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Fluorescence spectroscopy and multi-way techniques.

PARAFAC†

Kathleen R. Murphy,*a Colin A. Stedmon,b Daniel Graeberc and Rasmus Brod

PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission

matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence

conforms to Beers Law, this process can lead to the mathematical identification and quantification of

independently varying fluorophores. However, many practical and analytical hurdles stand between

EEM datasets and their chemical interpretation. This article provides a tutorial in the practical

application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM)

fluorescence dataset. A new toolbox for MATLAB is presented to support improved visualisation and

sensitivity analyses of PARAFAC models in fluorescence spectroscopy.

Introduction

PARAllel FACtor analysis (PARAFAC) is used in the chemical

sciences to decompose trilinear multi-way data arrays and

facilitate the identication and quantication of independent

underlying signals, termed ‘components’. In 2011–2012, 334

Scopus-indexed journal and conference papers were published

with keywords “PARAFAC” or “parallel factor analysis”. In the

subset of papers where PARAFAC was used primarily as a tool

for data interpretation (n ¼ 238, thus excluding 96 papers

concerned primarily with developing or comparing algorithms,

tools or statistical methodologies), PARAFAC was applied across

research elds (medical, pharmaceutical, food, environmental,

social, and information science) and to a wide range of data
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types, including spectral, NMR, GC-MS, (HP)LC-DAD, EEG,

geospatial, radar, sensory, metabolomic and image data.

However, PARAFAC was applied more oen to uorescence

excitation emission matrices (EEMs) than to all other data types

combined. Thus, of the 238 studies in 2011–2012 involving

straight-forward applications of PARAFAC to real-world data-

sets, more than 70% were applications to uorescence EEMs,

and of these, more than 70% related to the study of natural

organic matter (NOM) uorescence. This result reects the

rapid and enthusiastic uptake of a technique that was intro-

duced to the organic matter research eld only ten years ago1

(Fig. 1).

This paper provides a tutorial in the practical application of

PARAFAC to uorescence data. For a comprehensive theoretical

description of PARAFAC and other multi-way models, including

tutorials in its application to a range of data types, the reader is

referred to earlier ref. 2–4. In consideration of current trends in

PARAFAC application, this tutorial is primarily intended to

provide a deeper practical treatment of preparing, modelling

and interpreting uorescence datasets, particularly when

arising from environmental samples in which the number,

identity and behaviour of uorophores is not known at the

outset. A number of aspects of this tutorial are therefore

specically relevant to modelling uorescence datasets in

general and organic matter uorescence in particular, although

many aspects are broadly relevant to analysing multi-way

datasets, regardless of their type.

Many of the steps described in this tutorial were discussed in

the earlier tutorials. Others are new, particularly the demon-

stration of how hypothesis-testing might be incorporated into

PARAFAC analyses to increase insights into the robustness of a

PARAFAC model and its chemical interpretation. A demon-

stration of the application of PARAFAC to real-world data

accompanies this tutorial. The tutorial dataset consists of 224

samples collected during four surveys of San Francisco Bay and

Fig. 1 Number of Scopus-indexed articles (2003–2012) in which PARAFAC was

used to decompose fluorescence excitation emission matrices (EEMs) of dissolved

and natural organic matter samples.

Table 1 Summary of free MATLAB toolboxes supporting PARAFAC analysis of

fluorescence excitation emission matrices (EEMs)

Toolbox Descriptiona

N-way toolbox General multi-way analysis toolbox that

contains the PARAFAC algorithm

DOMFluor EEM-specic toolbox using the N-way
toolbox as an engine for PARAFAC

FDOMcorr EEM-specic toolbox for importing,

correcting and assembling EEM datasets
in preparation for statistical analysis

drEEM EEM-specic toolbox using the N-way

toolbox as a PARAFAC engine and

incorporating FDOMcorr. Extends the
DOMFluor toolbox to improve dataset

manipulation and visualisation and

support hypothesis-testing during

model validation

a See the main text for reference information.
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measured using excitation-emission matrix uorescence spec-

troscopy.5 PARAFAC analyses for the tutorial are implemented

in MATLAB using two free toolboxes distributed under the

terms of GNU General Public Licence: the N-way toolbox6 which

provides the PARAFAC engine, and the drEEM toolbox, which

supports the application, visualisation and interpretation of

PARAFAC when applied to EEM datasets, and is released in

conjunction with this tutorial (Table 1). The drEEM toolbox

combines and signicantly extends the capabilities of two

earlier toolboxes: DOMFluor7 and FDOMcorr.8,9 A detailed

tutorial in the application of drEEM covering all included

functions is provided as an Appendix† to this article. The

tutorial dataset together with up-to-date versions of the drEEM

and N-way toolboxes may be downloaded at http://

www.models.life.ku.dk/.

PARAFAC model

PARAFAC2,10 belongs to a family of so-called multi-way methods

applicable to data that are arranged in three- or higher-order

arrays. Examples of threeway arrays that can be analysed with

PARAFAC include uorescence EEMs (sample � excitation

wavelength � emission wavelength; Fig. 2), chromatographic

data (GC-MS: sample � elution time � m/z structure), sensory

data (sample � attribute � judge) and electroencephalography

(space � time � frequency).

PARAFAC of a three-way dataset decomposes the data signal

into a set of trilinear terms and a residual array:

xijk ¼

XF

f¼1

aif bjf ckf þ eijk (1)

where i ¼ 1,., I; j ¼ 1,., J; k ¼ 1, ., K

In eqn (1), x ijk is the data point corresponding to the ith

sample at the j th variable on mode 2 and at the kth variable on

mode 3, and eijk is the residual representing the variability not

accounted for by the model. In the case of a uorescence exci-

tation-emission matrix, the i, j and k correspond to the sample,

emission and excitation modes, respectively (Fig. 2). Each f

corresponds to a PARAFAC component and each such compo-

nent has I a-values (scores); one for each sample. Each

component also has J b-values; one for each emission wave-

length as well as K c-values; one for each excitation wavelength.

These model components have a direct chemical interpre-

tation in a valid model. The parameter aif is directly propor-

tional to the concentration of the f th analyte of sample i; the

vector bf with elements bjf is a scaled estimate of the emission

spectrum of the f th analyte. Likewise, the vector cfwith elements

ckf is linearly proportional to the specic absorption coefficient

(e.g. molar absorptivity) of the f th analyte.

Important assumptions for successfully decomposing a

multi-way dataset using PARAFAC include:

(1) Variability: no two chemical components can have

perfectly covarying uorescence intensities or identical spectra.

(2) Trilinearity: the same number of components underlies

the chemical variation in each mode (dimension) of the dataset.

For uorescence EEMs, this means that emission spectra are

invariant across excitation wavelengths, excitation spectra are

invariant across emission wavelengths, and uorescence

increases approximately linearly with concentration.

(3) Additivity: the total signal is due to the linear superpo-

sition of a xed number of components.

The second and third assumptions constitute Beers Law.11

PARAFAC components extracted from data which deviate

signicantly from Beers Law are neither physically nor chemi-

cally meaningful. When modelling real data, difficulties that

arise include the presence of strongly correlated components

with similar spectral properties, non-trilinear systematic error

structures resulting from e.g. light scattered off the sample

matrix, and concentration-dependent nonlinearity due to the

inner lter effect, described further below. Other issues that

may arise in some datasets andmakemodelling difficult or even

impossible are that spectral properties may vary due to chem-

ical reactions, quenching, interactions between uorophores,

or due to changes in the electronic environment of the uo-

rophores (e.g. with pH).

Approach

The overall approach to obtaining a PARAFAC model is illus-

trated in the schematic in Fig. 3. The basic steps are (1) import

and assemble the dataset; (2) preprocess; (3) explore the data

and develop preliminary models (4) develop a nal, validated

model containing the correct number of components, and (5)

export and interpret the results. These steps are detailed below.

Data import

The rst step is to transfer the data from the instrument to

soware supporting PARAFAC analysis. Analysis is frequently

performed with the commercial MATLAB (Mathworks, Inc.)

soware which efficiently handles data arrays. The PARAFAC

algorithms are available through third-party MATLAB tool-

boxes, including N-way6 and Tensorlab.12 Commercial plat-

forms not requiring MATLAB include SOLO (Eigenvector Inc.).

Recently, PARAFAC has been enabled for the free R platform,13

but uorescence applications remain to be demonstrated.

Commercial sowares typically allow a range of le types to be

imported. In the free soware domain, methods and code for

importing EEMs and related data (*.txt, *.csv and *.xls) to
Fig. 2 EEM dataset arranged in a threeway structure and decomposed into five

PARAFAC components.
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MATLAB and assembling them into threeway data structures

are freely available via the FDOMcorr9 and drEEM toolboxes.

Preprocessing

Preprocessing steps are highly dependent upon the type of data

being analysed and the goal of the analysis, with some types of

data necessitating several preprocessing steps and others

requiring little or none. For more comprehensive accounts of

preprocessing the reader is referred elsewhere.14–17 In a practical

sense, it should be borne in mind that the best way to preprocess

a dataset may not be obvious from the outset, and modelling can

identify weaknesses in a dataset (e.g. unusual samples, correlated

components, residual scatter, systematic errors), which must be

dealt with before proceeding. Consequently, it is oen necessary

to iterate the preprocessing andmodelling steps in order to arrive

at stable and satisfactory solutions (Fig. 3).

The preprocessing phase in PARAFAC modelling has three

main aims: (1) correct any systematic biases in the dataset, (2)

remove signals unrelated to uorescence, and (3) normalise

datasets having large intensity differences between samples.

These are described in Preprocessing I–III below. Steps that do

not affect models include applying a linear calibration to

convert signals to a standard scale (e.g. Quinine Sulfate Equiv-

alents or Raman Units).9

Preprocessing I: data correction. For certain kinds of data

including uorescence EEMs, the rst step is to correct

systematic biases in the dataset. These can introduce spurious

interactions between the various data modes. Raw instrument

data are inherently biased due to imperfections in the optical

components or their alignment, and variations in the efficiency

at which different wavelengths of light are transmitted through

the monochromators. This results in distorted excitation or

emission spectra that must be countered through spectral

correction. The correction step involves element-wise multipli-

cation of the EEM by a correction matrix (excitation correction

vector x emission correction vector) specic to the instrument in

use. Methodologies for obtaining the correction vectors are

discussed in earlier ref. 18 and 19. Some commercial uorom-

eters can automatically apply one or both correction vectors to

measured EEMs;20 otherwise, this must be done by hand as

previously described.9 Tools for applying spectral corrections to

uorescence EEMs are included in the drEEM toolbox, and are

demonstrated in the Appendix† to this paper.

Linearity in the relationship between concentration and

uorescence intensity can be assumed only for very dilute

samples; in all other cases, data should be corrected for the so-

called “inner-lter effects (IFE)”. This occurs when radiation is

absorbed by the sample matrix on its way in or out of the

cuvette, ultimately reducing the amount of excitation light

absorbed by chromophores at center of the cuvette and the

amount of emitted light incident upon the detector. Chromo-

phores that do not uoresce also contribute to IFEs. As sample

absorbance increases, non-linearity between concentration and

uorescence intensity becomes increasingly severe, to the point

where further addition can actually cause a reduction in uo-

rescence. DOM absorbance spectra typically decrease approxi-

mately exponentially with increasing wavelength (Fig. 4A),

indicating that IFEs are most severe at short wavelengths. This

leads to distorted EEMs in which each emission spectrum

depends not only on the uorophores present, but also on the

excitation wavelength at which they are measured.

It is oen stated that inner lter effects only impact samples

with high optical densities, when in fact IFEs occur in all

samples where uorophores are present in measurable

concentrations. Modern uorometers typically use right-angle

excitation/emission geometries and a standard rectangular

cuvette with a 1 cm path length, for which it can be deduced

that IFEs exceed 6% at wavelengths where A > 0.05.11 In exper-

iments involving known uorophores having high quantum

yields (i.e. high efficiency at converting incident radiation to

emitted radiation), it may be possible to avoid signicant inner

lter effects by keeping concentrations low. However, in natural

samples where quantum yields are typically low, inner lter

effects are very likely to be signicant at least at short wave-

lengths (Fig. 4B). A recent survey determined that in more than

97% of Swedish lakes (n ¼ 554, D. Kothawala, pers. comm.),

uorescence intensities at 250 nm required correction for inner

lter effects (lakes with DOC $2.1 mg C L�1).

While there are several different ways to account for inner

lter effects, a simple and popular post-hoc method uses only

the sample's absorbance spectrum to calculate a matrix of

correction factors, with a separate correction factor corre-

sponding to each wavelength pair in the EEM (Fig. 4B).11 The

Fig. 3 Schematic of the steps involved in PARAFAC analysis of fluorescence

excitation emission matrices (EEMs).
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EEM can simply be multiplied element-wise by the correction

matrix.9 Absorbance-based correction is typically reported to be

accurate within 5% when absorbance is below 2.0 (ref. 21–23) in

a 1 cm cell. For samples with absorbance approaching 2.0 or

exceeding the linear range of the spectrophotometer, the

sample must either be diluted rst, or else instrument-specic

geometric parameters must be taken into account using a

modied algorithm.21 Note that spectral correction prior to IFE

correction is always necessary to align the uorescence spectra

with the absorbance spectrum and with the theoretical

description of inner lter effects.

Preprocessing II: eliminating non-trilinear data. PARAFAC

modelling of EEMs is hindered by the presence of diagonal

scatter peaks caused by phenomena other than uorescence.24,25

Rayleigh and Tyndall scatter (referred to collectively herein as

Rayleigh scatter) occur at the same wavelength as the excitation

beam and are typically much greater in magnitude than uo-

rescence. Smaller Raman peaks occur at slightly longer wave-

lengths. Secondary Rayleigh and Raman peaks may also be

observed at two times the emission wavelength of the primary

peaks. The degree of scatter is generally less in ltered samples

and when measured with instruments that have double mono-

chromators and cut-off lters on the emission gratings, although

some scatter in EEMs is generally unavoidable. Scatter bands can

oen be reduced by subtracting a water blank from themeasured

sample, although traces remaining aer blank-subtraction may

still be sufficiently large to cause a problem for PARAFAC.

The typical treatment for scatter peaks is to excise the

affected data, replacing it by either with missing data2,7 or with

measurements interpolated from either side of the scatter

band.26,27 Primary Rayleigh scatter occurs in a region where

there are no chemical signals, so can be handled by setting the

scatter-affected region to missing values.4 Raman bands and

secondary Rayleigh scatter oen cut through uorescence

peaks; for these it is oen best to interpolate over the excised

area, since too much missing data within the chemical signal

region can slow down or prevent model convergence. Care must

be taken when interpreting signals bordering interpolated

bands since interpolation can broaden the apparent spectra of

narrow peaks that cross the edges of the scatter band (e.g.

tryptophan uorescence). Using the smootheem function in the

drEEM toolbox, the decision of whether to interpolate or excise

a scatter band can be made for each of the primary and

secondary Rayleigh and Raman bands independently.

Preprocessing III: normalising signals. PARAFAC is oen

implemented on EEMs without further preprocessing than

outlined above.15,28 However, further processing is needed for

datasets encompassing large concentration gradients, such as

oen occurs as a result of dilution (Fig. 5A). In this case,

samples with higher concentration exert higher leverage, and

uorescence from independent uorophores tend to covary

across the dataset, violating the variability assumption. Nor-

malising each EEM to its total signal gives high and low-

concentration samples similar weightings (Fig. 5B), allowing

the model to focus on the chemical variations between samples

rather than the magnitude of total signals. This also increases

the chance that minor peaks will be revealed. Note that for a

given number of components, the t represented by the percent

explained variance of a normalised dataset may be lower than of

the original dataset. However, this does not imply a weaker

model, because the ts are calculated relative to different data

and are not comparable.

Normalisation is done by scaling the data in the rst (sample)

mode to unit norm, i.e. dividing by the sum of the squared value

of all variables for the sample. Normalisation can be reversed

aer validating the model, by multiplying the scores by the same

values. The drEEM toolbox contains tools for normalising EEM

datasets and subsequently recovering the unscaledmodel scores.

Exploratory phase

The aim of exploratory data analysis is to settle upon the best

possible dataset for modelling and obtain a preliminary idea

Fig. 4 (A) Absorbance of a DOM sample from the tutorial dataset, and (B) calculated correction factors accounting for its inner filter effect.

Fig. 5 (A) Strongly correlated components violate the variability assumption of

the PARAFAC model; (B) normalising each EEM to its total signal improves

adherence to the variability assumption.
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about how many PARAFAC components it may contain. One of

the main goals here is to identify and remove unrepresentative

or poor quality data, as well as ‘outlier’ samples or variables

(wavelengths) that could otherwise prevent a satisfactory model

from being obtained. Outliers can result from sampling or

analytical errors, but could equally be unrepresentative of the

rest of the dataset for perfectly legitimate reasons. Either way,

outliers need to be examined individually to determine the

likely reason for their difference, and in extreme cases, it may be

necessary to eliminate data.

Determining the identity of outlier samples and variables is

part of the ‘art’ of PARAFAC modelling, and may need to be

revisited several times during model development. One way to

identify outliers is through examining the structure in the error

residuals (error ¼ data � model). Ideally, residuals will be

distributed approximately randomly, or at least will not contain

obvious structure (Fig. 6A). Another is to calculate the inuence

each sample and wavelength has on a model.29 The leverage is a

number between zero and one that expresses deviation from the

average data distribution. Samples/variables that are not very

different to others have leverages near zero, whereas very atyp-

ical samples have leverages near one (Fig. 6C–E). Ideally, the

samples and wavelengths in a dataset will exhibit roughly

similar leverages.

Model validation

The valid chemical interpretation of a PARAFAC model relies

upon the right number of components being tted. When

models are under-specied, fewer components are used in the

model than there are independently varying chemical moieties

responsible for the measured signal. When this occurs, the

model may approximate the combined signal of chemically

distinct components. When models are over-specied, too

many components are being tted. In this case, two or more

PARAFAC components may be used to represent a single

moiety, oen in combination with noise. There are many ways

to evaluate whether a PARAFAC model was specied with the

correct number of components. No single method is a “silver

bullet”, rather, several should be considered in combination

wherever possible. This is particularly important for real data-

sets, because different validation methods can produce con-

icting indications about the number of components in a

model. For this reason a certain level of subjectivity is

unavoidable; however, with careful investigation and reliance

upon a diverse range of tools, subjectivity can be minimised.

Randomness of residuals

When the correct number of PARAFAC components is chosen,

all of the signicant systematic variation in the dataset is

captured by the model, and the difference between the dataset

and the model, termed the residual, contains only random

error. In this situation, residual plots for each sample show no

consistent pattern. In practice for real datasets, systematic

variation is oen seen for at least some samples in the form of

peaks (representing signals not captured by the model) or

troughs (negative peaks). In the case of uorescence EEMs,

small peaks occurring along the diagonal due to incompletely

removed scatter can be ignored, since they are not trilinear and

should not feature in the model (Fig. 6A). However, adjacent

peaks and troughs in the residuals oen indicate a problem

(Fig. 6B) whereby a peak is modelled using two or more poorly-

tting components.

Fig. 6 (A) Residuals for an adequately modelled sample with minor peaks along the diagonal, and (B) a poorly modelled sample (no. 205). Leverage plots indicate: (C)

unusual samples (205, 208, 49); (D) emission wavelengths with high influence especially near 340 nm; (E) excitation wavelengths with high influence especially near

250, 270 and 310 nm.
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Visualise spectral loadings

If the loadings of a PARAFAC model have a direct chemical

interpretation, it should be assessed whether they are physically

reasonable with respect to the chemical phenomenon being

studied. In the case where the dataset consists of EEMs of non-

interacting organic uorophores, the emission spectrum

should exhibit a pronounced shi relative to its excitation

spectrum, known as the ‘Stokes Shi’.11 This reects the fact

that the energy with which a molecule uoresces is lower than

the energy at which the molecule was excited, due to energy

losses occurring while it is in the excited state. The Stokes shi

depends on a uorophore's type and position within a macro-

molecule as well as its electronic environment.24 Typically,

however, the spectra of independent, non-interacting organic

uorophores in water exhibit the following characteristics:11,30

(1) Minimal overlap (usually <50 nm) between the excitation

and emission spectra.

(2) Excitation spectra may have multiple peaks, but emission

spectra exhibit a single distinct peak.

(3) When an excitation spectrum has two or more peaks

indicating consecutive excited state absorption bands, some

absorption (excitation) occurs between these peaks.

(4) Excitation and emission spectra do not exhibit abrupt

changes over very short wavelength distances.

Fig. 7 depicts the loadings of a ve-component PARAFAC

model derived from the tutorial dataset, noting atypical char-

acteristics for non-interacting organic uorophores.

Core consistency

An indication of the number of components in a PARAFAC

model can be obtained from the core consistency diagnostic,

which evaluates the ‘appropriateness’ of the model.31 When a

sequence of models is run with an increasing number of

components, the core consistency tends to start high (near

100%) then drop abruptly at the point when too many compo-

nents are selected. The number of components is determined to

equal the number in the largest model still having a high core

consistency.31 In practice for real-world non-ideal datasets, core

consistency is not always a reliable diagnostic of the number of

PARAFAC components needed. In the case of uorescence EEMs

derived from organic matter, published models having high core

consistencies tend to have two to four components and in many

cases, exhibit unusual spectra. Conversely, models with ve or

more components very oen have low or even negative core

consistencies even when there are otherwise strong indications

that the model is capturing real chemical phenomena.32–34

Overall, it seems that core consistency applied to organic

matter EEMsmay provide toomuch protection against over-tting

and not enough protection against under-tting. This may in part

reect the situation that there are likely to be many uorophores

present at low levels in organic matter, in which case there may be

no clear-cut number of PARAFAC components to capture them.31

Also, PARAFAC models of natural samples almost invariably

contain two or more strongly covarying components,34,35 chal-

lenging the variability assumption. Finally on the practical side, it

can be difficult or at least very time consuming to eliminate all

scatter in a dataset that impacts upon core consistency without

also eliminating useful chemical information.

Split-half analysis

One of the most powerful ways to conrm that a PARAFAC

model is appropriate is to produce identical models from

independent subsamples of the dataset.36,37 This is typically only

possible for relatively large datasets, because at some point the

number of samples becomes a limiting condition on the

number of components that can be identied.

Harshman37 proposed validating models using multiple split-

half tests, where various models are created and compared aer

dividing the dataset in half in different ways. In the version of this

method implemented in the DOMFluor toolbox,7 each sample is

rst assigned alternately to one of four splits, then the four splits

are assembled into four combined splits (where each combina-

tion contains half the samples in the dataset) to produce two split-

half comparison tests (Fig. 8). We will refer to this style of

validation as an alternating ‘S4C4T2’ (Splits: 4, Combinations: 4,

Tests: 2). The method can easily be extended in order to assemble

six different dataset ‘halves’ and produce three validation tests

‘S4C6T3’ (Fig. 8). Furthermore, the alternating procedure for

assigning the initial groups can be changed in order to keep

particular sets of samples together, for example replicates or

experimental groups. The drEEM toolbox that accompanies this

tutorial includes capability for assembling split-half datasets

according to a wide range of user-specied criteria.

Fig. 7 Five-component DOM-PARAFAC model exhibiting atypical spectral features, including (1) excitation spectrum tailing well into the emission spectrum; (2)

multiple distinct emission peaks, (3) no evidence of excitation between consecutive absorption bands; (4) abrupt spectral changes over short wavelength distances. The

light and dark curves represent excitation and emission spectra, respectively.
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It is oen assumed that the best way to split a dataset is via a

random process. Consider, however, that if dissimilar samples

are deliberately assigned to different splits, models should be

harder to validate because splits are less similar than they

would be if samples were grouped randomly, or evenly, as when

alternating splits are created from a samples ordered in space or

time. However, when identical models are obtained from

different non-random and non-even splits, this can provide

strong evidence of the robustness of the model. Further, when a

dataset consists of natural groups (corresponding to e.g.

particular sites, dates, sources, high versus low concentration,

etc.), then the model validation process can provide an oppor-

tunity to examine hypotheses about how sources of variability in

the dataset affect the underlying uorescence components.

The Appendix† to this paper works through the PARAFAC

analysis of an EEM dataset obtained from four surveys of San

Francisco Bay.5 During these surveys, particular sites were revis-

ited up to four times in February, April, July andOctober 2006. It is

interesting to ask whether there is any difference in PARAFAC

component spectra related to time of year. Fig. 9 shows S4C6T3
validations of a 6-component PARAFAC model of the tutorial

dataset, where the initial splits were created in two different ways.

In the rst case, groups of replicate samples were assigned

alternately to four splits. In the second, the initial splits consisted

entirely of samples from a single cruise. Each row of plots in Fig. 9

depicts a sensitivity analysis indicating which components and

parts of excitation or emission spectra are modelled more or less

consistently than others. The rst validation (Fig. 9 top row)

appears most successful in the sense that the components iden-

tied in each split combination are most similar. However, the

second validation (Fig. 9 bottom row) is potentially more infor-

mative, because it provides reasonably strong evidence that the

major underlying components responsible for DOM uorescence

in the Bay dataset did not vary seasonally. One possible explana-

tion for the observed differences is that the split model which is

least similar to the others was derived from fewer samples (n¼ 68)

and fewer sites (n ¼ 12) than the other split models (n > 100 and

n ¼ 24, respectively).

A few comments are warranted on the topic of replication.

It is generally good experimental and statistical practice to

obtain replicate measurements of any phenomenon under

study.38 For example, subsamples can yield useful data related

to the precision of experimental measurements, repeated

sampling of the same phenomenon can help to quantify

sampling and experimental error, while measurements of

different substances, at different sites or over time each yield

different types of information that may be necessary to interpret

the behaviour of a chemical system. When validating a PAR-

AFACmodel as any other type of model, it is simply necessary to

be mindful of how the experimental design affects the conclu-

sions that can be drawn from any particular model validation.

The ultimate goal is to obtain a model that fairly represents

the problem at hand, i.e. the population of all possible samples

from which a particular set of actual samples were obtained.

When nearly-identical PARAFAC models are obtained from two

replicate halves of a dataset (or even two random halves, if the

dataset contains many similar samples) it is possible to

conclude only that the two halves of the dataset are spectrally

very similar. It does not prove the model is correct, since the

same erroneous solution may be located in two similar dataset

halves. To demonstrate that the model is representative of the

sample population, it must be possible to derive the same

PARAFAC components using completely independent data

subsets. Also, although replicate samples can be included when

modelling, if only some samples in a dataset are replicated,

these will inuence the model more than unreplicated samples.

For these reasons, when validating a model it is good practice to

keep replicate samples together in the same split, and eliminate

any sample that duplicates another.

Fig. 8 Four quarter splits can be combined in six dataset halves to produce two

(S4C4T2) or three (S4C6T3) validation tests. See the ESI† for an elaboration of this

figure.

Fig. 9 Validation of the tutorial dataset with six dataset halves created in two different ways. Top row: alternating S4C6T3 keeping replicate samples together; bottom

row: by-cruise S4C6T3 keeping all samples from the same cruise together.
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Model renement

Creating a PARAFAC model of a real-world dataset is rarely a

linear process, so the exploratory and validation phases of

modelling may need revisiting, possibly several times in the

case of a large or complex dataset. Aside from any analytical

issues, the iterative PARAFAC algorithm itself can cause diffi-

culties.2 Thus, when datasets are difficult to t or contain a large

number of components, PARAFAC can fail to locate the true

solution, and repeated model runs may produce different

solutions. Unstable models can sometimes be improved by

applying appropriate constraints during modelling.4 For

example, it is common in uorescence applications that

concentrations and spectra are constrained to be non-negative.

It can also work well to constrain spectra to having no more

than a single peak (unimodality). The application of constraints

can assist PARAFAC in arriving at stable, chemically-sensible

solutions especially for real-world, noisy datasets. However, care

has to be taken to ensure that the process does not cover up

problems that would be better solved with other approaches.

Once the modelling constraints and criteria have been decided,

the best way to obtain models with the correct solution for any

given number of components is to repeat the modelling, each

time using a different random starting vector, ultimately

adopting only the model that represents the least-squares

(minimum error) solution.

Interpreting the results

When uorescence datasets conform to Beers Law, PARAFAC

components in validated models can be interpreted to

represent independent uorophores or possibly, groups

thereof sharing very similar spectra. If a component can be

attributed to a specic chemical analyte, it is possible through

the addition of known quantities of the analyte to determine

its concentration in each sample. However, if the identity of a

PARAFAC component is unknown, it is not possible to convert

uorescence intensities to concentrations. Instead, it is usual

to track the uorescence intensity at the maximum (“Fmax”)

for each component. The PARAFAC model loadings obtained

using the N-way toolbox are normalised so that all quantita-

tive information is contained in the model scores (“a” in eqn

(1)). Fmax is calculated by multiplying the maximum excita-

tion loading and maximum emission loading for each

component by its score, producing intensities in the same

measurement scale as the original EEMs. Because different

uorophores can have very different efficiencies at absorbing

and converting incident radiation to uorescence, if compo-

nent A has a higher uorescence signal than component B it

does not follow that A has a higher concentration than B.

Quantitative and qualitative information may however be

obtained from changes in the intensity of a given component,

or in the ratios of any two components, between samples in

the dataset. Also, changes in the relative abundance of a

component (Fmax/
P

Fmax) can indicate changes in its overall

importance, although this measure is sensitive to changes in

the relative abundances of all the components so must be

interpreted with care.

In the case of organic matter, the chemical interpretation of

PARAFAC components is not completely clear. It is notable, for

example, that two-thirds of NOM-PARAFAC studies published

between 2003 and 2010 identied fewer than seven PARAFAC

components,17 although the number of naturally occurring

uorophores present in natural systems is presumably much

greater. This probably results from several factors that vary in

importance between studies, including sample size17 and low

signal-to-noise ratios making it difficult to resolve all but the

most prevalent uorophores. In some published models,

combinations of protein-like and humic-like components are

modelled as single components, while others show clear signs

of over-tting. Overall, many larger PARAFAC models deviate

signicantly from Beers Law, as evidenced by the frequent

reports of low core consistencies for PARAFAC models validated

by residual and split-half analysis. Future work should formally

examine what kind and degree of deviation can be tolerated

without unduly impacting the chemical interpretation of NOM-

PARAFAC models.

Conclusions

Parallel factor analysis is a powerful tool for resolving under-

lying structures in multi-way datasets. Rapidly developing

technologies for capturing multi-way data are shiing the

scientic bottleneck from collecting data to its interpretation.

The use of PARAFAC to interpret uorescence EEMs has

expanded correspondingly in recent years. However, the task of

obtaining accurate and chemically-meaningful PARAFAC

models is not trivial, particularly when datasets contain

complex mixtures of highly-correlated components, as appears

to be the case for organic matter uorescence. A range of free

and commercial soware tools are available to implement and

support PARAFAC analyses of uorescence data; the drEEM

toolbox released with this tutorial representing the newest

addition. We hope this latest contribution will assist in pro-

gressing the understanding and implementation of PARAFAC in

uorescence spectroscopy.
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