val-
ues so that they are globally darkened or brightened) f (q,p)
with a parameter p on q (or κ), the output intensity (I(D))
is generally not changing monotonically with p, due to the
complexity of q (or κ) along the integration path (ray profile).
The adjustment is usually embedded within volume transfer
functions, and this non-monotonic relationship between pa-
rameter and result makes it difficult for users to adjust for de-
sired brightness. Searching for adjustments and parameters
that have monotonic influence on output intensity of volume
rendering is out of the scope of this paper, and can be found
in the work of Wan and Hansen [22]. Here we apply tone
mapping with monotonic adjustments on volume rendering
outputs, which is intuitive to use for adjusting brightness.

The general definition of tone mapping is the mapping of
one set of colors to another, but the term is mostly used with
high dynamic range images (HDRI) (Reinhard et al. [18]),
where the meaning narrows to compression of the high dy-
namic range of light information to a lower dynamic range.
Since confocal data are acquired up to 16 bits per channel at
present and strictly speaking are not HDR, we use the term
tone mapping in this paper in respect of the general defi-
nition. However, the objectives of HDR tone mapping still
apply to confocal data visualization, i.e. rendering all possi-
ble tone ranges at the same time and preserving the details

with local contrast in order to obtain a natural look. We im-
plemented the following three tone-mapping operators, and
made certain customizations specifically for confocal data.

Gamma correction is the most-used non-linear operator
in all image processing work. We follow convention and
calculate the output color Cout with Equation 2:

Cout = C
1

gamma

in
(2)

The non-linear adjustment of the low intensity falloff in Fig-
ure 1 is essentially the same gamma correction embedded
within the transfer function. However its actual influence on
brightness is quite different from applying it in 2D: increasing
the transfer function falloff enhances details for low intensity
voxels (Figure 3B), which usually makes the rendering result
less bright, and vice versa. The transfer function falloff is a pa-
rameter neurobiologist users frequently use to either enhance
or suppress low intensity signals in confocal data. However
the brightness of the results cannot be adjusted the same as
one would expect from gamma correction (Figure 3C). By
adding gamma correction in 2D as an independent parame-
ter of the transfer function falloff, neurobiologists can adjust
both details and brightness easily. For example, in Figure 3D,
the volume transfer function falloff is decreased to suppress
noise signals, and the gamma is increased to reveal the fine
details of the neuron fibers.

Figure 3: The volume transfer function falloff and the 2D rendering
gamma work well together. The confocal dataset shows three chan-
nels of a 5dpf zebrafish embryo: eye muscles (red), neurons (green),
and nuclei (blue). A: The initial rendering without any adjustment. B:
The result when the falloff is increased. The rendering does not be-
come brighter as many users may expect. The attached plots show
the change of one ray profile after the falloff is increased. Though the
adjustment is monotonic and increases all values along the ray pro-
file, the blended output becomes darker due to quick accumulation
of low intensity values. C: The result when the gamma is increased.
The rendering result is brightened, but noise becomes prominent in
the regions indicated by yellow arrowheads. D: The satisfactory re-
sult achieved by decreasing falloff and increasing gamma. Neuron
fibers are visualized clearly with less noise (in the same regions indi-
cated in C).

Luminance is usually called exposure in photo-editing
tools. It is a scalar multiplier on the input color, which
is used to brighten/darken the overall rendering and ex-
pand/compress the contrast linearly. In order for the user



to adjust the luminance intuitively, we customize its param-
eter L by mapping it to the actual factor with a piecewise
function f (L).

Cout = Cin · f (L)

f (L) =

{

L L ≤ 1
1

2−L otherwise

(3)

Figure 4 shows f (L) in both linear and logarithmic scale plots.
The function is pieced together from a linear function and
a non-linear curve, and is C1 smooth. The user-adjustable
parameter L has range [0,2). It darkens the result by com-
pressing the dynamic range within [0,1), and brightens the
result by expanding the dynamic range within (1,2). In the
logarithmic scale plot, the curve is anti-symmetric at the cen-
ter point (1,1), so in addition to a monotonic adjustment,
our luminance operator gives an intuitive feel that the out-
put is equally brightened or darkened when L is increase or
decreased.

Figure 4: The mapping of the user-adjustable parameter L and the
scaling factor f (L), in linear scale (left) and logarithmic scale (right)
plots.

Scale-Space Equalization is a local tone-mapping operator
that equalizes the uneven brightness and enhancing the fine
details of confocal microscopy data. Using levels-of-detail
with the scale space for tone mapping can be found in the
work of Jobson et al. [9]. Instead of using logarithmic map-
pings for dynamic range compression, which is widely used
in HDRI processing, we divide the input color (Cin) by the

scale space color (Ci), which is an average calculated by low-
pass filtering. Thus the input color is equalized at a series of
detail levels, hence the name scale-space equalization. The
output color of this operator is calculated by a weighted sum
of the equalized colors and then blended with the input color,
as in Equation 4:

Cout = (1− t) ·Cin+ t ·CEq

CEq =

N
∑

1

vi ·Ci

Ci =
Cin

Ci

(4)

In Equation 4, vi is a set of weighting factors, which are em-
pirically determined by experimenting with typical confocal
datasets. A plot of the vi we use in FluoRender is shown
in Figure 5. The only parameter exposed to the end-user
is the blending factor t, which linearly blends the equalized
color with the input color. This linear blending, which is
missing even in most HDRI processing software, ensures a
monotonic change to brightness as previously. Figure 5 illus-
trates the equalizing process. It also shows the results when
the blending factor changes. The originally dark rendering
of the confocal dataset is brightened, yet the fine details are

still clearly visualized. For noisy confocal data, increasing
the blending factor also enhances high frequency noise. Thus
noise removal through pre- or post-processing is usually de-
sired.

Figure 5: The scale-space equalization process. The example
dataset has three channels of stained muscles, neurons and nuclei
of the zebrafish head.

The importance of scale-space equalization for confocal vi-
sualization is normalizing brightness – along the Z-axis for
3D channels and through time for 4D sequences, which are
detailed in the case studies of Section 6.

4.2 2D Compositing with Groups

When different fluorescent dyes and proteins are used in bi-
ological samples for confocal laser scanning, the resulting
datasets have multiple channels. In most confocal visual-
ization tools having multi-channel support, the channels are
combined in 3D object space, and this is usually done by con-
sidering inputs as one RGB volume. Though it maintains
correct spatial relationship between the channels, neurobiol-
ogist users still seldom use it, because it becomes difficult
to emphasize certain features from just one or two channels,
which usually have more importance than others. In our pre-
vious work [23], we proposed two 2D compositing schemes,
i.e. layered and composite render modes, in addition to 3D
compositing, which is called depth mode in [23]. The ap-
plication of 2D compositing is surprisingly successful and
appreciated by neurobiologist users, since working with 2D
compositing by regarding the confocal channels as 2D im-
age layers is intuitive and channels of greater importance are
easily emphasized.

However, compositing all channels with a single render
mode may not be sufficient, especially when there are many
confocal channels, including derived data from segmenta-
tion and analysis. Users want to group certain channels and
combine specific channel groups differently with 2D or 3D
compositing. Our collaborating neurobiologists resorted to
2D image processing packages for group compositing, since
the early versions of FluoRender were not capable of render-
ing groups with different render modes. Figure 6 shows a
simple example of three confocal channels, which are suffi-
cient to demonstrate the problem. Figure 6A, B, and C are the
three render modes in [23]. The dilemma for the user is which
to choose in order to visualize the correct spatial relationship
between the neuron and muscle channels, but leave the nuclei
channel as the context. We extend the render modes by sim-
ply organizing data channels into groups. A group contains
an arbitrary number of channels and has an independent ren-



der mode for combining its channels. Different groups are
again combined with a render mode. Figure 6D shows the re-
sult that neurobiologists were pleased with: both the muscle
and neuron channels are visualized, with the correct spatial
relationship, and they have a clear context.

Groups also facilitate the parameter adjustment of the con-
focal channels. The user can group certain confocal channels,
and set the parameters of the channels within the group to
synchronize. Changes to the parameters of one channel are
then automatically propagated to other channels of the group.
Section 5 further discusses details on parameter linking and
synchronizing.

Figure 6: A confocal dataset of a 5dpf zebrafish embryo has three
channels: eye muscles (red), neurons (green), and nuclei (blue). A:
The channels are combined with 3D compositing. The muscle and
neuron channels are barely seen. Yellow arrowheads indicate the
boundary of the brain, which is on the right side of the eye when
visualized as in the figure. B: The channels are composited with
2D addition. Highlight details are over-saturated, due to the addi-
tive compositing. C: The channels are composited with 2D layering.
Details of the muscle and neuron channels are visualized, but the
spatial order of the two is incorrect. D: The muscle channel and
the neuron channel are grouped and combined with 3D compositing,
which renders their spatial relationship correctly; the nuclei channel
is in a separate group. The two groups are composited with 2D lay-
ering. The nuclei channel is a context layer, showing the boundary
between the brain and the eye.

4.3 Color Mapping and MIP

The confocal channels are scalar volumetric data, whose val-
ues represent the fluorescent intensities, which in turn mea-
sure amounts of biological expression. Biologists often want
to assess the amount of gene/protein expression with better
quantification than just rendering intensities. Furthermore,
since high intensity values represent strong biological expres-
sion, it is important to visualize them over low intensity sig-
nals. Color mapping is an effective and intuitive method, but
not without problems for normal volume renderings. Fig-
ure 7A shows a confocal channel rendered with a rainbow
colormap as the transfer function. Neurobiologist users of-
ten feel that it does not fit into their research purposes well,
because the colors in the result do not clearly correspond to
those in the colormap due to compositing and voxels with
high scalar intensities, which represent strong biological ex-
pression and are important to the research, are mostly oc-
cluded.

The 2D color mapped maximum intensity projection solves
both problems stated above. Figure 7B shows the result of a
2D color mapped MIP with the same colormap as in Fig-
ure 7A. Since MIP does not use normal volume compositing,
the colors of its result represent the exact intensity values of
the voxels, and high intensity voxels are always visualized.
In fact, MIP is the only method recognized by neurobiolo-
gists for inspecting fluorescent staining intensities. However,
there are also drawbacks to MIP, i.e. spatial relationships are

Figure 7: Using a colormap as the volume transfer function and 2D
color mapping of the MIP. All results have the same colormap, as
shown on the right. A: The colormap is used as the volume transfer
function. B: The colormap is applied to the MIP rendering output. C:
The MIP rendering is overlaid with a shading layer (shading overlay
is discussed in Section 4.4). The dataset shows a 5 dpf zebrafish
eye.

unclear, and MIP renderings usually contain more high fre-
quency noise than direct volume renderings. Noise signals
can be reduced with common image processing methods, ei-
ther on 3D volumes (pre-processing) or on 2D image space
(post-processing). In the next sub-section, we focus on our
method of enhancing spatial relationship for MIP renderings.

4.4 Shading and Shadow Overlays

The way that MIP renders volume data can cause two prob-
lems for users. First, the orientation of the volume dataset un-
der examination becomes obscure, which may confuse users
especially when they rotate the data. Biologists usually pre-
fer orthographic over perspective projection in order to better
compare structure sizes. However it worsens the problem of
orientation perception when MIP is used. Second, details of
surface structures are lost, because unlike most other volu-
metric data, the structural details of confocal data are always
comprised of less intensive signals surrounding high intensity
ones, since the signals are generated by fluorescence emis-
sion. Adding global lighting effects, such as shadows, can
help orient viewers to the renderings of volume data, thus
solving the first problem. The second problem can be solved
by incorporating local lighting effects, such as Phong shading.
There are effective methods such as two-level volume render-
ing [7] and MIDA [3] that combine the advantages of MIP
and shading effects from direct volume rendering. However,
the results of above techniques are both somewhere between
MIP and DVR, where one of the features of MIP that biologists
appreciate, especially when a colormap is used, cannot be en-
sured, i.e. the colors of the result represent the exact intensity
values of the voxels (Section 4.3). Furthermore, how global
lighting effects, such as shadows, can be applied with above
techniques is not clear. Fortunately, as mentioned above, one
structure in confocal data is always comprised of low intensity
details surrounding high intensity cores. This simplification
of structures enables us to render MIP and lighting effects sep-
arately, and then combine them with 2D compositing. The
MIP pass is color-mapped for examining the biological ex-
pression amount of structure cores; the shading and shadow
passes render surface details and enhance orientation per-
ception. The 2D compositing is completed by modulating the
color brightness of the MIP rendering with the brightness of
the effect passes.

Figure 8 illustrates the 2D compositing and its result of a
confocal dataset rendered with a shading layer. A shadow
layer can be composited similarly. Neurobiologists can use
the 2D color-mapped MIP with overlays for inspecting the
amount of biological expression, because the result has a cor-
rect color correspondence with the colormap used (Figure 7C).
The renderings of shading and shadow passes are grayscale
images, and only the color brightness of the 2D color-mapped



Figure 8: A shading pass (A) is composited with the result of a 2D
color-mapped MIP pass (B). The result (C) has the advantages of
both MIP and DVR. The dataset has three confocal channels, includ-
ing stained muscles, neurons, and nuclei.

MIP is modulated, therefore the color hue stays the same,
which is the actual variable used in the colormap. Figure 9
compares 2D compositing with DVR and MIDA [3], which
uses a modified volume compositing scheme. Since other
methods use compositions in 3D, the voxel colors are blended
and cannot match the colors used in the colormap. However,
for complex structures such as a network of blood vessels, this
method has its limitation: shading/shadow and MIP cannot
always be rendered consistently, since users have to adjust the
volume transfer function for shading and shadow layers. In
practice, this mode is used when important features are best
represented by MIP and neurobiologist users want to add
enhancements for surface details and orientation perception.

Figure 9: A comparison of DVR (A), MIDA (B), and shading overlay
on MIP (C). They all use the same colormap shown on the right. The
dataset is the mushroom body (MB) of an adult Drosophila, stained
with nsyb::GFP. This fluorescent protein specifically binds to presy-
naptic regions of neurons. Thus higher signal intensity indicates
higher density of synapses of the mushroom body. By using MIP
with 2D overlays, we can clearly see the head of α/α′ lobe has higher
presynaptic density than its neck, which can be similarly observed for
β/β′ lobe.

5 Implementation

The work presented in this paper is an extension to FluoRen-
der, an interactive visualization tool for confocal microscopy
data. We use OpenGL and GLSL for the implementations
of the techniques discussed in this paper, including on the
fly evaluation of the volume transfer function, tone-mapping
operator evaluations, shading and shadow calculations, com-
positing, and color mapping. While most of the implementa-
tions should be straightforward, there are some details worth
mentioning. The three tone-mapping operators can concate-
nate and be evaluated at once – we first generate the scale
space, apply gamma and luminance adjustment to all the
levels, and then calculate equalization. For fast processing
speed, we use the built-in mipmap generating function of
OpenGL to approximate the scale space. For shadow overlay
calculation, we use a 2D image space method similar to that

of depth buffer unsharp masking [14]. Unlike other confo-
cal visualization tools, such as Imaris and Volocity, which use
ray tracing to pre-calculate shadows and are not real-time, we
use 2D filtering on depth buffer. The rendering speed is real-
time, which helps when multi-channel and time-sequence
datasets are visualized. The 2D image space methods dis-
cussed in this paper are easily modularized, and each mod-
ule can work independently of another. However, building an
integrated visualization system that neurobiologists can eas-
ily use, especially when the amount of datasets visualized is
large, still requires meticulous design of its user interactions.
We develop the user interactions through close cooperation
with frequent FluoRender users and experts in confocal mi-
croscopy. Figure 10 shows a screen capture of FluoRender’s
main user interface. We feel the following design choices on
user interactions make FluoRender capable of managing a
large amount of datasets and adjustments with intuitiveness.

Figure 10: FluoRender user interface. A: Toolbar; B: List of loaded
datasets; C: Tone-mapping adjustment; D: Tree layout of current ac-
tive datasets; E: Movie export settings; F: Render viewport; G: Clip-
ping plane controls; H: Volume data property settings.

UI element layout. The most common operations, such as
loading datasets, opening and saving projects, and UI man-
agement, are placed in the top toolbar as buttons with clear-
meaning icons and text. Even first-time users can easily locate
them and get started quickly. Sets of adjustments and settings
are grouped, according to their category, into panels, which
are usually distinguished by their layout. Settings and op-
erations are placed where they can be easily accessed from
pertinent selections.

Parameter linking and synchronizing simplifies adjust-
ments when multi-channel datasets are presented. First, for
data channels within a group, their properties can be linked,
and then the settings of current selected channel are propa-
gated to other channels of the same group. Later changes to
any one channel of the group are also applied to the others.
Second, parameters of the base and effect layers for shad-
ing and shadow are automatically linked. Third, for RGB
color channels of the output from a group, the tone-mapping
parameters are linked according to the color settings of the
volume channels within the group. The tone-mapping pa-
rameter linking is decided automatically. The automatic link-
ing simplifies user interactions yet users can still adjust per
color channel, when primary colors are used for volume color
settings.

Default settings coming with FluoRender installation
packages are determined by our collaborating neurobiolo-
gists through their general workflows. All the volume prop-
erties and modes, 2D tone-mapping adjustments, and render
view settings have default values, and they are automatically
applied to loaded data.



6 Case Studies

FluoRender has been a free confocal visualization tool avail-
able for public download, and has several stable user groups
of neurobiologists working with confocal microscopy data
from different labs across the world. Its use in neurobiol-
ogy research can be found in several publications in biol-
ogy [1], [6], [8]. We present two case studies specifically on
how neurobiologists use the newly added 2D image space
methods for 3D and 4D confocal data visualizations.

Figure 11: Case study 1. A1 and A2: dorsal and lateral views of
a zebrafish head dataset, rendered without any enhancement; B1

and B2: the same dataset rendered from the same view directions,
with enhancements applied; C1 and C2: groups and different render
modes can create clear visualizations when derived channels are
presented.

Figure 11 shows the result of our first case study on using
2D image space methods for a two-channel confocal dataset.
Neurobiologist users want to study the shape and spatial
relationship of the neurons in the region between zebrafish
eye and brain. The dataset is the nuclei (magenta channel
in Figure 11A1) and neurons (green channel in Figure 11A1)
of a 5dpf zebrafish head. Figure 11A1 (dorsal view) and A2
(lateral view) show the volume rendering result with no 2D
image space methods applied and volume transfer function
set to a linear ramp. They also represent the results from
most other confocal visualization tools when the dataset is
loaded. The results were still generated with FluoRender. We
disabled default settings and set all parameters to neutral.
Though the general shapes of its major structures can be vi-
sualized, such as the eyes, the brain and the tectum, many
details, especially those in the neuron channel, are either oc-
cluded or not clearly seen. The lateral view of Figure 11A2
shows a common problem for confocal data: the brightness
is decreasing along the Z-axis (from dorsal to ventral for this
dataset). This is the direction in which the laser beam travels;
due to scattering and tissue occlusion, signals become weaker
as the scanning goes deeper along this direction. Since the
brightness decrease is sample dependent, a simple calibration
of the microscope cannot correct it. Figure 11B1 and B2 show
the results from the same view directions, however rendered
with FluoRender’s default transfer function settings and the
enhancements discussed in this paper applied. With Fluo-
Render’s default settings, this is also what a neurobiologist
user gets from the start. Shading and shadow add depth
and details to many surface structures; tone-mapping opera-

tors, especially scale-space equalization, brighten the signals
deeper along the Z-axis. In Figure 11B1, the brightness is
even, yet the details of the neural structures are enhanced as
well. To emphasize and visualize important structures, the
user has generated a derived volume which segments the tec-
tum (magenta channel in Figure 11C1), the eye motor neuron
(red channel in Figure 11C1), and the eye (green channel in
Figure 11C1). The segmented data are in three separate chan-
nels, which are then grouped and set to depth mode [23]. With
shading and shadow effects on, both spatial relationship and
surface details are clearly visualized. The two original chan-
nels are grouped in composite mode. The nucleus channel
is simply set to a dark gray color and used as background
context; the neuron channel is set to MIP with overlaid shad-
ing, which shows the signal strength clearly. The two groups
are further combined with layered render mode. Figure 11C2
shows the same rendering as in C1 from a different view. Since
the 2D image space methods are calculated and applied after
the volume datasets are rendered, real-time interactions are
maintained.

Figure 12: Case study 2. A 4D dataset is visualized without (A) and
with (B) shadow effect. The lower part of the figure compares the
results with scale-space equalization off/on. The histogram of output
pixel brightness is displayed under each image.

Figure 12 shows the second case study on a 4D confocal
dataset, which is used to study zebrafish eye development. It
has two channels of nuclei (green channel in Figure 12) and
membranes (magenta channel in Figure 12), and 210 frames
(12 hours of continuous imaging). Figure 12A and B compare
the results before and after shadow effects are applied (the
other parameters have been adjusted and are the same for A
and B). Since the two channels are rendered in depth render
mode, shadows created between them enhance details and
the spatial relationship is more obvious. As mentioned in Sec-
tion 4.1, scale-space equalization helps stabilizing brightness
of 4D playbacks of confocal microscopy data. As can be seen
in Figure 12, the signals of the dataset become continuously
weaker during the 12-hour scanning process, due to bleach-
ing of the fluorescent dyes. After the user turns on scale-space



equalization, the brightness of the result is even through time.
Biological phenomena, such as mitosis, can be visually de-
tected from 4D playback of the dataset. Since 4D datasets
are generally large in size, visualization speed becomes cru-
cial in addition to rendering quality. We test and compare
the visualization speeds of FluoRender and other two tools
commonly used for 4D confocal visualization, Volocity and
Imaris. The test results are shown in Figure 13, and comprised
of four sub-tests. Dataset loading tests the time of loading the
3.43GB dataset. Since FluoRender only gathers file info at
initial loading, the latency is negligible. Total operation time
is from when application starts to when the first frame is
visualized. It seems Volocity and Imaris do pre-processing,
which causes considerable delay. The difference between 4D
playback and 4D export is that 4D export saves the result, typ-
ically to an image sequence. However, Volocity uses lower
resolution outputs for 4D playback. We calculate the speed
by dividing the total number of frames (210) with playback
time. FluoRender caches data using available system mem-
ory during the first playback, and the speed is considerably
faster for later playback when data size is smaller than the
system memory. Volocity and Imaris both require reading
the whole dataset into memory for playback, which makes
them impossible to use with datasets larger than the system
memory. We learned from our neurobiologist users that Fluo-
Render worked stably with a 4D dataset of 50GB on common
PCs.

Figure 13: Speed comparison. We test all speeds on the same PC
with Intel Core i7 3.2GHz, 12GB memory, single 7200 RPM SATA
disk, nVIDIA GTX280 and Microsoft Windows XP 64bit. The dataset
is a two channel 4D confocal dataset with 210 frames, which occu-
pies 3.43GB on disk. Volocity is 64bit at version 5.1.0. Imaris is 64bit
at version 6.3.0. FluoRender is 64bit at version 2.9.0

7 Conclusion

In this paper, we have discussed the application of a series
of 2D image space methods as enhancements to confocal mi-
croscopy visualizations. By integrating the 2D image space
methods with our existing confocal data visualization tool,
FluoRender, we have implemented a full-featured visualiza-
tion system for confocal microscopy data. Preliminary case
studies have demonstrated the improvements after incorpo-
rating the methods presented in the paper.
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