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In the development towards the Multi Ion Reflection Apparatus for Collinear Laser Spec-

troscopy (MIRACLS), an optical detection region for the observation of fluorescent light

is added to an electrostatic ion beam trap (EIBT). In addition to its use for highly sensitive

collinear laser spectroscopy, this fluorescence detection is introduced as a diagnostics tool

for the study of the ion dynamics inside an EIBT. First measurements of collision-induced

fluorescence in an EIBT demonstrate the technique’s diagnostics power by tracking the evo-

lution of an ion bunch’s temporal width over its storage time inside the ion trap. Thereby,

the time-focus point of the ion bunch can be determined and the influence of space-charge

effects in the EIBT can be investigated. Good qualitative agreement is obtained between

the measured trend of temporal widths and the simulations of the ions’ trajectories in the

trap. Particularly, the observation of self-bunching on the ion-bunch structure for many

simultaneously stored ions is reproduced.
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1 Introduction

Collinear laser spectroscopy is a formidable tool for the exploration of the nuclear landscape

in terms of ground state properties of short-lived radionuclides, such as nuclear spins, elec-

tromagnetic moments and charge radii [1, 2]. In order to access these nuclear properties by

laser spectroscopy, a beam of atoms or ions is (anti-)collinearly overlapped with a narrow-

band laser beam. Scanning the laser frequency around an optical transition of interest and

counting the photons emitted by de-excitation from laser-excited atoms or ions reveals the

hyperfine structure and the isotope shift can be determined. Fast beams at energies E of

a few tens of kiloelectron volts allow one to approach the natural linewidth of an optical

transition as the Doppler width δνD is minimized according to δνD ∝ δE/
√

E, where δE

depicts the energy spread of the beam.

However, in order to access the most exotic nuclides produced with very low yields

at radioactive ion beam facilities, methods with higher sensitivity have to be developed.

To this end, the novel Multi Ion Reflection Apparatus for Collinear Laser Spectroscopy

(MIRACLS) [3] is currently being built at ISOLDE/CERN [4]. It aims to combine the high

spectral resolution of conventional collinear laser spectroscopy (based on the detection of

the photons after resonant excitation) with high experimental sensitivity. This is achieved by

trapping ion bunches in an electrostatic ion beam trap (EIBT) [5–8] in which the ions bounce

back and forth between two electrostatic mirrors. In this way the laser-ion interaction time

is increased by the number of reflections.

The EIBT used for the investigation described in this publication is very similar to

multi-reflection time-of-flight (MR-ToF) mass spectrometers [9–13], applied for instance at

ISOLDE for mass spectrometry of short-lived isotopes [14]. It is operated with ions of only

≈ 1.5 keV beam energy and serves to proof the principle of the future MIRACLS set-up

for collinear laser spectroscopy designed for trapping 30-keV ions. To this end, an optical

detection system is mounted in the middle of the field-free region of the EIBT in order to

observe the fluorescent light.

Besides its use for collinear laser spectroscopy, fluorescence detection offers the oppor-

tunity to track the ion bunch for every passage through the optical detection region. In the

following we show how this technique can be used to study the ion dynamics inside an

EIBT. Specifically, collision-induced fluorescence, called residual gas afterglow in [15],

has been used to examine space-charge effects and to determine the time-focus point of an

ion bunch propagating inside the trap. Simulations of the evolution of the ion cloud’s time

structure inside the EIBT are presented and compared to experimental data obtained from

fluorescence detection. These studies focus on the space-charge effect of “self-bunching”,

also known as “self-synchronization”, in EIBTs [16–19]. Beyond its general relevance for

EIBT operation with a large number of stored ions, it is crucial for the MIRACLS concept

to investigate the potential influence of space-charge effects and self-bunching on collinear

laser spectroscopy in an EIBT.

2 Experimental apparatus

The apparatus employed in this work is shown in Fig. 1. It is an EIBT setup originally des-

cribed in [20] which has been modified for the purpose of collinear laser spectroscopy [3].

An electron-impact ion source, adapted from [21], delivers a continuous beam of singly-

charged ions from stable magnesium isotopes. The Mg+ ions are subsequently accumulated
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Fig. 1 Schematics of the experimental setup. A beam of Mg+ ions is injected into a helium buffer-gas

filled Paul trap from which the ions are released in bunches and captured in an electrostatic ion beam trap

(EIBT). The EIBT hosts an optical detection region in its field-free region to detect fluorescence light with a

photomuliplier tube (PMT). See text for details

and cooled in a helium buffer-gas filled Paul trap. They are extracted in well-defined

bunches and accelerated to a transfer energy of Etrans ≈ 2.305 keV. Thereafter, the ion

bunch is guided by an electrostatic quadrupole bender onto the optical axis of the EIBT. A

close-up view of this EIBT is shown in Fig. 2a, depicting a central drift tube surrounded

by two electrostatic mirrors. The latter consist each of a set of ring electrodes to establish

the mirror potential, for instance the one shown in Fig. 2b. Capturing the ion bunch into the

EIBT is achieved by the in-trap lift technique [20, 22] in which the electric potentials of the

mirror electrodes are kept constant at all times. The central drift tube is switched from an

initially positive bias voltage to ground potential when the ion bunch is located in the center

of the tube (see Fig. 2b). Hence, the value of this “lift” potential, Vlift, determines the ions’

kinetic energy E inside the EIBT according to E = Etrans − e ·Vlift. As long as their kinetic

energy is too low to overcome the potential barrier imposed by the electrostatic mirrors, the

ions are confined inside the EIBT. When the lift potential is switched back up, the ions leave

the trap again. In this work, the Mg+ ions are typically stored for a few milliseconds, while

a single revolution accounts for only a few microseconds.

Similar to [23, 24], an optical detection region for fluorescence detection adapted from

[25] is situated above the trap’s field-free region of the central drift tube (see Fig. 1).

It consists of an optical lens system, which images photons emitted by ions onto a

photomuliplier.

3 Collision-induced fluorescence and tracking of the ion bunch inside
an EIBT

In principle, EIBTs demand excellent vacuum quality in order to prevent the ions from col-

liding with residual gas particles, which affects the ion trajectories in the trap and ultimately

leads to ion losses. However, there is the possibility that the collision partners undergo
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Fig. 2 a Schematics of the electrostatic ion beam trap (EIBT) consisting of a central drift tube and a set of

electrodes forming the electrostatic mirrors. b Electric potential along the central axis of the EIBT used in

Section 4 of this work. Prior to injection of the ions, the central drift tube is biased, e.g., to Vlift = 860 V (blue

dashed-dotted line) or 700 V (violet dashed line). When the ions are in the field-free region of the central

drift tube, it is switched to ground potential (solid orange line) as indicated by the black arrow. This results

in the trapping of the ions. See text for details

inelastic collisions leading to the emission of fluorescent light. This collision-induced flu-

orescence can be detected in the optical detection region. Hence, every time an ion bunch

passes by, the count rate of the photomultiplier increases. The temporal pattern of this

photon signal reflects the time structure of the ion bunch.

Since these collisions are very rare under standard EIBT operation, the vacuum qual-

ity is purposely degraded for the following measurement. To this end, the helium flow into

the Paul trap is adjusted such that the pressure in the EIBT section is increased as well.

As a first application of the collision-induced fluorescence technique, the photon counts

are recorded while ion bunches of stable magnesium isotopes are confined for 64 revolu-

tions (Fig. 3). Each time an ion bunch passes the detector the number of recorded photons

increases significantly above the background level.

Since a bunch passes the optical detection region twice per revolution in addition to

the initial passage during capture, there are 129 pronounced peaks in Fig. 3. These are

associated with 24Mg+ ions, the most abundant magnesium isotope (≈ 79%). Peaks cor-

responding to less abundant isotopes, 25Mg+ and 26Mg+, can be resolved as well. This is

shown in the inset of Fig. 3. The distances between peaks associated with different magne-

sium isotopes increase with each revolution, due to their mass difference and corresponding

difference in revolution period T , e.g. T ≈ 6.79 µs for 24Mg+ compared to T ≈ 6.93 µs

for 25Mg+. In principle, this data allows the mass determination of the trapped ion species

when considering the different revolution period of each isotope with respect to one magne-

sium isotope as a reference mass. This new fluorescence-based mass spectrometry will be
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Fig. 3 Photomultiplier count rate per bin width of 40 ns as a function of time after ejection of Mg+ ion

bunches from the Paul trap, summed over about two million experimental cycles. The ion bunches are cap-

tured in the EIBT after 7.7 µs and ejected after 64 revolutions of 24Mg+ ions which corresponds to 442.4 µs.

Major signals are from fluorescence due to collisions of 24Mg+ ions with residual-gas molecules, smaller

signals are from 25Mg+ and 26Mg+ (see inset). The configuration of the EIBT setup is the same as described

in [20]. See text for details

the topic of future work. Here, we focus our study of fluorescence detection on its capability

as a diagnostics tool for the ion dynamics inside an EIBT.

In the beginning of the storage time in Fig. 3, the peak height of fluorescent light from
24Mg+ ion collisions rises with increasing revolution number. It reaches a maximum at

around 17 revolutions. Then the peak height decreases again. This behavior can be explained

by Fig. 4, which characterizes the width (a), amplitude (b) and area (c) for each fluorescence

peak caused by 24Mg+ ions. Up to the 17th revolution (indicated by the blue vertical line)

the peak width decreases, while the peak amplitude increases. Subsequently the behavior is

reversed, with increasing width and decreasing amplitude. This is interpreted as a signature

of a time focus of the ion bunch at revolution number 17. Such a time focus can for instance

arise at the moment when higher energetic ions within the ion ensemble, which were initially

at the temporal end of the ion bunch, overtake the slower, less energetic ions.

The almost continuously decreasing peak area shown in Fig. 4c reveals ion losses over

time. These losses can arise from collisions of the ions with the residual gas. Such colli-

sions may “kick out” ions due to the resulting transversal momentum or neutralize them by

electron transfer reactions.

This first experiment illustrates that fluorescence detection in an EIBT allows one to

track, in-situ and revolution by revolution, ion-bunch properties such as temporal width or

relative ion number. This is complementary to the use of an image-charge detection via a

pick-up electrode [16, 18, 19, 26]. Similar investigations can also be performed by ejecting

the ion bunch onto an ion detector after subsequent revolution periods and evaluating the

signal properties [27]. However, the measurement based on fluorescence detection only

requires a single experimental cycle to record the full information for all revolutions and is

not limited by the saturation-effects of, e.g. micro-channel-plate detectors.
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(a)

(b)

(c)

Fig. 4 Width (FWHM), amplitude and area of all peaks associated with 24Mg+ ions from the data in Fig. 3

as obtained from a fit with a Lorentzian profile. 25Mg+ and 26Mg+ ions are included in the fit with fixed

width and amplitude. The amplitude and the peak area are normalized to the number of photons in the peak

corresponding to the first passage through the optical detection region. The vertical line at revolution number

17 indicates the time-focus point of the 24Mg+ ion bunch. See text for details

4 Space-charge effects in an EIBT

Space-charge effects are of particular importance in the application of an EIBT as a multi-

reflection time-of-flight (MR-ToF) mass separator. Indeed, large numbers of stored ions are

known to disturb the otherwise superb mass resolving power of an EIBT [20, 28, 29]. Hence,

understanding space-charge effects and their impact on the ion cloud in EIBTs is essen-

tial, especially when the mass separation of large ion samples is aimed for. For instance,

the elimination of undesired contaminants in the beam of radioactive isotopes via MR-ToF

techniques becomes increasingly important when probing exotic rare isotopes. There, addi-

tional diagnostics tools such as fluorescence detection can help1 to study and ultimately

extend the limits in MR-ToF operation imposed by space-charge effects.

EIBTs used for mass spectrometry can be operated in an isochronous mode, i.e. the

voltages of the trap’s mirror electrodes are chosen such that within a certain energy window

the revolution period T remains independent of the exact ion energy, i.e. dT /dE = 0.

Figure 5 depicts the simulated revolution period of a 24Mg+ ion bunch as a function of
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Fig. 5 Simulated revolution periods of a 24Mg+ ion bunch, consisting of 1000 non-interacting ions, trapped

by the mirror potentials of Fig. 2b at various ion energies. The lift potentials used to obtain these energies are

indicated on the top axis. The settings marked by orange diamonds at Vlift = 700, 800 and 860 V are used

for more detailed simulations that are discussed in the text

beam energy when the ions are confined in the EIBT by a potential as shown in Fig. 2b. For

completeness, note that these potentials have been optimized for collinear laser spectroscopy

and are not the same as those used in Section 3. As outlined above, different ion energies

of the stored ions are facilitated by different lift potentials applied to the central drift tube.

In Fig. 5, it can be seen that the revolution periods for lift potentials in the proximity of

860 V, corresponding to an ion energy of about 1445 eV, are very similar in a kinetic-energy

range of about 10 eV. Hence, when considering ions at E ≈ 1445 eV with energy spreads

of at most a few electron volts, their individual revolution period is largely the same and the

temporal ion-bunch width is consequently kept constant over time.

Contrary, for lift potentials such as below 800 V, the revolution period is noticeably

influenced by the ion energy, i.e. the trap is operated in a non-isochronous mode with

dT /dE > 0. More energetic, faster ions exhibit a longer revolution period in the EIBT

compared to slower, less energetic ones. Thus, even small energy differences comparable

to the typical energy spread in realistic experimental conditions lead to different revolution

periods. Hence, the ion-bunch width will quickly increase with time.

However, it has been shown [16–19] that for sufficiently large ion clouds, space-charge

effects counteract this bunch dispersion. This phenomenon, known as “self-bunching” or

“self-synchronization”, can occur for combinations of mirror potentials and ion energies

where dT /dE ≥ 0 [18] as it is the case for energies higher than E ≈ 1445 eV (see Fig. 5).

In this case, the bunch width stays roughly constant even in otherwise non-isochronous

settings.

In order to investigate the importance of self-bunching in the present setup, SIMION [30]

simulations of ion trajectories inside the EIBT are carried out, which follow closely the pro-

cedure described in [31]. An ion bunch is thermalized in the Paul trap and then transferred

into the EIBT. The storage in the EIBT over typically 300 revolutions is simulated separately

at the highest computationally feasible geometrical resolution [31]. The mirror potentials,

as shown in Fig. 2b, have previously been optimized for a lift voltage of Vlift = 860 V, i.e.
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ion energies of 1445 eV, but are kept identical for all simulations. As the observable of inter-

est, the temporal bunch width is evaluated in the middle of the EIBT’s field-free region for

every passage.

First, simulations of 1000 non-interacting 24Mg+ ions are carried out for different lift

potentials and hence, different ion energies. The resulting temporal width of the ion bunch

is shown in Fig. 6a. For ion energies of 1445 eV, the ion-bunch width (blue line in Fig. 6a)

remains constant over the entire storage time. Thus, despite an energy spread of δE =
2.36 eV (FWHM), the EIBT operates in an isochronous mode as expected from Fig. 5. On

the other hand, the bunch width increases linearly for ion energies above 1445 eV. Far away

from the isochronous mode, as for Vlift = 700 V (E ≈ 1605 eV), the ion ensemble will

quickly de-bunch after a few tens of revolutions as discussed above.

In a second set of simulations, Coulomb interactions between ions as implemented in

SIMION’s charge repulsion method [32] are used to study the effect of space charge on the

bunch width (see Fig. 6b). Already for 100 ions this is computationally expensive. To obtain

results for larger ion clouds without increasing the computing time, a charge multiplication

factor is applied to the Coulomb interaction between the ions [33]. When using a charge

multiplication factor of 10 for example, each ion acts as a sub-bunch of 10 ions. This method

may lack some degree of accuracy since the electric field does not reflect the ions’ cloud

charge density. However, we expect that it leads to a qualitative understanding of space-

charge effects at play in the EIBT in a time efficient way. The consistency of the method is

benchmarked by comparing a simulated ion cloud of 250 interacting ions to an ensemble of

100 ions, interacting with a charge multiplication factor of 2.5. In this particular case, the

results on the ion-bunch width agree within statistical uncertainties. Note that the Coulomb

interaction between the ions is only considered while the ions are trapped inside the EIBT

to clearly isolate the space-charge effects from those occurring in the Paul trap or during

ion transfer. Thus, for one fixed lift potential the initial ion distribution inside the EIBT is

identical and all differences in the ion cloud’s temporal width are exclusively due to different

multiplication factors in the Coulomb interaction.

Figure 6b displays the results of simulations which include Coulomb interactions for

a lift potential of Vlift = 700 V (E ≈ 1605 eV). This configuration normally leads to a

sizable dispersion and hence a rapid increase in the bunch width with revolution number.

For 100 trapped ions, the difference in the bunch width for non-interacting and interacting

ions is minimal and the slope of bunch width as a function of revolution number is quite

similar. However, increasing the charge multiplication factor to resemble larger ion clouds

has significant consequences: The increase in bunch width is considerably slower since

Coulomb repulsion counteracts this de-bunching. This happens already for charge multi-

plication factors of 10 and 20, corresponding to 1000 and 2000 ions, respectively. For a

charge multiplication factors of 40 and 100 the bunch width is practically constant as in the

isochronous mode, indicating the effect of self-bunching.

Motivated by the results of these simulations, measurements of collision-induced flu-

orescence are performed similarly to those in Section 3 for different numbers of ions

simultaneously stored in the EIBT. To this end, the loading time of the Paul trap is varied.

However, we do not have a reliable estimate of the absolute ion number. For these measure-

ments, nitrogen gas is directly leaked into the EIBT’s vacuum chamber. The lift potential

is set to 700 V, to have considerable ion bunch dispersion and a direct comparison to the

respective simulation in Fig. 6b. Fluorescence signals at different revolution numbers (0,

40 and 80) of 24Mg+ ions are presented in Fig. 7 for two different Paul trap loading times,

50 µs and 800 µs, respectively. The latter leads to ion clouds with significantly larger ion
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Fig. 6 Simulated temporal widths of 24Mg+ ion bunches (FWHM) in the middle of the EIBT as a function

of revolution number. a illustrates the evolution of the bunch width for different lift voltages, and thus ion

energies, for 1000 ions neglecting Coulomb interactions between the individual ions. In b, the Coulomb

interactions between 100 ions with various charge multiplication factors are considered. Here, the lift voltage

is fixed to 700 V, resulting in a mean ion energy of E ≈ 1605 eV. Within a and b, respectively, the ions are

processed starting always from the same initial ion cloud as it is extracted from the Paul trap. Insets show the

detailed time structure of the ion bunch at selected revolution numbers. See text for details
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Fig. 7 Experimental time-of-flight signals at revolution numbers 0, 40 and 80 for loading times of 50 and

800 µs into the Paul trap and Vlift = 700 V. The displayed collision-induced fluorescence rate is normalized

and background subtracted. The peaks are associated with 24Mg+ ions, although 25Mg+ and 26Mg+ ions

can be seen in the tail to the right at revolution 0

Table 1 Measured temporal

widths of fluorescence signals

(FWHM) from 24Mg+ ion

bunches stored inside the EIBT

(for Vlift = 700 V) at different

revolution numbers and Paul trap

loading times

Temporal width [µs]

Loading time [µs] Revolution 0 Revolution 40 Revolution 80

25 0.311(10) 0.90(6) 1.30(18)

50 0.305(9) 0.84(4) 1.34(15)

100 0.316(9) 0.70(3) 1.08(8)

250 0.314(8) 0.46(1) 0.50(2)

800 0.336(8) 0.35(1) 0.40(1)

numbers. At revolution 0, the normalized and background-subtracted peaks are close to

identical for both loading times. At revolution 40, however, an ion bunch with less ions

shows already clear signs of dispersion, getting even more significant at revolution num-

ber 80. On the other hand, the width of the fluorescence peaks corresponding to 800 µs of

loading time remains almost constant over revolution number.

For a more quantitative analysis, the temporal signal widths, obtained by fitting the peaks

in Fig. 7 with a Lorentzian profile, are listed in Table 1, along with the widths for 25, 100

and 250 µs loading time. The width at revolution 0 is similar for all loading times, except

for 800 µs. Most probably, the small difference arises from space-charge effects in the Paul

trap. For short loading times, i.e. small ion numbers, the bunch width increases with higher

revolution number as expected from the simulations (Fig. 6b). According to the data, space-

charge effects are insignificant for loading times of less than 50 µs. For longer loading times

this dispersion is more and more reduced until the beam width becomes (almost) constant,

i.e. independent of the revolution number. This is the case for 800 µs loading time.
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This qualitative agreement of the experimental data with the simulations suggests that

the underlying EIBT mechanism at play is indeed self-bunching due to space-charge effects.

This analysis underlines the strength and versatility of the fluorescence-based detection.

5 Conclusion and outlook

First measurements using collision-induced fluorescence demonstrate that photo detection

offers an excellent diagnostics tool for studies in an electrostatic ion beam trap (EIBT).

Among others, it allows the characterization of ion losses as well as the determination of

the ion-bunch width and of the ions’ time-focus point. These are all crucial parameters in

the study of space-charge effects such as self-bunching. The qualitative agreement between

simulations of ion trajectories and the data from fluorescence detection shows that space

charge has a sizable influence on the time structure of the ion bunch. Upcoming investiga-

tions will include quantitative evaluations of the ion number within an ion bunch as well as

of various aspects of the photon detection efficiency during the ions’ passage through the

optical detection region.

However, collisions of ions with residual gas particles lead to undesired ion losses and

even with purposely degraded vacuum quality the fluorescence efficiency remains low.

Thus, laser-induced excitation will be explored to overcome these disadvantages.

The combined approach of fluorescence detection and simulation of ion trajectories will

play an important role in the development and optimization of the Multi Ion Reflection

Apparatus for Collinear Laser Spectroscopy (MIRACLS). Although MIRACLS is aiming

for the study of a few stored ions of rare radionuclides, for which space-charge effects

are expected to be negligible, an accurate understanding of the space-charge limits will be

crucial. For instance, “contaminant” ions have to be taken into account as well as refer-

ence measurements with stable high-yield isotopes. In this regard, these future studies at

MIRACLS are similar to the investigations when Paul traps were first introduced for more

sensitive collinear laser spectroscopy [34, 35] and space-charge limits for the technique had

to be established.

Beyond MIRACLS, fluorescence detection offers additional opportunities to probe and

understand the ion dynamics in EIBT devices when used as multi-reflection time-of-flight

(MR-ToF) mass separators. Here, the so-called “peak coalescence” [20, 36] instead of ion

separation in time-of-flight can pose a major challenge. The extension of the present studies

can help to advance the technology of MR-ToF mass separation for larger ion samples,

which will be beneficial with respect to delivering contamination-free radioactive ion beams

to experiments. In addition, fluorescence detection may also be applicable to MR-ToF mass

spectrometry.
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Kowalska, M., Neugart, R., Neyens, G., Nörtershäuser, W., Rajabali, M., Alarcón, R.S., Stroke,

H., Yordanov, D.: Nuclear charge radii of potassium isotopes beyond n=28. Phys. Lett. B 731,

97–102 (2014). https://doi.org/10.1016/j.physletb.2014.02.012. http://www.sciencedirect.com/science/

article/pii/S0370269314001038

26. Hilger, R.T., Santini, R.E., McLuckey, S.A.: Nondestructive tandem mass spectrometry using a linear

quadrupole ion trap coupled to a linear electrostatic ion trap. Analyt. Chem. 85(10), 5226–5232 (2013).

https://doi.org/10.1021/ac4007182 PMID: 23593952

27. Schury, P., Ito, Y., Wada, M., Wollnik, H.: Wide-band mass measurements with a multi-reflection time-

of-flight mass spectrograph. Int. J. Mass Spectrom. 359, 19–25 (2014). https://doi.org/10.1016/j.ijms.

2013.11.005. http://www.sciencedirect.com/science/article/pii/S1387380613004053

28. Wienholtz, F., Atanasov, D., Kreim, S., Manea, V., Rosenbusch, M., Schweikhard, L., Welker, A., Wolf,

R.N.: Towards ultrahigh-resolution multi-reflection time-of-flight mass spectrometry at ISOLTRAP.

Physica Scripta 2015(T166), 014,068 (2015). http://stacks.iop.org/1402-4896/2015/i=T166/a=014068

29. Dickel, T., Yavor, M.I., Lang, J., Plaß, W.R., Lippert, W., Geissel, H., Scheidenberger, C.: Dynamical

time focus shift in multiple-reflection time-of-flight mass spectrometers. Int. J. Mass Spectrom. 412, 1–

7 (2017). https://doi.org/10.1016/j.ijms.2016.11.005. http://www.sciencedirect.com/science/article/pii/

S1387380616302664

30. Dahl, D.A.: Simion for the personal computer in reflection. Int. J. Mass Spectrom. 200(1), 3–25

(2000). https://doi.org/10.1016/S1387-3806(00)00305-5. http://www.sciencedirect.com/science/article/

pii/S1387380600003055. Volume 200: The state of the field as we move into a new millenium

Hyperfine Interact (2019) 240: 95 Page 13 of 14 95

https://doi.org/10.1038/nature12226
https://doi.org/10.1007/s00340-013-5719-4
https://doi.org/10.1103/PhysRevLett.87.055001
https://link.aps.org/doi/10.1103/PhysRevLett.87.055001
https://link.aps.org/doi/10.1103/PhysRevLett.87.055001
https://doi.org/10.1103/PhysRevLett.89.283204
https://doi.org/10.1103/PhysRevLett.89.283204
https://link.aps.org/doi/10.1103/PhysRevLett.89.283204
https://doi.org/10.1103/PhysRevA.65.042704
https://link.aps.org/doi/10.1103/PhysRevA.65.042704
https://doi.org/10.1016/j.ijms.2015.11.011
https://doi.org/10.1016/j.ijms.2015.11.011
http://www.sciencedirect.com/science/article/pii/S1387380615004030
https://doi.org/10.1063/1.4796061
https://aip.scitation.org/doi/abs/10.1063/1.4796061
https://doi.org/10.1063/1.4944946
https://doi.org/10.1063/1.4944946
https://doi.org/10.1016/j.ijms.2011.12.006
http://www.sciencedirect.com/science/article/pii/S1387380611004775
http://www.sciencedirect.com/science/article/pii/S1387380611004775
https://doi.org/10.1103/PhysRevA.62.012504
https://link.aps.org/doi/10.1103/PhysRevA.62.012504
https://doi.org/10.1016/j.nimb.2017.10.024
http://www.sciencedirect.com/science/article/pii/S0168583X17309436
http://www.sciencedirect.com/science/article/pii/S0168583X17309436
https://doi.org/10.1016/j.physletb.2014.02.012
http://www.sciencedirect.com/science/article/pii/S0370269314001038
http://www.sciencedirect.com/science/article/pii/S0370269314001038
https://doi.org/10.1021/ac4007182 PMID: 23593952
https://doi.org/10.1016/j.ijms.2013.11.005
https://doi.org/10.1016/j.ijms.2013.11.005
http://www.sciencedirect.com/science/article/pii/S1387380613004053
http://stacks.iop.org/1402-4896/2015/i=T166/a=014068
https://doi.org/10.1016/j.ijms.2016.11.005
http://www.sciencedirect.com/science/article/pii/S1387380616302664
http://www.sciencedirect.com/science/article/pii/S1387380616302664
https://doi.org/10.1016/S1387-3806(00)00305-5
http://www.sciencedirect.com/science/article/pii/S1387380600003055
http://www.sciencedirect.com/science/article/pii/S1387380600003055


31. Maier, F.M., Fischer, P., Heylen, H., Lagaki, V., Lechner, S., Plattner, P., Sels, S., Wienholtz, F.,
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