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Fluorescence Sensor Array for Metal Ion Detection
Based on Various Coordination Chemistries:
General Performance and Potential Application

Zhuo Wang, Manuel A. Palacios, and Pavel Anzenbacher, Jr.*

Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University,
Bowling Green, Ohio 43403

A sensor array containing 9 cross-reactive sensing fluo-

rescent elements with different affinity and selectivity to

10 metal cations (Ca2+, Mg2+, Cd2+, Hg2+, Co2+, Zn2+,

Cu2+, Ni2+, Al3+, Ga3+) is described. The discriminatory

capacity of the array was tested at different ranges of pH

and at different cation concentrations using linear dis-

criminant analysis (LDA). Qualitative identification of

cations can be determined with over 96% of accuracy in

a concentration range covering 3 orders of a magnitude

(5-5000 µM). Quantitative analysis can be achieved with

over 90% accuracy in the concentration range between

10 and 5000 µM. The array performance was also tested

in identification of nine different mineral water brands

utilizing their various electrolyte compositions and their

Ca2+, Mg2+, and Zn2+ levels. LDA cross-validation routine

shows 100% correct classification for all trials. Prelimi-

nary results suggest that similar arrays could be used in

testing of the consistency of the purification and manu-

facturing process of purified and mineral waters.

The protection and conservation of water resources, preventing
contamination from anthropogenic as well as natural sources, is
an important effort.1,2 Among the inorganic contaminants, metal
cations play an important role as components of electrolytes and
may also present intrinsic risks due to their potential impact on
human health and environment.3-5 For these reasons, improved
techniques and alternative technologies to continue improving
contaminant detection are widely sought.6 Here, optical detection,7

particularly fluorescence methods, shows unique potential for high
sensitivity. The power of optical sensors was recently augmented

by implementation of sensor array technologies8 and pattern
recognition methods9 that allow for identification of multiple metal
ions using a single device.10,11 Even though optical sensors have
been widely developed,12 their integration in a single platform as
an array of sensors has been less studied. Most of the recently
reported arrays are based on multiple differential binding interac-
tions between a cross-reactive dye indicator and the analyte.11

Recently, we have reported a cross-reactive sensor array for
metal ions utilizing 8-hydroxyquinoline (8-HQ) coordination
chemistry. Such arrays based on fluoro-ionophores bearing just
one type of receptor depend mostly on their signal transduction
mechanisms to generate discriminatory data.13 In this study, the
cross-reactive sensor array utilizes different kinds of coordination
chemistries combined together with different signaling schemes.
This approach provides information needed for accurate identifica-
tion of cations and possibly identification of complex mixtures by
their cation content.

EXPERIMENTAL SECTION

Chemicals and Solutions. Commercially available solvents
and reagents were used as received from chemical suppliers.
Tetrahydrofuran was distilled from a K-Na alloy under argon.
All reactions were monitored using Whatman K6F Silica Gel 60
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Jursı́ková, K.; Anzenbacher, P., Jr. Chem. Commun. 2007, 3708–3710. (b)
Palacios, M. A.; Wang, Z.; Montes, V. A.; Zyryanov, G. V.; Anzenbacher,
P., Jr. J. Am. Chem. Soc. 2008, 130, 10307-10314.

Anal. Chem. 2008, 80, 7451–7459

10.1021/ac801165v CCC: $40.75  2008 American Chemical Society 7451Analytical Chemistry, Vol. 80, No. 19, October 1, 2008
Published on Web 09/06/2008



Å analytical TLC plates by UV detection (254 and 365 nm). Silica
gel (60 Å, 32-63 µm) from EMD Science was used for column
chromatography. Melting points (uncorrected) were measured
using a Thomas-Hoover capillary melting point apparatus. 1H and
13C NMR spectra were recorded using either a Varian spectrom-
eter with working frequency 400 MHz or a Bruker instrument
(300 MHz). Chemical shifts were referenced to the residual
resonance signal of the deuterated solvent. MALDI-TOF-MS were
recorded using a Bruker Daltonics Omniflex spectrometer. S5

(Lumogallion, TCI) and S8 (Calcein Blue, TCI) were commercially
available from chemical suppliers. S1, S2, S3, and S4 were
synthesized according to procedures published.14,15 Synthetic
procedures for S6, S7, and S9 are summarized in Supporting
Information (SI).

Preparation of Submicroliter Sensor Arrays for Cation

Sensing. The sensor materials were prepared by incorporating
sensors S1-S9 into poly(ether)urethane matrixes, which were
prepared by casting solutions containing the sensors in a poly-
(ether)urethane (Tecophilic, SP-93A, Thermedics division from
Lubrizol, Cleveland, OH) THF solution (4% w/w) onto a multiwell
10 × 8 (submicroliter) size plate made by ultrasonic drilling. The
concentrations of sensors S1-S9 in THF vary (S1 1 mM, S2 1
mM, S3 1 mM, S4 1 mM, S5 0.5 mM, S6 0.1 mM, S7 1 mM, S8

0.5 mM, S9 1 mM). The chloride salts of the cations were
administered as aqueous solutions. In order to evaluate responses
of different cations at different pHs, the concentration of cation
solution was 1 mM. pH was adjusted in solution by addition of
NaOH (0.01 M) or HCl (0.01 M) utilizing a Titrator T50 (Mettler
Toledo Co.) with an accuracy of pH ± 0.1 and the solutions were
used immediately after preparation. Mineral water analysis was
carried out by applying 200 nL (directly from the bottle) to the
array elements.

Fluorescence Sensor Array Image Acquisition and Data

Processing. Images from the sensor arrays are recorded using
a Kodak Image Station 440CF. The scanned images (12 bit) are
acquired with a resolution of 433 × 441 pixels/in. and with gray
levels over 1000 (12-s exposures). The sensor arrays are excited
with a broadband UV lamp (300-400 nm, λmax ) 330 and 365 nm),
and up to four channels are used for emission detection: (1) blue,
band-pass filter 380-500 nm λmax ) 435 nm; (2) green, band-pass
filter 480-600 nm λmax ) 525 nm; (3) yellow, long-pass filter 523
nm; (4) red, long-pass filter 580 nm.16 The false color images were
obtained by recording the BW images using blue, green, and red
filters. These images were then merged in equal proportion using
NIH ImageJ software.17 The RGB triplet corresponds with the
color of the filter used. After acquiring the images, the integrated
(nonzero) gray pixel (n) value is calculated for each well of each
channel. Images of the sensor chip were recorded before (b) and
after (a) the addition of an analyte, and their final normalized
responses (R) were evaluated as follows:

R)∑
n

an

bn

- 1 (1)

Data Analysis. In this study, we used linear discriminant
analysis (LDA), as it yielded better results compared to unsuper-
vised methods such as principal component analysis and hierar-
chical clustering analysis.18 LDA is a classical statistical approach
for supervised dimensionality reduction. Using the defined group
classes, it aims to maximize the ratio of the between-class distance
to the within-class distance, thus maximizing the class discrimina-
tion. LDA was used in a complete way considering all 36 variables
(9 sensors, 4 channels RGBY). A cross-validation routine was
implemented in order to compensate for the bias imposed when
a sample classification is attempted while using a training set that
contains the same sample. The cross-validation (leave-one-out)
routine is used to test the predictability of the sensor array by
leaving one observation out of the set at the time and uses the
rest of the data as a training set to generate the linear discriminant
function. The LD function is then used for the classification of
the excluded observation. This is performed for each observation,
and the overall ability to classify the observations describes the
quality and predictability of the array. The implementation of LDA
is rather conveniently used for determination of classes by using
the LD discriminant function and also provides a graphical output
by plotting discriminant scores against the canonical roots. These
plots provide a graphical representation of how LDA is clustering
similar patterns, and it attests to the degree of discrimination of
the data, i.e., how good the resolution of the array is for a given
group of samples.

RESULTS AND DISCUSSION

Selection of Chemosensors. The criteria for the selection
of chemosensors (fluoro-ionophores) were guided by the following
requirements: The coordination chemistry of the chemosensor
should allow for significant cross-reactivity (i.e., selective chemosen-
sors were not particularly sought). The chemosensors should have
strong absorption in the near-UV (300-400 nm), for which the
LED light sources are widely available, as well as reasonably
strong emission in the visible region. Also, the chemosensors
should be commercially available or easy to synthesize. In general,
it is desirable to generate a maximum discriminatory power with
a minimal set of sensors. Guided by the above criteria, we have
selected a set of nine chemosensors (S1-S9) (Figure 1) to
generate the array capable of analyte differentiation based on a
metal ion content. Chemosensors S1-S9 comprise different kinds
of receptors as well as different kinds of signal transduction
schemes. Therefore, it is the combination of different coordination
chemistries and signal transduction schemes, such as fluorescent
enhancement or quenching and ratiometric response, that gener-
ates enough discriminatory data for accurate classification of
possible analytes, while keeping the number of sensing elements
as low as possible. Here, the S1 and S2 were chosen based on
our previous attempts to generate cross-reactive cation sensors.13

S1 and S2 comprise the same 8-HQ receptor and different

(14) Sensors 1 and 2: (a) Montes, V. A.; Pohl, R.; Shinar, J.; Anzenbacher, P.,
Jr. J. Org. Chem. 2004, 69, 1723–1725. (b) Montes, V. A; Pohl, R.; Shinar,
J.; Anzenbacher, P., Jr. Chem.-Eur. J. 2006, 12, 4523–4535.

(15) (a) Sensor 3: Macias, B.; Garcia, I.; Villa, M. V.; Borras, J.; Castineiras, A.;
Sanz, F. Polyhedron 2002, 21, 1229–1234. (b) Sensor 4: Bag, B.; Bharadwaj,
K. J. Phys. Chem. B 2005, 109, 4377–4390.

(16) The use of the optical filters may be circumvented by using a sensitive
36-bit color camera. This way, the detection setup could be simplified and
rendered more practicable.

(17) Rasband, W. S.; Image J. U. S. National Institutes of Health, Bethesda, MD,
http://rsb.info.nih.gov/ij/, 1997-2008.

(18) (a) Beebe, K. R.; Pell, R. J.; Seasholtz, M. B. Chemometrics: a practical guide;
Wiley: New York, 1998. (b) Otto, M. Chemometrics: Statistics and computer

application in analytical chemistry; Wiley-VCH: Weinheim, 1999. (c) Jambu,
M. Exploratory and Multivariate Data Analysis; Academic Press: Boston,
1991.
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conjugated chromophores to yield a different response to various
metal cations. This is because the conjugated chromophores
attached to the receptor are partially quenched in their resting
state, and upon the cation coordination by the 8-HQ, the resulting
metalloquinolinolate complex displays a change in fluorescence.
The nature of the changes in the fluorescence is highly dependent
on the cation. Sensors S3 and S4 have been reported in the
literature, and their properties have been studied.15,19,20 Sensors
S6, S7, and S9 have for the first time been synthesized for the
purpose of this study; however, the coordination chemistry of
similar compounds has been previously characterized in litera-
ture.21 The coordination chemistry of S6 is similar to that of S3,
although the signal transduction in S6 and S7 is based on
fluorescence quenching rather than its enhancement, while S9

displays a fluorescence turn-on behavior. Finally, S5 (Lumogal-
lion) and S8 (Calcein Blue) are commercially available, and their
sensing properties have been characterized.22 The relative binding
affinities for the chemosensors S1-S9 and cations of this study
are shown in the SI. Finally, incorporating a chemosensor with
different optical transduction schemes (turn-on, turn-off, and
ratiometric) is likely to result in an expanded response variance
space. In case a metal ion can induce a variety of responses (turn-
on, turn-off, and ratiometric), then the increments to the variance
within the n-dimensional vector response generated by the array
for that given metal ion are also likely to increase. Thus, more
information could be generated and the discriminatory power of
the array would be enhanced.

Configuration of the Array and Optical Sensor Mem-

branes. The solid-state array was fabricated as reported previously
using sensors S1-S9 dispersed in a hydrophilic polyurethane
carrier (∼0.07% S1-S9 in polyurethane, w/w) to yield a simple
two-component optode. The purpose of the hydrophilic polyure-
thane is to draw in water while coextracting the metal ions and
counterions, thus aiding in the formation of the metal-sensor
complexes, and to overcome the incompatibility in solubility of
the lipophilic sensors and hydrophilic cations. The 200 nL of a
THF solution containing a sensor and polymer is then cast into
the wells of a multiwell 9 × 8 (submicroliter) size plate to yield
∼10-µm-thick membranes in each well.

The luminescence output from the array was recorded using
four detection channels corresponding to the blue, green, yellow,
and red region of the visible spectrum. Upon addition of the
aqueous cation solutions to the wells, the emission of the array
was rerecorded. The metal ions tested were Al3+, Cd2+, Ca2+,
Co2+, Cu2+, Mg2+, Hg2+, Ni2+, Zn2+, and Ga3+ in the form of
their chloride salts in water (1 mM in water, 200 nL, pH 7) (Figure
2). Figure 2 shows a false color representation of the changes in
the sensor array induced by the metal ions. A quick inspection
reveals distinctive response patterns generated for each of the
cations tested. Above all, Zn2+ is an ion that presents the most
distinct response pattern due to, among others, the high selectivity
of S9 for this ion.

In order to quantify the changes in luminescence, the nonzero
pixels were integrated for each well. As predicted, each of the
metal cations induced analyte-specific changes in luminescence
in the individual chemosensors of the array, thus creating a
multidimensional response pattern (Figure 3, left). Figure 3 shows
several examples of the response pattern generated by the sensor
array in the presence of Mg2+, Cu2+, and Zn2+. Inspection of the
emission patterns reveals that S8 is the most sensitive sensor
for Mg2+, while S6 is for Cu2+ and S3 for Zn2+. Supporting
Information shows the response patterns for all of the metal
cations and all sensors at three different pHs (5, 6, 7). The
multidimensional response patterns (36-dimensional, 9 sensors ×
4 RGBY channels) of the sensor array in the presence of 10 cations
(Ca2+, Mg2+, Cd2+, Hg2+, Co2+, Zn2+, Cu2+, Ni2+, Al3+, Ga3+)
were further studied using LDA.18

(19) (a) Nowickl, J. L.; Johnson, K. S.; Coale, K. H.; Elrod, V. A.; Llebermad,
S. H. Anal. Chem. 1994, 66, 2732–2138. (b) Prat, M. D.; Guiteras, J.;
Compano, R.; Beltran, J. L. J. Fluoresc. 1991, 1, 267–272.

(20) Bag, B.; Bharadwaj, P. K. J. Phys. Chem. B 2005, 109, 4377–4390.
(21) (a) O’Brien, E. C.; Roy, S. L.; Levaillain, J.; Fitzgerald, D. J.; Nolan, K. B.

Inorg. Chim. Acta 1997, 266, 117–120. (b) Garcı́a, B.; Gonzalez, S.;
Hoyuelos, F. J.; Ibeas, S.; Leal, J. M.; Senent, M. L.; Biver, T.; Secco, F.;
Venturini, M. Inorg. Chem. 2007, 46, 3680–3687. (c) Abe, A. M. M.; Helaja,
J.; Koskinen, A. M. P. Org. Lett. 2006, 8, 4537–4540.

(22) (a) Carroll, M. K.; Bright, F. V.; Hieftje, G. M. Anal. Chem. 1989, 61, 1768–
1772. (b) Du, M.; Huie, C. W. Anal. Chim. Acta 2001, 443, 269–276. (c)
Suthermer, S. H.; Cabaniss, S. E. Anal. Chim. Acta 1995, 303, 211–221.
(d) Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc. 2005, 127, 1612–
1613. (e) West, T. S. Anal. Chim. Acta 1961, 25, 301–307. (f) Gee, K. R.;
Zhou, Z.-L.; Ton-That, D.; Sensi, S. L.; Weiss, J. H. Cell Calcium 2002, 31,
245–250.

Figure 1. Structure of chemosensors S1-S9 used in the array.

Figure 2. Fluorescence responses of the S1-S9 sensor array to

the presence of different cations (1 mM in water, 200 nL, pH 7). False

color representation generated by superimposing of the equally

weighed images corresponding to RGB channels.
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Furthermore, Figure 3, right panel, shows examples of
quantitative representation of changes in the relative intensity of
S8 (blue channel) in the presence of Mg2+, S6 (red channel) in
the presence of Cu2+, and S3 (yellow channel) in the presence
of Zn2+ at different concentrations of ions ranging from 5 µM to
5 mM. The individual dynamic ranges of the sensing elements
differ for each cation. Thus, for the sensor array S1-S9, we have
identified the lower and upper limits of quantification given by
the chemosensors capable of addressing the lowest and highest
concentrations. For example, the dynamic range of the array for
Mg2+ is defined to be between 20 (defined by S1) and 2000 µM
(defined by S8).23

Effect of pH on the Sensor Array Response. In the situation
where the sensors comprise potentially pH-sensitive chemical
moieties, it is necessary to study the possible effect of water
(blank) solutions at different pH on the overall response of the
array. Therefore, we first studied the changes in the array
fluorescence at a range of pH from 1 to 14 and applied LDA to

the data generated as a response of the array to varying pH
(Figure 4). LDA generates a new space defined by the canonical
roots (factors or discriminant axes) to provide the best description
of similarities and differences between samples. Each pattern
generated by the sensor array can be reduced to a single score
and plotted in the new canonical space (canonical score plot).
Relative distances between the scores in the canonical space can
be correlated with similarities or difference in the responses
generated by the samples. From the canonical score plot, one can
see that the responses could be divided into four clusters. The
first cluster includes pH 1-4, a second cluster that includes the
pH range 5-7, and the third cluster corresponding to pH 8-13.
The fourth cluster then corresponds to pH of 14. The third cluster
appears to cover a larger area of the canonical space, presumably
due to the varying deprotonation processes taking place in
different chemosensors in the pH range between 8 and 13.

Because of the potential applications, we decided to work in
the pH region between 5 and 7, which is more appealing for

Figure 3. Left: Response patterns (S1-S9, raw data) to aqueous Mg2+, Cu2+, and Zn2+ solutions (200 nL, 1 mM, pH 7). Right: Changes of

the relative intensity of S8 (blue channel), S6 (red channel), and S3 (yellow channel) with increasing ion concentrations. Inset: Detail of a low

concentration (0-500 µM) region.

7454 Analytical Chemistry, Vol. 80, No. 19, October 1, 2008



potential biological and environmental applications. In this pH
range, the response of the array does not show significant
differences in response, presumably due to the cation coordination
chemistry of the receptors within this pH range. Also, at low pH
(pH <4), protonation of the coordination sites of the receptors
can affect the photophysical and coordination chemistry properties
of the chemosensors. On the other hand, at high pH (pH >8),
the receptor deprotonation might affect the chemosensor proper-
ties, and the solubility of the metal salts/hydroxides decreases.
Hence, we decided to evaluate the array performance in cation
classification within the pH “comfort zone” at three different pH
levels: 5, 6, and 7. At pH 5, 6, and 7, all metal salts are soluble at
concentrations of e2 mM. The cations affected by pH are Al3+ or
Cu2+, albeit only at high concentrations. Due to high sensor-cation
affinities, sensors S1-S9 show saturation at 1 mM (Figure 3 and
SI). Thus, the lower solubility of metal salts at pH 7 does not
appreciably affect the analyses. For each pH, a data set corre-
sponding to 10 cations (8 trials) was generated. LDA was first
applied separately to each data set (Figure 5). Figure 5 shows
LDA canonical score plots for the first 3 factors (10 different metal
ions) at three different pH conditions. Three factors were neces-
sary to describe at least 85% of the total information (variance)
contained in the data set. Here, the cross-validation routine shows
100% accuracy for the classification of all cations at all three pH
levels. Even though the pH does not seem to have a significant
effect on the predictability of the overall array behavior, the
individual cations show a major difference between the pH levels.

In order to determine whether the data obtained using 10
cations at three different pHs could be used for cation determi-
nation at a particular pH or for pH-independent cation detection
within the range of pH (5-7), a LDA was carried out including
all 240 trials. First, LDA was used to investigate the data describing
the array response to cations at a particular pH as a grouping
variable to study the ability of the array to distinguish the 30
classes (10 metal ions × 3 pHs). LDA cross-validated (leave-one-
out) classification shows 99% accuracy for all 10 cations at pHs 5,
6, and 7. This result is remarkable given the fact that some cations,
such as Cd2+, present a very similar response profile at different
pHs (Figure 6, left). Second, LDA was used to investigate the data
set in which the cation class is used as a grouping variable (Figure

6, right) to test if regardless of the pH (5, 6, or 7) the LDA can
accurately identify the metal ion. Here, the LDA shows 97%
accurate classification, thus showing that the accurate pH-
independent classification of the cation can be predicted even
though there are cations such as Al3+ and Zn2+ that yield very
different response patterns at each pH.

Array Performance at pH 7. The limit of a detection concept
in arrays can be translated into the limit of discrimination, i.e.,
the concentration at which the sensor array is capable of
discriminating between different analytes. Therefore, we studied
the array performance at various concentration ranges. For this
reason, a data set comprising 10 cations at 8 different concentra-
tions (5-5000 µM, 8 trials each) at pH 7 was generated. LDA
was applied to all 640 trials using cation concentration or cation
class as a grouping variable (Table 1). First, the cation class is
used as a grouping variable to test if regardless of the concentra-
tion it is possible to qualitatively identify the cations. As seen in
Table 1, LDA cross-validation routine shows overall 96% of correct
classification. The accuracy of the classification differs for each
cation. For example, 88% classification accuracy was observed for
Cu2+ and 100% for Zn2+. This behavior correlates with dynamic
ranges of the different sensing elements for different cations. For
example, in the case of Cu2+, the overall dynamic range of the
array lies between 20 and 500 µM, while for Zn2+ the overall
dynamic range is ∼5-5000 µM.24 Thus, it was necessary to
evaluate the dependence of the discriminatory capacity of the array
at different dynamic ranges (Table 1: g5 µM, 5-5000 µM; g10
µM, 10-5000 µM; g50 µM, 50-5000 µM; and g100 µM,
100-5000 µM). The classification accuracy data corresponding
to these four dynamic ranges are listed in Table 1. The discrimina-
tory capacity for cation identification exceeds 95% overall accuracy
at ∼5 µM and 99% overall accuracy at the concentration g50 µM.

On the other hand, when the cation concentration is used as
a grouping variable instead of the cation class, the analysis will
allow for determining the array’s capability to discriminate
between 80 groups of analytes (10 cations × 8 concentrations)
and perform a quantitative analysis.

Even though LDA is not a regression technique, it can be used
to plot the concentration response dependence (trajectory) in the
LDA canonical space (Figure 7). Figure 7 shows trajectories
composed of the average scores for each concentration of a given
cation. From the discriminant score plots it is clear that at lower
concentration (close to the origin of the plots) it is harder to
discriminate between different cations in different concentrations.
In the case of quantitative determination of cations, the limit of
discrimination depends even more on the overall dynamic range
of the sensor array. This is because not only are the general trends
in the response pattern (within a class of cation) important but
mostly the magnitude (of the change in the response) in these
trends affects the assignment/interpretation of the concentration
by the array. This implies that all of the patterns will tend to be
more similar at a low concentration where the sensors are close
to their LODs.

(23) Concentrations of heavy metals exceeding 5 µM are, perhaps, too high for
a number of practical applications. The current high LOD could be
circumvented by preconcentration of the analyte. This is particularly feasible
due to the small amount of a sample needed for the test (∼2 µL per replica).

(24) See Supporting Information.

Figure 4. LDA canonical score plot for the response of the array to

blanks at different pH levels.
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As in the case of qualitative determination of cations, we
applied LDA to the array response at different concentrations
and calculated the percentages for the correct classification of
cation concentration (Table 1). LDA using a cross-validation
routine shows 85% classification accuracy at a threshold of 5
µM. Here, the misclassified data correspond to the 15%,
corresponding to 97 trials out of 648 trials. Interestingly, just
one trial was misclassified as another cation (Cu2+ 5 µM
misclassified as Al3+ 5 µM); the remaining 96 trials were
classified as a correct cation, but at incorrect concentration.
For example, a Ni2+ 5 µM trial was misclassified as Ni2+ 10
µM, Al3+ 1000 µM was misclassified as Al3+ 5000 µM, etc. Also,
38 misclassifications are evenly distributed between Cu2+ and
Hg2+ ions. This is because the sensors S1-S9 show a similarly
limited dynamic range between 20 and 500 µM for these two cations.
Thus, 13 out of 22 misclassifications for Cu2+ are between 5 and 10

µM, and 9 out of 21 misclassifications for Hg2+ appear in the same
concentration range.

At the concentration range of 10-5000 µM, where the cation
concentrations are out of the LOD zone for most of the sensor
elements, the accuracy of the concentration prediction increases
to 91%. The same trend is observed with the concentration
increased to 50 and 100 µM corresponding to the overall
classification accuracy of 93 and 95%, respectively. In contrast,
the correct quantitative determination of Ni2+ and Cu2+ seemed
to decrease at the concentration range of 50-5000 µM and higher,
presumably due to the fact that most sensors display saturation
at ∼1 mM for these two cations. However, the S1-S9 array still
shows a limit of discrimination of 10 µM for quantitative deter-
mination of the cation concentration with more than 90% of
classification accuracy, while for qualitative determination, the limit
of discrimination is 5 µM.

Figure 5. LDA canonical score plots describing the response of the S1-S9 array to 10 cations (1 mM) at three different pHs (5, 6, 7). Three

factors were necessary to describe at least 85% of the total information (variance) contained in the data set. Data sets (10 cations + blank, 8

trials) recorded at different pH levels were evaluated. For each pH, the cross-validation routine shows 100% correct classification.
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Within the training sets defined by a cation type, concentration,
and pH, the array performance is very good (in most cases >95%
correct classification) considering that it consists of only nine
sensor elements. This is due to the known and predictable
coordination chemistry of the receptors and the luminescence
signaling displayed by these sensors, which is different from
previous contributions.11 The chemosensors used in this work
are cross-reactive but maintain certain predictable selectivity in
binding while the fluorescence signaling, which is individual for
each probe and cation, seems to add yet another layer of
information utilized in the analysis. Taken in concert, the intrinsic
binding profiles and fluorescence signaling features generate
enough discriminatory data to distinguish among 10 cations in a
wide range of concentrations. This supports the hypothesis that
cross-reactive, yet selective sensing elements might help by
increasing the response space and as a consequence the discrimi-
natory power of sensor arrays.13b,25 While these results reported
here appear to be promising, it should be noted that the
performance and practicability of the array are limited to the
generated training sets. Nonetheless, we believe that this kind of
sensor arrays could, perhaps, be utilized in multi-ion detection
schemes, particularly if aided by advanced classification algo-

rithms, such as support vector machines or artificial neural
networks.18

Mineral Water Brand Identification Based on Metal Ion

Content. Encouraged by the latest results, we decided to explore
the utility of the S1-S9 sensor array by exploring a potential
application: identification of mineral and purified (Aquafina) waters
based on their cation content (mostly Ca2+, Mg2+). For mineral
water analysis, the responses for nine commercial brands along
with two controls/blanks (Nanopure water and tap water) were
collected. Figure 8 lists the calcium and magnesium ion contents
for all of the mineral water brands. The pH levels of all these
brands are in the range of 5-7 where the sensor array presents
a rather flat response. From the list (Figure 8) it is clear that all
eight brands contain different kinds and concentrations of cations
and also in different proportions. Furthermore, from the range of
cation concentrations and their kinds, it could be expected that
our sensor array could generate a fingerprint-like response pattern
for each brand of water based on their cation content.26 Cross-
validation routine shows 100% correct classification for all 88 trials
(Figure 8, right). Interestingly, Aquafina brand, due to its low
electrolyte content, presents a very weak response owing to the
fact that it is closest to the Nanopure water by cation content;

Figure 6. LDA canonical score plots for the response of the S1-S9 array to 10 cations (1 mM) at three different different pH levels (5, 6, 7).

Left: LDA was performed using “Mn+ at pH X” as a grouping variable. Right: LDA performed using only the cation class as a grouping variable.

Table 1. LDA Cross-Validated (Leave-One-Out) Classification Accuracy for 10 Different Metal Ions at Different

Dynamic Ranges of Concentrationa

correct proportion for prediction of metal ion class correct proportion for prediction of metal ion concentration

concentration threshold g5 µM g10 µM g50 µM g100 µM g5 µM g10 µM g50 µM g100 µM

classification 0.96 0.97 0.99 0.99 0.85 0.91 0.93 0.95
blank (pH 7) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Al3+ 0.97 0.98 1.00 1.00 0.83 0.86 0.90 0.90
Ca2+ 0.95 1.00 1.00 1.00 0.79 0.82 0.86 0.98
Cd2+ 1.00 0.98 1.00 1.00 0.89 1.00 1.00 1.00
Co2+ 1.00 1.00 1.00 1.00 0.92 0.97 0.98 0.98
Cu2+ 0.88 0.89 0.96 1.00 0.67 0.84 0.81 0.78
Ga3+ 0.91 0.88 1.00 1.00 0.91 0.95 0.94 0.93
Hg2+ 0.94 0.96 0.96 1.00 0.66 0.70 0.82 0.93
Mg2+ 0.94 0.94 0.94 0.98 0.89 0.89 0.96 1.00
Ni2+ 1.00 1.00 1.00 1.00 0.89 0.98 0.96 0.93
Zn2+ 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00

a Upper limit is 5 mM, in all cases.
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Aquafina is actually not commercialized as a “mineral water”, but
as “pure water”.

As a control experiment, we have tried to determine the
consistency in the cationic fingerprint of mineral water Evian.27

For this brand, three different bottles from different lots were
selected randomly and tested using the S1-S9 sensor array. The
responses were recorded and evaluated in the discriminant
function generated from the analysis of the mineral waters. LDA

Figure 7. LDA canonical score plots describing the response of the S1-S9 array to 10 different metal ions at a concentration range between

5 and 5000 µM. Concentration trajectories are derived from/calculated as the average of the scores for each concentration of a given cation.

Figure 8. Left: Metal ion content for different brands of mineral and purified water samples. Right: LDA canonical score plots corresponding

to the response of the S1-S9 array to 9 different water brands. The data set contains 9 brands and 2 blanks, 8 trials each. LDA shows 100%

correct classification for all water brands.
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classified the three Evian bottles as Evian (100% correct classifica-
tion).

CONCLUSION

A sensor array containing nine selective, yet cross-reactive,
sensing elements has been presented. The interplay between the
selectivity and cross-reactivity given by a different kind of
cation-receptor coordination chemistry along with different
signaling schemes was successfully exploited/utilized to provide
highly cross-reactive and provide an information-rich fluorescence
output in four (RGBY) emission channels. This easy-to-observe
luminescence output may be used for both qualitative and
quantitative analyses of metal ions. A pattern recognition method
(LDA) was used to evaluate the analytical utility of the described
sensors in the array. The discriminatory capacity of the array was
tested using a set of 10 metal ions at different ranges of pH and
at different concentrations. Qualitative identification of cations can
be determined with over 96% of accuracy in a concentration range
covering 3 orders of a magnitude (5-5000 µM). Quantitative
analysis can be achieved with over 90% accuracy in the concentra-
tion range between 10 and 5000 µM.

The discriminatory capacity of the described sensors and
arrays was also tested in identification of nine different mineral

water brands utilizing their various electrolyte compositions and
their Ca2+, Mg2+, and Zn2+ levels. The present sensor array is
capable of discriminating among these complex analytes that were
used without any pretreatment (directly from the bottle). Prelimi-
nary results suggest that similar arrays could be used in testing
of the consistency of the purification or manufacturing pro-
cess of purified and mineral waters. Finally, we believe that this
kind of sensor array could be further exploited for application in
multi-ion detection schemes by implementing more advanced
classification algorithms, such as support vector machines or
artificial neural networks, which is a subject of our continuing
efforts.
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