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Fluorescence-Based Reporter for Gauging Cyclic Di-GMP Levels in
Pseudomonas aeruginosa

Morten T. Rybtke,a Bradley R. Borlee,b* Keiji Murakami,b Yasuhiko Irie,b Morten Hentzer,c Thomas E. Nielsen,d,e Michael Givskov,a,e

Matthew R. Parsek,b and Tim Tolker-Nielsena

Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmarka;
Department of Microbiology, University of Washington, Seattle, Washington, USAb; Medicinal Chemistry Research, Lundbeck Research Denmark, Valby,
Denmarkc; Department of Chemistry, Technical University of Denmark, Lyngby, Denmarkd; and Singapore Centre on Environmental Life Sciences Engineering, Nanyang
Technological University, Singapore, Republic of Singaporee

The increased tolerance toward the host immune system and antibiotics displayed by biofilm-forming Pseudomonas aeruginosa
and other bacteria in chronic infections such as cystic fibrosis bronchopneumonia is of major concern. Targeting of biofilm for-
mation is believed to be a key aspect in the development of novel antipathogenic drugs that can augment the effect of classic anti-
biotics by decreasing antimicrobial tolerance. The second messenger cyclic di-GMP is a positive regulator of biofilm formation,
and cyclic di-GMP signaling is now regarded as a potential target for the development of antipathogenic compounds. Here we
describe the development of fluorescent monitors that can gauge the cellular level of cyclic di-GMP in P. aeruginosa. We have
created cyclic di-GMP level reporters by transcriptionally fusing the cyclic di-GMP-responsive cdrA promoter to genes encoding
green fluorescent protein. We show that the reporter constructs give a fluorescent readout of the intracellular level of cyclic di-
GMP in P. aeruginosa strains with different levels of cyclic di-GMP. Furthermore, we show that the reporters are able to detect
increased turnover of cyclic di-GMP mediated by treatment of P. aeruginosa with the phosphodiesterase inducer nitric oxide.
Considering that biofilm formation is a necessity for the subsequent development of a chronic infection and therefore a pathoge-
nicity trait, the reporters display a significant potential for use in the identification of novel antipathogenic compounds targeting
cyclic di-GMP signaling, as well as for use in research aiming at understanding the biofilm biology of P. aeruginosa.

Biofilm-forming bacteria are increasingly recognized as a seri-
ous problem in a variety of settings, from fouling of pipelines

to infections of humans. Biofilms display increased tolerance to-
ward antibiotics and the host immune system, which makes infec-
tions caused by them difficult if not impossible to eradicate (14).
This inadequacy of antibiotics has led researchers to look into new
strategies for combating biofilm-based infections. One such strat-
egy is the development of antipathogenic drugs (19). The idea
behind this strategy is to identify molecular targets that are impor-
tant to the pathogenicity of the bacteria and to develop drugs that
interfere with the actions of the target. Interference with these
targets should render the bacteria more susceptible to the action of
the immune system and/or antibiotics. The drugs that are devel-
oped should not affect growth of the bacteria, making resistance
less likely to develop, since no direct selective pressure is exerted
by the compounds.

The antipathogenic drug principle has been tested with the
opportunistic pathogenic bacterium Pseudomonas aeruginosa as a
model organism, and proof of concept has been delivered (21).
This common environmental bacterium exploits weaknesses in
immunocompromised individuals and people with cystic fibrosis
(CF) to establish infections. In the latter case, the bacterium enters
the lungs and establishes a recalcitrant and terminal infection that
responds poorly to the actions of the immune system and antibi-
otic treatment regimens (reviewed in reference 27). This recalci-
trance is believed to be a consequence of the bacteria residing in
biofilms, which have been shown to shield them from the immune
system and increase their tolerance toward antibiotics (1, 7). The
biofilm-forming capability resulting in immune system evasion
and antibiotic tolerance should therefore be recognized as a key

target in the development of antipathogenic drugs against P.
aeruginosa.

Protection from the immune system is thought to occur due to
production of biofilm extracellular matrix components (35) and
rhamnolipid, a cytolytic surfactant (1, 28). Rhamnolipid and the
increased antibiotic tolerance, together with production of other
virulence factors imposing damage to the infected tissue, have
been shown to be quorum sensing dependent. Consequently,
there has been substantial research within the field of developing
antipathogenic drugs targeted against the LuxR-type quorum-
sensing regulator LasR of P. aeruginosa (8). Screening for these
quorum-sensing inhibitors has been aided by the development of
genetic tools allowing monitoring of quorum-sensing activity
with the aim of identifying compounds that interfere with the
quorum-sensing regulators. Fluorescent reporters constructed as
quorum-sensing-regulated promoters transcriptionally fused to
gfp have especially been of great value in the work and have led to
identification of potent inhibitors such as brominated furanones
and the fungal secondary products penicillic acid and patulin (20,
21, 40).
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Besides quorum sensing, another interesting signaling system,
based on the secondary messenger cyclic di-GMP (c-di-GMP),
which controls important events in the biofilm developmental life
cycle in P. aeruginosa and many other bacteria, has recently come
to the forefront. The messenger is synthesized by diguanylate cy-
clases (DGCs) with a characteristic GGDEF domain (42) and de-
graded by phosphodiesterases (PDEs) with characteristic EAL or
HD-GYP domains (41, 43). c-di-GMP transmits a wealth of envi-
ronmental signals through various effector proteins to positively
control biofilm-promoting exopolysaccharide and adhesin ex-
pression (9, 15, 17, 24, 34, 45), as well as negatively control flagel-
lum- and type IV pilus-driven motility (23, 29, 36). Evidence has
been provided that maintenance of a low level of c-di-GMP pre-
vents biofilm formation and that provoked decreases in the intra-
cellular level of c-di-GMP can induce dispersal of already estab-
lished biofilms (e.g., see reference 18). These findings suggest that
antipathogenic drugs targeting c-di-GMP signaling may be devel-
oped either to prevent biofilms from forming during infections or
to disperse already established biofilms, making them susceptible
to efficient treatment by coadministration of classic antibiotics
that show much more potential against planktonic bacteria. A
decrease in c-di-GMP levels may be achieved through inhibition
of DGCs or activation of PDEs (e.g., see reference 6). Further-
more, signaling could be disrupted by inhibiting the activity of
effector proteins without changing the c-di-GMP level itself.

To efficiently screen for antipathogenic drug candidates
that target c-di-GMP metabolism, a valuable tool would be a
reporter of the intracellular levels of c-di-GMP that functions
in a manner similar to that of the previously mentioned mon-
itors of quorum sensing. We have created two series of c-di-
GMP reporters by transcriptionally fusing a c-di-GMP-respon-
sive promoter to genes encoding green fluorescent protein
(GFP). Although the two reporter series were independently
constructed, one at the University of Copenhagen, Copenha-
gen, Denmark, and the other at the University of Washington,
Seattle, WA, we publish the information about them jointly in
this paper. We show that the reporter constructs are able to
provide a fluorescent readout of the intracellular level of c-di-
GMP in P. aeruginosa, distinguishing strains with different lev-
els of c-di-GMP. Furthermore, we show that the reporters are
able to identify compounds that reduce the intracellular level of
c-di-GMP in P. aeruginosa.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The strains and plasmids used
in the study are listed in Table 1. Escherichia coli strains were routinely
grown in LB medium and on LB agar at 37°C. P. aeruginosa strains were
grown in LB medium or ABTG�casA minimal medium (AB medium of
Clark and Maaløe [12] supplemented with 2.5 mg thiamine liter�1, 0.5%
[wt/vol] glucose and 0.5% [wt/vol] Casamino Acids) and on LB agar or
ABTC agar (AB medium supplemented with 2.5 mg thiamine liter�1 and
10 mM citrate) at 37°C. For the c-di-GMP measurements, P. aeruginosa
strains were grown in VBMM (25). Antibiotics were supplied where nec-
essary at the following concentrations: for E. coli, 100 �g ampicillin ml�1,
15 �g gentamicin ml�1, 35 �g kanamycin ml�1, and 6 �g chloramphen-
icol ml�1; for P. aeruginosa, 60 �g gentamicin ml�1 and 200 �g carbeni-
cillin ml�1.

Construction of Copenhagen c-di-GMP reporter plasmids. Con-
struction of reporter plasmids was conducted using standard molecular
cloning techniques and the E. coli cloning strain DH5�. The cdrA
(PA4625) promoter from P. aeruginosa PAO1 was amplified using the

primers P-cdrA-up-XbaI and P-cdrA-dn-RBSII-SphI (sequences are
available upon request), with the latter including the sequence for an
optimized ribosomal binding site (RBSII). The amplified promoter was
inserted between the XbaI and SphI sites in the empty expression vector
pJBA23, creating plasmid pRYB1. The sequences coding for stable GFP
(gfp) and unstable GFP [gfp(ASV), where ASV refers to a peptide tail as
described in reference 2] were excised from plasmids pJBA25 and
pJBA113, respectively, using SphI and HindIII digestion and inserted be-
tween the corresponding sites in pRYB1, creating pRYB1gfp and
pRYB1gfp(ASV). The plasmids were sequenced using primers P-cdrA-
fwd, P-cdrA-rev, Gfp-seq-int(�), and Gfp-seq-int(�) to ensure that no
mutations were found in the cdrA promoter, the ribosomal binding site,
or the GFP genes. To create the final P. aeruginosa-compatible reporter
plasmids, the reporter cassettes from pRYB1gfp and pRYB1gfp(ASV) were
excised using NotI digestion and inserted in NotI-digested pUCP22-Not
and pBK-miniTn7-�Gm, creating pCdrA::gfpC/pCdrA::gfp(ASV)C and
pTn7CdrA::gfpC/pTn7CdrA::gfp(ASV)C (where C represents Copenha-
gen), respectively. Clones were analyzed by XbaI and BglII restriction
analysis to select plasmids that harbored the cdrA promoter in the oppo-
site direction than the inherent lac promoter found on pUCP22-Not and
pBK-miniTn7-�Gm (pUC19 derived).

Construction of Seattle c-di-GMP reporter plasmids. Standard mo-
lecular cloning techniques were used in the construction of reporter plas-
mids in E. coli strain DH5�. The plasmid-based reporters pCdrA::gfpS and
pCdrA::gfp(ASV)S (where S represents Seattle) were constructed by am-
plifying a region comprising 381 bp upstream of the cdrA start codon and
22 bp of the coding sequence using primers PA4625 reporter up and
PA4625 reporter down and inserting it into the BamHI sites of the pro-
moterless GFP expression vectors pMH487 and pMH489, respectively.
The correct orientation was verified by PCR.

pMH487 and pMH489 were created by inserting an RNase III splice
site in XbaI- and SphI-doubly digested pMH305 and pMH391 (20),
respectively. The insertion deleted an RBS site lying directly upstream
of gfp in the two vectors. pMH305 was created by inserting a NotI-
digested RBSII-gfp(Mut3)-T0-T1 fragment from pJBA25 into NotI-
digested pUCP22NotI.

Construction of �pel�psl and �wspF�pel�psl background strains.
The pelA, pslBCD, and wspF deletions made in P. aeruginosa PAO1 to
create the background strains for the c-di-GMP reporters were conducted
as follows. For the pelA and pslBCD deletions, the deletion vectors pM-
PELA and pMPSL-KO1, respectively, were used. The plasmids were in-
troduced into P. aeruginosa PAO1 and derivatives through triparental
mating using pRK600 as a helper plasmid to facilitate the conjugal transfer
of the plasmids. Conjugants displaying double-crossover events creating
the desired gene deletion were directly selected for by plating of conjuga-
tion mixtures on ABTC agar plates supplemented with 5% (wt/vol) su-
crose and gentamicin. Deletions were verified by colony PCR using the
primer pairs pelA-excis-Up/pelA-excis-Dn and pslBCD-Up/pslBCD-Dn
for the pelA and pslBCD deletions, respectively. Untagged mutants were
created by Flp-mediated excision of the FRT-Gm-FRT cassette (where
FRT is the Flp recombination target and Gm is a gentamicin resistance
gene) by introducing pFlp2 into the mutants as described previously (25).
Untagged mutants were cured for pFlp2 and verified by colony PCR using
the aforementioned primer pairs. For the wspF deletion, the deletion vec-
tor p�wspF was introduced into P. aeruginosa by biparental mating and
single-crossover conjugants were selected by growth on ABTC agar sup-
plemented with gentamicin. Double-crossover events were promoted by
planktonic growth in LB medium without antibiotic selection, and the
corresponding mutants were screened for by means of their wrinkly col-
ony morphology. The correct deletion was verified by colony PCR using
the primer pair wspF_fwd and wspF_rev.

Construction of �fleQ strain. The pEX18Gm::�fleQ deletion vector
was constructed in the following way. Overlap extension PCR using the
primer pairs fleQ-1s/fleQ-1a and fleQ-2s/fleQ-2a was used to amplify a
DNA fragment with a 1,482-bp in-frame deletion of the fleQ coding se-
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quence. The fragment was inserted in the allelic exchange vector
pEX18Gm (25). pEX18Gm::�fleQ was introduced in P. aeruginosa by E.
coli S17-1 �pir-mediated biparental mating. The deletion was created us-
ing a standard method for two-step allelic exchange as described by
Schweizer and Hoang (44) and was confirmed by PCR using the primers
fleQ-os and fleQ-as flanking the deletion fragment.

Construction of PBAD::tpbB CTX chromosomal insertion. The inte-
gration plasmid pDONRminiCTX2::PBADPA1120 was engineered for the
conditional expression of the DGC TpbB (PA1120) and inserted into the

chromosome to construct the P. aeruginosa strain PBADPA1120. PCR was
used to amplify from pJN1120 (23) a 3.1-kb fragment comprising the
araC-PBAD arabinose-inducible expression cassette (39) fused to tpbB.
The PCR primer pair used, BBctxPBAD::1120attB1 and BBctxPBAD::
1120attB2, contains attb1 and attb2 sites that allow recombination into
the pDONRminiCTX2 integration plasmid (Joe Harrison, unpublished)
using BP Clonase (Invitrogen), as suggested by the manufacturer. The
resulting plasmid was introduced into P. aeruginosa by electroporation
(10), where it integrates into the attB locus and the mini-CTX plasmid

TABLE 1 Strains and plasmids used in the studya

Strain or plasmid Relevant genotype and/or characteristics
Reference or
source

Strains
P. aeruginosa PAO1

Wild type 46
�pel �pelA This study
�pel�psl �pelA �pslBCD This study
�wspF �wspF This study
�wspF�pel �wspF �pelA This study
�wspF�pel�psl �wspF �pelA �pslBCD This study
�fleQ �fleQ This study
�pel�psl Tn7CdrA::gfpC �pelA �pslBCD mini-Tn7-PcdrA-RBSII-gfp(Mut3)-T0-T1 This study
�wspF�pel�psl Tn7CdrA::gfpC �wspF �pelA �pslBCD mini-Tn7-PcdrA-RBSII-gfp(Mut3)-T0-T1 This study
�pel�psl Tn7CdrA::gfp(ASV)C �pelA �pslBCD mini-Tn7-PcdrA-RBSII-gfp(ASV)-T0-T1 This study
�wspF�pel�psl Tn7CdrA::gfp(ASV)C �wspF �pelA �pslBCD mini-Tn7-PcdrA-RBSII-gfp(ASV)-T0-T1 This study
PBADPA1120 araC-PBAD::PA1120 integrated into the attB site This study

E. coli
DH5� Classic cloning strain Lab collection
S17-1 �pir Classic cloning and conjugation strain Lab collection

Plasmids
pJBA23 pUC18Not-RBSII-T0-T1 Ampr 2
pJBA25 Source of gfp (Mut3), Ampr 2
pJBA113 Source of gfp (ASV), Ampr 2
pUCP22Not E. coli-Pseudomonas shuttle vector, Ampr Gmr 22, 48
pBK-miniTn7-�Gm Mini-Tn7-�Gm delivery vector, Ampr Gmr 32
pRYB1 pUC18Not-PcdrA-RBSII-T0-T1, Ampr This study
pRYB1gfp pUC18Not-PcdrA-RBSII-gfp(Mut3)-T0-T1, Ampr This study
pRYB1gfp(ASV) pUC18Not-PcdrA-RBSII-gfp(ASV)-T0-T1, Ampr This study
pCdrA::gfpC pUCP22Not-PcdrA-RBSII-gfp(Mut3)-T0-T1, Ampr Gmr This study
pCdrA::gfp(ASV)C pUCP22Not-PcdrA-RBSII-gfp(ASV)-T0-T1, Ampr Gmr This study
pTn7CdrA::gfpC mini-Tn7-PcdrA-RBSII-gfp(Mut3)-T0-T1 delivery vector, Ampr Gmr This study
pTn7CdrA::gfp(ASV)C miniTn7-PcdrA-RBSII-gfp(ASV)-T0-T1 delivery vector, Ampr Gmr This study
p�wspF wspF-knockout vector, Gmr 24
pMPELA pelA-knockout vector, Ampr Gmr 45
pMPSL-KO1 pslBCD-knockout vector, Ampr Gmr 31
pFlp2 Source of Flp2 recombinase, Ampr 25
pUX-BF13 Plasmid providing Tn7 transposase genes in trans, Ampr 4
pRK600 Mobilization plasmid for Tn7-tagging of Pseudomonas strains 30
pMH305 pUCP22Not-RBSII-gfp(Mut3)-T0-T1, Ampr Gmr This study
pMH391 pUCP22Not-RBSII-gfp(ASV)-T0-T1, Ampr Gmr 20
pMH487 pUCP22Not-RNase III-gfp(Mut3)-T0-T1, Ampr Gmr This study
pMH489 pUCP22Not-RNase III-gfp(ASV)-T0-T1, Ampr Gmr This study
pCdrA::gfpS pUCP22Not-PcdrA-RBS-CDS-RNaseIII-gfp(Mut3)-T0-T1, Ampr Gmr This study
pCdrA::gfp(ASV)S pUCP22Not-PcdrA-RBS-CDS-RNase III-gfp(ASV)-T0-T1, Ampr Gmr This study
pEX18Gm Allelic exchange vector, Gmr 25
pEX18Gm:: �fleQ fleQ in-frame deletion vector, Gmr This study
pJN1120 Plasmid containing tpbB (PA1120) fused to the arabinose-inducible AraC-PBAD

promoter, Gmr

23

pDONRminiCTX2 Gateway-compatible mini-CTX2, Tcr Cmr Joe J. Harrison
pDONRminiCTX2::PBADPA1120 3.1-kb fragment encoding the araC regulator, araBAD promoter region fused to the

DGC tpbB from pJN1120
This study

a See text for details. r, resistant; Amp, ampicillin; Gm, gentamicin; Cm, chloramphenicol; Tc, tetracycline.
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backbone is excised upon expression of Flp recombinase via pFLP2, as
described by Hoang et al. (26).

Construction of c-di-GMP reporter strains. The plasmid-based re-
porters pCdrA::gfpC and pCdrA::gfp(ASV)C were introduced into the P.
aeruginosa �pel�psl and �pel�psl�wspF background strains by means of
biparental mating. pCdrA::gfpS and pCdrA::gfp(ASV)S were introduced
into the background strains by electroporation (10). The background
strains were tagged with the mini-Tn7 reporter constructs from
pTn7CdrA::gfpC and pTn7CdrA::gfp(ASV)C by means of four-parental
mating with E. coli DH5� harboring the delivery vectors as donor strains
and with E. coli strains harboring pUX-BF13 and pRK600 as helper
strains.

Colony morphology and fluorescence intensity analysis. The colony
morphology and fluorescence intensity of the Copenhagen reporter
strains were analyzed by streaking the strains on minimal medium plates
and growing them for 20 h. The colonies were visualized using a Zeiss
LSM710 confocal microscope equipped with a �10 objective, a UV lamp,
GFP filter sets, and a monochrome camera. Morphologies were visualized
by bright-field microscopy, and fluorescence was visualized by epifluores-
cence microscopy. Pictures were taken using AxioVision software and
combined using a standard graphics program.

Shake flask-based c-di-GMP reporter assay. The Copenhagen re-
porter strains were assayed by growth in shake flasks in the following way.
Strains were inoculated from fresh streaks on ABTC agar with gentamicin
into a 50-ml shake flask with 15 ml ABTG�casA supplemented with gen-
tamicin. After overnight (ON) growth at 185 rpm, the strains were diluted
to an optical density at 600 nm (OD600) of 0.03 into 100 ml ABTG�casA
supplemented with gentamicin in a 250-ml shake flask and grown for an
additional 24 h at 185 rpm, with samples for OD600 and fluorescence
measurements being withdrawn at regular intervals. Fluorescence was
measured as arbitrary fluorescence intensity units (FIU) on a Turner
Quantech digital filter fluorometer (Thermo Scientific) using a 490-nm
narrow-band excitation filter, a 515-nm sharp-cut emission filter, and the
raw fluorescence mode with gain code 11. For the sodium nitroprusside
(SNP; Sigma) experiment, 250 �M, 31.25 �M, 2 �M, and 0.25 �M final
concentrations were made from a stock solution of 50 mM SNP dissolved
in Milli-Q water. Shake flasks containing SNP were incubated in the dark
due to the light-sensitive nature of SNP.

Microtiter plate-based c-di-GMP reporter assay. Microtiter plate-
based assays with the Copenhagen reporter strains were carried out as
follows: ON cultures of the strains were prepared as described above for
the shake flask experiments (see above) and diluted to an OD600 of 0.03 in
100-ml shake flasks with 30 ml ABTG�casA supplemented with genta-
micin. Growth was measured manually until the OD600 reached 0.5, at
which point 300 �l of the cultures was added to the wells of a black-welled
96-well microtiter plate (Nunc) and incubated in a Victor2 (Perkin Elmer)
plate reader heated to 37°C and set up to measure OD450 and green fluo-
rescence (arbitrary GFP units) every 30 min for approximately 22 h. The
plates were shaken in an orbital pattern (3-mm diameter) at normal speed
for 10 min before and after each round of measurements to optimize
growth. For the SNP experiment, 2-fold serial dilutions starting from 250
�M SNP were made from a 50 mM stock of SNP dissolved in Milli-Q
water. To maintain the OD600 at 0.5 for the pregrown reporter strains, the
cell culture was used to make the serial dilutions.

Analysis of fleQ regulation and PA1120 induction in Seattle reporter
strains. The activity of the Seattle reporter strains was assayed in the
following way. Strains were inoculated from fresh streaks on LB agar sup-
plemented with gentamicin into 16-mm test tubes with 3 ml LB broth
supplemented with gentamicin. After growth overnight at 250 rpm, the
strains were diluted in triplicate (100 �l into 3 ml LB medium supple-
mented with gentamicin in a 16-mm test tube) and grown to mid-loga-
rithmic growth phase (approximately 2.5 h). Arabinose was also supple-
mented when indicated at a final concentration of 0.2% (wt/vol) in studies
where the conditional expression of the DGC TpbB was evaluated. Sam-
ples were concentrated 2 times by centrifugation, and the supernatant was

removed. Bacterial pellets were suspended in phosphate-buffered saline
and aliquoted into a Costar 96-well black clear-bottom microtiter plate
(Corning) and measured for fluorescence (excitation 	 485 nm, emission 	
535 nm) and optical density (595 nm) using a Tecan GENios plate reader.
Data are presented as relative fluorescent units (RFU), which are arbitrary
fluorescence intensity units corrected for cell density.

Nucleotide extraction and quantitative c-di-GMP measurements.
Nucleotides were extracted as previously described (13). Briefly, 990 �l
from a culture grown to mid- to late exponential phase was spiked with 10
�l of 10 mM 2-chloro-AMP (Biolog) as internal standard and immedi-
ately treated with 70% perchloric acid (Sigma) to a final concentration of
0.6 M. The pHs of the soluble fractions containing nucleotides were ad-
justed with KHCO3 as previously described (23), prior to liquid chroma-
tography-tandem mass spectrometry (LC-MS/MS) measurements of the
c-di-GMP levels. The protein-containing precipitates were quantified by
the Bradford assay (Bio-Rad) and used to normalize c-di-GMP measure-
ments.

RESULTS
Construction of c-di-GMP-responsive reporters. For construc-
tion of the c-di-GMP reporters, we first set out to identify a suit-
able gene that was highly responsive to fluctuations in the intra-
cellular level of c-di-GMP in P. aeruginosa. One gene, cdrA
(PA4625), encoding a large adhesin (9) was found to be highly
upregulated in response to increased levels of c-di-GMP (9, 24).
We expected the cdrA promoter to be a good candidate as part of
a transcriptional fusion with gfp that could act as a reporter of
c-di-GMP levels in P. aeruginosa.

The exact location of the cdrA promoter, including the �35, �10,
and other regulatory sequences, is unknown, so for the Copenha-
gen reporters, we arbitrarily chose to amplify the region of the
genome from 23 to 221 bp upstream of the start codon. The gap
between the amplified sequence and the start codon of cdrA was
used to omit the native ribosomal binding site (RBS) in the re-
porter constructs. Instead, we used an artificial RBS to enhance
translation from the gfp mRNA in order to increase the signal
related to c-di-GMP-responsive transcription from the promoter.

We created cassettes (Fig. 1A) consisting of the cdrA promoter
fused to the artificial RBS and gfp. Because the kinetics of c-di-
GMP-induced transcription from the cdrA promoter were un-
known, we chose to construct fusions encoding either the stable
GFP (Mut3) protein or the unstable GFP (ASV) protein (2). In

FIG 1 Schematic drawing of the Copenhagen (A) and Seattle (B) c-di-GMP
reporter cassettes. (A) The cassette consists of a transcriptional fusion between
the promoter from cdrA (PcdrA) and a gene encoding either stable GFP or
unstable GFP (both designated gfp in this figure) with an optimized ribosomal
binding site (RBSII). The transcriptional fusion is followed by two transcrip-
tional terminators (T0 and T1). (B) The cassette consists of a transcriptional
fusion between the promoter from cdrA, including the native RBS and parts of
the coding sequence (PcdrA-RBS-CDS) and a gene encoding either stable GFP
or unstable GFP (gfp). The fusion is linked via an RNase III splice site and is
followed by two transcriptional terminators (T0 and T1). In addition, both
cassettes have flanking NotI restriction sites and a chloramphenicol resistance
gene interspersed between the two terminators (omitted for clarity). Individ-
ual elements are not drawn to scale.
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these constructs, gfp is situated at an optimal distance from the
RBS to further enhance translation (2). In addition, two transcrip-
tional terminators, interspersed by a chloramphenicol resistance
gene, are located downstream of gfp to efficiently terminate tran-
scription, minimizing unnecessary read-through from RNA poly-
merase.

pUCP22Not and pBK-miniTn7-�Gm were used as final
destination vectors for the reporter cassettes to create plasmid-
based and chromosome-integrated reporters, respectively.
pUCP22Not contains a lac promoter directly upstream of the
multiple-cloning site (MCS), and as P. aeruginosa does not
contain lacI, the promoter allows read-through and expression
of gfp even in the absence of c-di-GMP, leading to a false signal.
Therefore, the pUCP22-Not-based reporters pCdrA::gfpC and
pCdrA::gfp(ASV)C were constructed such that the inserted cas-
settes had the coding sequence of gfp situated on the comple-
mentary strand with regard to the direction of the lac pro-
moter. pBK-miniTn7-�Gm is a pUC-based vector that does
not replicate in P. aeruginosa. It carries a mini-Tn7 transposon
without the transposase genes and allows stable chromosomal
tagging at a neutral locus in the genome of P. aeruginosa when
transposase genes are provided transiently in trans.

Two genetic backgrounds were chosen for the reporter con-
structs, a wild-type P. aeruginosa PAO1 strain and an isogenic
wspF deletion mutant. Deletion of wspF results in elevated levels of
c-di-GMP in P. aeruginosa through the continuous activation of
the DGC WspR, a component of the Wsp signal transduction
system (24). A �wspF strain containing the c-di-GMP reporter is
predicted to have an increased level of fluorescence compared to
the wild-type strain and could be used as the target strain for
inhibitor screening. Additionally, we deleted the genes pelA and
pslBCD in both the wild-type and wspF mutant, resulting in an
inability to produce Pel and Psl polysaccharides. Pel and Psl are
important parts of the P. aeruginosa extracellular matrix during
biofilm growth (16), and their production is regulated positively
by c-di-GMP (24, 34, 45), which results in bacterial aggregation in
planktonic culture when c-di-GMP levels are elevated. Aggrega-
tion complicates the OD measurements used to monitor growth
of bacteria, which is important during identification of inhibitors
that are nontoxic to the cells. Therefore, we chose to work with

reporters in the nonaggregating �pel �psl strains. Based on LC-
MS/MS measurements, the cellular c-di-GMP content was es-
timated to be 10.9 (standard deviation [SD], 4.2) and 77.0 (SD,
6.5) pmol c-di-GMP/mg total protein in mid- to late-log-phase
cells of strains �psl�pel and �wspF�psl�pel, respectively. The
wspF deletion thus resulted in a 7-fold increase in the cellular
level of c-di-GMP.

The Seattle series of c-di-GMP reporters (Fig. 1B) was created
in a fashion similar to that for the Copenhagen reporters. The
reporters were based on the plasmids pMH487 and pMH489 har-
boring promoterless genes encoding stable and unstable variants
of gfp, respectively. Both plasmids harbor an RNase III splice site
directly upstream of gfp. To regulate the expression of the gfp
variants, the cdrA promoter and part of the coding sequence were
inserted in front of the GFP genes, thereby creating pCdrA::gfpS

and pCdrA::gfp(ASV)S.
The c-di-GMP reporters respond to the cellular levels of c-di-

GMP. The ability of the c-di-GMP reporters to fluoresce in accor-
dance with c-di-GMP levels was visualized by epifluorescence mi-
croscopy of 1-day-old colonies on minimal medium. Comparing
the plasmid-based to the chromosome-integrated reporters, it be-
came clear that the latter were not suited for the intended screen-
ing purposes due to a low level of fluorescence (data not shown).
We decided to use plasmid-based reporters for the further devel-
opment of screening assays. The wspF mutant harboring elevated
levels of c-di-GMP displayed the brightest colonies, indicating
that the fluorescence intensity of the reporters is indeed correlated
with the intracellular level of c-di-GMP, as hypothesized (Fig. 2).
In addition, the fluorescence intensity pictures showed that the
reporters with unstable GFP fluoresced less than the reporters
with stable GFP, confirming the temporal instability of GFP
(ASV) (Fig. 2).

A previous study by Hickman and Harwood (23) indicated
that transcription of the cdrA gene is repressed by the transcrip-
tional regulator FleQ in P. aeruginosa and that c-di-GMP can bind
to the FleQ regulator and cause derepression, releasing FleQ from
the promoter. The reporters were placed in a �fleQ strain and in a
�wspF strain to investigate if this regulatory pattern could be ob-
served for our reporters as well. We found that the �fleQ strain
with the reporter displayed a significantly higher level of fluores-

FIG 2 Colony morphology (top) and fluorescence intensity (bottom) of the plasmid-based reporter strains. (A) P. aeruginosa PAO1 �pel�psl/pCdrA::gfpC

(normal c-di-GMP level, stable GFP); (B) �wspF�pel�psl/pCdrA::gfpC (increased c-di-GMP level, stable GFP); (C) �pel�psl/pCdrA::gfp(ASV)C (unstable GFP).
(D) �wspF�pel�psl/pCdrA::gfp(ASV)C (unstable GFP). Shown are 20-h-old colonies.
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cence than the wild-type with the reporter, indicating that the
regulation of the reporter constructs works as anticipated (Fig. 3).
The level of fluorescence of the �wspF strain with the reporter was
comparable to that seen for the �fleQ strain with the reporter,

indicating that the level of c-di-GMP present in the �wspF strain
results in comparable derepression of the FleQ-regulated cdrA
promoter activity.

Development of screening assays. To determine the kinetics
of gfp transcription from the cdrA promoter, the reporters were
grown in shake flasks and monitored for growth and fluorescence.
Figure 4A shows that transcription from the cdrA promoter is
related to the high levels of c-di-GMP induced during the early
stationary growth phase and then kept at a constant high level over
time.

To efficiently screen for compounds affecting the c-di-GMP
level in P. aeruginosa, we developed a microtiter plate-based setup
which allows screening of several compounds simultaneously. We
grew dilutions of outgrown cultures in shake flasks until they
reached the mid-logarithmic growth phase, after which they were
transferred undiluted to a microtiter plate and incubated in a plate
reader. As shown in Fig. 4B, the fluorescent kinetics resembled
those seen with the shake flask setup, making the assay suitable for
screening purposes.

As seen in Fig. 4, the unstable GFP (ASV) resulted in a lower
ratio between strain �wspF�pel�psl and strain �pel�psl than was
the case with the strains containing the stable GFP (Mut3). Con-
sequently, to maximize the signal-to-noise level, the strains con-
taining the stable GFP would be preferred for screening purposes.
It is also evident from Fig. 4 that the high level of fluorescence
obtained with the strain �wspF�pel�psl background will be better
suited for screening purposes than the low level of fluorescence
obtained with the strain �pel�psl background. The strain P.
aeruginosa �wspF�pel�psl/pCdrA::gfp would therefore be pre-
ferred for screening in our setup.

FIG 3 Fluorescence from P. aeruginosa PAO1/pCdrA::gfp(ASV)S, �fleQ/
pCdrA::gfp(ASV)S, �wspF�pel�psl/pCdrA::gfp(ASV)S, and vector controls
(VC). RFU values are arbitrary fluorescence intensity units corrected for cell
density. Results are averages of triplicate measurements on test tube cultures in
mid-log growth phase.

FIG 4 Test of the plasmid-based reporter strains in shake flasks (A) and microtiter plates (B). (Left) Growth measurements; (right) fluorescence measurements.
Results are representative of three independent experiments. �, P. aeruginosa PAO1 �pel�psl/pCdrA::gfpC (normal c-di-GMP level, stable GFP); Œ,
�wspF�pel�psl/pCdrA::gfpC (increased c-di-GMP level, stable GFP); �, �pel�psl/pCdrA::gfp(ASV)C (unstable GFP); o, �wspF�pel�psl/pCdrA::gfp(ASV)C

(unstable GFP).
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Proof of concept. We subsequently wanted to establish proof
of concept that the reporter strain can be used to monitor drug-
induced changes in the intracellular level of c-di-GMP. To this
end, we treated the P. aeruginosa �wspF�pel�psl/pCdrA::gfpC re-
porter with the compound sodium nitroprusside (SNP). SNP is a
nitrogen monoxide (NO)-releasing compound that has been
shown to induce dispersal of established P. aeruginosa biofilms,
evidently by NO induction of a phosphodiesterase, thereby de-
creasing the intracellular levels of c-di-GMP (5, 6). Initially, the
reporter strain was treated with 2-fold serial dilutions of SNP in
the microtiter plate assay (Fig. 5A). The treatment showed that
over a range of concentrations the compound decreased the fluo-
rescent levels of the reporter without affecting growth, indicating
that cdrA::gfp transcription was reduced as a result of decreased
c-di-GMP levels within the bacteria. For a subset of concentra-
tions, the results were verified with the more sensitive shake-flask
setup (Fig. 5B). There was a direct correlation between the SNP
concentration and decrease in fluorescence for all concentrations
except the treatment with 250 �M SNP. At this high concentra-
tion, the level of NO released presumably could impose stresses on
the bacteria, resulting in changes in the c-di-GMP metabolism,
other than what can be attributed to PDE activation. These results
indicate that the reporter can be used to monitor drug-induced
changes in c-di-GMP levels.

Investigating inhibition of different DGCs. The results de-
scribed above are based on a wspF background strain displaying a
high level of fluorescence from our reporters due to the increased
level of c-di-GMP stemming from WspR deregulation. However,
P. aeruginosa contains several active DGCs that can all, presum-
ably, affect cellular levels of c-di-GMP. It was important to deter-

mine if the reporters would respond to increased c-di-GMP levels
originating from other DGCs, in addition to WspF, making it
possible to test inhibitor candidates against multiple DGCs. To
this end, the active DGC TpbB (33, 47) was cloned under the
control of the arabinose-inducible promoter AraC-PBAD, allowing
conditional expression upon arabinose induction, and integrated
into the chromosome for these studies. As shown in Fig. 6, over-
expression of tpbB results in increased fluorescence from the c-di-
GMP reporter at levels comparable to those for the �wspF strain.
This result indicates that the reporters can be used to monitor
effects on c-di-GMP levels based on the activity of additional
DGCs other than WspR.

DISCUSSION

In the present paper, we have described the development of two
similar series of fluorescent reporters that can form the basis for
genetic and chemical biology approaches to alteration of the level
of c-di-GMP in P. aeruginosa and potentially other bacteria as
well. The reporters are based on transcriptional fusions between
the c-di-GMP-responsive cdrA promoter and gfp. The cdrA pro-
moter was chosen because transcriptome analyses indicate that
the level of cdrA transcription is regulated by the level of c-di-GMP
in the bacteria (9, 24). Without prior knowledge of the exact loca-
tion of the regulatory elements within the cdrA promoter region,
the Copenhagen group of reporters was constructed by amplifying
200 bp upstream of the start codon while at the same time omit-
ting the sequence likely containing the native RBS. With a fusion
of the amplified promoter region to gfp containing an optimized
RBS, we were able to see a clear difference in the fluorescence level
in the �wspF compared to the wspF wild-type background strain

FIG 5 Treatment of P. aeruginosa PAO1 �wspF�pel�psl/pCdrA::gfpC with SNP in microtiter plates (A) and shake flasks (B). (Left) Growth measurements;
(right) fluorescence measurements. Results are based on the Copenhagen group of reporters and are representative of three independent experiments. }, 250 �M
SNP; , 125 �M; , 62.5 �M; �, 31.25 �M SNP; , 15.63 �M SNP; , 7.81 �M SNP; , 3.91 �M SNP; Œ, 1.95 �M SNP; , 0.977 �M SNP; , 0.488 �M;
�, 0.244 �M; , 0.122 �M SNP; �, 0 �M SNP (untreated).
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of P. aeruginosa. This difference is attributed to their known dif-
ference in internal c-di-GMP levels (24), and it was corroborated
by LC-MS/MS analyses of the c-di-GMP content in the �pel�psl
and �wspF�pel�psl background strains used in this study.

The Seattle group of reporters was created by amplifying a
larger part of the cdrA promoter, including the native RBS and a
small part of the coding sequence, and fusing it to promoterless
GFP vectors. These reporters responded positively to an increased
level of c-di-GMP in the same manner as the Copenhagen report-
ers, yielding a clear indication that the binding site for the c-di-
GMP-responsive regulatory element had been included in both
groups of constructs and that they function as expected. The reg-
ulatory element was shown to be the transcriptional regulator
FleQ, as a fleQ mutant harboring a c-di-GMP reporter showed a
high fluorescent output similar to that of a wspF mutant harboring
the c-di-GMP reporter. This result is consistent with previous
observations linking c-di-GMP to increased cdrA transcription via
sequestration of FleQ (23). We anticipate that the c-di-GMP level
reporters may work in other bacterial species that produce FleQ
homologs. It is also likely that the reporters will work in other
bacterial species if they are modified so that the P. aeruginosa fleQ
gene is included in the reporter construct.

Traditionally, measurements of c-di-GMP levels have been
made directly on the molecule using thin-layer chromatography
or mass spectrometry on cellular extracts. These labor-intensive
methods have the advantage of measuring the amount of c-di-
GMP directly but are unsuitable for screening purposes. In addi-
tion, fluorescence-based measurements of c-di-GMP levels have
been described recently. One study utilizes the discovery that thi-
azole orange fluoresces upon formation of a specific complex with
c-di-GMP (38). The method requires lysis of the bacteria but is
less laborious than the standard methods. However, it is sensitive
to the presence of nucleic acids which bind thiazole orange and
gives rise to fluorescence. Another method employs a genetically
engineered c-di-GMP binding protein fused to two fluorescent

proteins at the N and C termini (11). Binding of c-di-GMP in-
duces a conformational change that decreases the amount of flu-
orescence observed due to fluorescence resonance energy transfer
(FRET) between the fluorescent proteins. The method itself is
ingenious, but the small amount of fluorescence usually obtained
via FRET might be less than that required for sufficient sensitivity
during screening. In contrast to these methods, we have created a
cell-based c-di-GMP-sensitive reporter system similar to the ones
employed in the discovery of quorum-sensing inhibitors in P.
aeruginosa. An analogous approach has also recently been de-
scribed in E. coli (3). The approach relies on increased binding of
Congo red to cellulose produced by cells in response to elevated
levels of c-di-GMP resulting from overexpression of the DGC
AdrA. Compared to the present setup, the visual inspection of
Congo red binding gives the assay a limited dynamic range less
suitable for high-throughput screening where subtle differences in
c-di-GMP levels are also of relevance.

The reporters in this study were constructed using both stable
and unstable GFP and were made plasmid based or transposon
integrated. From the epifluorescence microscope observations, it
became clear that the plasmid-based reporters, as expected,
showed the highest level of fluorescence and were best suited for
screening purposes. In addition, testing of the plasmid-based re-
porter strains showed that the use of stable GFP gave adequate
fluorescence levels, making the plasmid-based reporter with stable
GFP the reporter of choice in the screening for compounds affect-
ing c-di-GMP metabolism. The other reporter strains could still
be employed in later steps of the process. The unstable GFP could
be used to monitor the change in c-di-GMP levels during longer
periods of growth in flow-cell setups investigating biofilm forma-
tion over time. Experiments using these reporters should provide
information regarding spatiotemporal expression of cdrA in P.
aeruginosa biofilms and would be valuable in describing the an-
tipathogenic effects of specific compounds that decrease fluores-
cence from the reporter in the initial screen.

The deletion of wspF used to increase the level of c-di-GMP
causes increased polysaccharide production and therefore intense
clumping of cells grown in liquid culture, making growth moni-
toring by means of optical density impossible. For correct mea-
surements of growth, the background strains used here carried
mutations abolishing polysaccharide production. However, the
inability to produce Pel and Psl polysaccharides results in a fluo-
rescent output from the reporters lower than what is seen with
polysaccharide-producing strains harboring the reporters (data
not shown). This is in accordance with previously published re-
verse transcription-PCR data on cdrA expression showing the
same trend (9). It thus appears that the presence of polysaccha-
rides somehow affects c-di-GMP metabolism in P. aeruginosa.

Besides being able to distinguish the two background strains
with different levels of c-di-GMP on the basis of their fluorescent
output, it was crucial that the reporter showed sufficient sensitiv-
ity to gauge intermediate c-di-GMP levels stemming from changes
in the metabolism caused by c-di-GMP level-altering compounds.
We tested this by treatment of the c-di-GMP-overproducing re-
porter strain with the NO-releasing compound SNP. SNP has pre-
viously been shown to reduce c-di-GMP levels 2-fold in P. aerugi-
nosa at two different �M concentrations (6). In our study, we
could observe different degrees of changes in the fluorescence out-
put over a range of concentrations, indicating that the reporter
was sensitive enough to distinguish small changes in c-di-GMP

FIG 6 Fluorescence from P. aeruginosa PAO1/pCdrA::gfp(ASV)S, �wspF�pel
�psl/pCdrA::gfp(ASV)S, �pel�psl PBAD::tpbB/pCdrA::gfp(ASV)S, and vector
controls (VC). RFU values are arbitrary fluorescence intensity units corrected
for cell density. Results are averages of triplicate measurements on test tube
cultures in mid-log growth phase induced with 0.2% L-arabinose.
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levels. Compared to the untreated reporter strain, the total de-
crease in fluorescence was roughly 2- to 3-fold for the lower con-
centrations of SNP tested, which is comparable to previous obser-
vations for the cellular c-di-GMP levels (6).

P. aeruginosa contains 33 GGDEF domain proteins (including
domains with degenerate motifs) (33), of which one-fourth have
been found, at present, to be active DGCs (24, 33, 35, 36). This has
raised the question whether the intracellular pool of c-di-GMP is
compartmentalized or global and how the phenotypes related to
c-di-GMP signaling are regulated. Recent research shows that the
two DGCs RoeA and SadC regulate different aspects of biofilm
formation (37), indicating that c-di-GMP might be sequestered as
local pools that are regulated by distinct DGCs and PDEs. This
suggests that potent antipathogenic drugs targeting c-di-GMP
production should be able to inhibit several DGCs. This could
complicate our choice of working with a reporter background
where WspR is the dominating DGC, due to the wspF deletion,
contributing to the increased level of c-di-GMP. The use of this
reporter background to discover DGC inhibitors will likely result
in hits that mainly affect WspR. We showed, however, that over-
expression of another DGC, TpbB, caused a similar increase in the
fluorescent readout from the reporters, indicating that such con-
structs could favorably be used to test initial drug candidates
against several DGCs, determining if they display a broad activity
increasing the desired antipathogenic effect.

A comparative analysis of the residues comprising the active
site of the different P. aeruginosa DGCs shows a high degree of
similarity indicating that they share the same conformation and
thus should be able to bind the same inhibitor (unpublished anal-
ysis). We therefore believe that it will be possible to identify com-
pounds that inhibit several DGCs in P. aeruginosa and other bac-
teria and thus will be suitable leads in the development of potent
antipathogenic compounds. In our future work, we will use the
constructed reporters in screens for antipathogenic drugs and to
obtain knowledge on basic P. aeruginosa biofilm biology.
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