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Abstract. Several nuclear activities and components 

are concentrated in discrete nuclear compartments. To 
understand the functional significance of nuclear com- 
partmentalization, knowledge on the spatial distribu- 

tion of transcriptionally active chromatin is essential. 

We have examined the distribution of sites of tran- 

scription by RNA polymerase II (RPII) by labeling na- 

scent RNA with 5-bromouridine 5'-triphosphate, in 

vitro and in vivo. Nascent RPII transcripts were found 
in over 100 defined areas, scattered throughout the 

nucleoplasm. No preferential localization was observed 

in either the nuclear interior or the periphery. Each 

transcription site may represent the activity of a single 

gene or, considering the number of active pre-mRNA 
genes in a cell, of a cluster of active genes. The rela- 

tion between the distribution of nascent RPII tran- 

scripts and that of the essential splicing factor SC-35 

was investigated in double labeling experiments. Anti- 

bodies against SC-35 recognize a number of well- 

defined, intensely labeled nuclear domains, in addition 

to labeling of more diffuse areas between these do- 

mains (Spector, D. L., X. -D. Fu,  and T. Maniatis. 

1991. EMBO (Eur. Mol. Biol. Organ.)J. 10:3467- 

3481). We observe no correlation between intensely 

labeled SC-35 domains and sites of pre-mRNA synthe- 
sis. However, many sites of RPII synthesis colocalize 

with weakly stained areas. This implies that cotran- 

scriptional splicing takes place in these weakly stained 

areas. These areas may also be sites where splicing is 
completed posttranscriptionally. Intensely labeled SC- 

35 domains may function as sites for assembly, stor- 
age, or regeneration of splicing components, or as 

compartments for degradation of introns. 

T 
HE cell nucleus comprises all factors required for 
faithful replication of the genome and regulated syn- 
thesis, processing and transport of RNA. In recent 

years much information on nuclear organization has become 
available. It is clear now that the nucleus is highly organized 
(reviewed by de Jong et al., 1990; Jackson, 1991; van Driel 
et al., 1991). The most conspicuous subnuclear domain is 
the nucleolus in which ribosomal genes from different chro- 
mosomes are clustered and ribosome assembly takes place 
(reviewed by Scheer and Benavente, 1990; Hernandez- 
Verdun, 1991). Other examples of a domainlike organization 
in the nucleus are: replication clusters during S-phase 
(reviewed by Berezney, 1991), clustered splicing compo- 
nents (Spector, 1990; Fu and Maniatis, 1990; Carmo- 
Fonseca et al., 1992), hnRNP proteins (Pifiol-Roma et al., 
1989; Ghetti et al., 1992), and tracks and foci of specific 
RNAs (Lawrence and Singer, 1991; Huang and Spector, 
1991). In addition, a number of structures have been visual- 
ized of which the function is still unknown (Ascoli and Maul, 
1991; Saunders et al., 1991; Ra~ka et al., 1991; Stuurman et 
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al., 1992). The structural basis of the occurrence of nuclear 
activities in domains and the functional significance of this 
organizing principle for the regulation of gene expression 
and DNA replication are not understood. 

Essential for understanding nuclear organization is how 
the sites of transcription are spatially related to nuclear do- 
mains involved in RNA processing and replication. Three 
DNA-dependent RNA polymerases (RPs) 1 are responsible 
for nuclear transcription (Sentenac, 1985; Bautz and Peter- 
sen, 1989). RPI transcribes rRNA genes in the nucleolus. 
RPII is located in the nucleoplasm, synthesizing pre-mRNA 
and most snRNAs. RPHI is also located in the nucleoplasm 
and synthesizes small RNAs, like 5S rRNA, U6 snRNA and 
tRNAs. RPII transcription, pre-mRNA splicing and RNA 
transport appear to be closely linked activities (Chang and 
Sharp, 1989; Lawrence et al., 1989; Beyer and Osheim, 
1991). Regulation at any of these processes may control the 
rate at which a specific transcript will be exported as a ma- 
ture mRNA to the cytoplasm. Knowledge on the relationship 
between sites of RPII transcription and compartments en- 

1. Abbreviations used in this paper: BrUTP, 5-bromouridine 5'-triphos- 
phate; Br(d)U, bromo(deoxy)uridine; RPI-II-IH, RNA polymerase I-H-m; 
snRNP, small nuclear ribonucleoprotein particle. 
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gaged in RNA processing will lead to a better understanding 
of nuclear organization and regulation of gene expression. 

Strikingly, the spatial distribution of transcriptionally ac- 
tive chromatin in the interphase nucleus is still unclear. In- 
direct immunofluorescence with antibodies against RPII 
(Bona et al., 1981), visualization of nuclease-sensitive sites 
(Hutchison and Weintraub, 1985; de Graaf et al., 1990), and 
electron microscopy combined with autoradiography on 
[3H]uridine-labeled cells (reviewed by Fakan, 1986) have 
not resulted in an unambiguous picture of the distribution of 
RPII transcription. In addition, localization of specific genes 
and transcripts by in situ hybridization has not resulted in 
conclusions with regard to the spatial organization of active 
genes (reviewed by Lawrence and Singer, 1991). 

We have studied the spatial distribution of RPII transcrip- 
tion sites in the interphase nucleus by visualizing nascent 
(i.e., attached to engaged RPII) RNA in vitro and in vivo. 
Our technique is based on the incorporation of the UTP- 
analogue-5-bromouridine 5'-triphosphate (BrUTP) into na- 
scent RNA. Incorporated BrUTP is visualized by indirect 
immunofluorescence microscopy. A discrete, punctated la- 
beling is observed, which strongly suggests that RPII tran- 
scription takes place in numerous small domains dispersed 
throughout the nucleus. We compare this labeling pattern 
with the distribution of the essential splicing component SC- 
35 (Spector et al., 1991). 

Materials and Methods 

Cell Culture 

"I24 (human bladder carcinoma) cells were grown at 37°C under a 10% 
CO2 atmosphere in DME (Gibco, Paisly, UK) supplemented with 10% 
(vol/vol) heat-inactivated FCS (Boehringer, Mannheim, Germany), 2 mM 
L-glutamine (Gibeo), 100 IU/ml penicillin and 100 t~g/ml streptomycin 
(Gibco). Human skin fibroblasts (Heng89AD or 85AD5035F) were grown 
under a 5% CO2 atmosphere in a l:l-mixture of Ham's F-10 medium 
(Gibeo) and DME, and contained the supplements described above. 

BrUTP Incorporation in Permeabilized Cells 
(Run-on Transcription) 

Cells in Suspension. T24 cells (,050% confluent) were collected by tryp- 
sinization and resuspended in TBS (150 mM NaC1, 10 mM Tris-HCl, pH 
7.4, 5 mM MgCI2) containing 0.5% BSA (Sigma Chemical Co., St. Louis, 
MO). Ceils were washed with TBS and glycerol buffer (20 mM Tris-HCl, 
pH 7.4, 5 mM MgCl2, 25% glycerol, 0.5 mM PMSF, 0.5 mM EGTA), 
respectively. Then the cells were permeabilized in glycerol buffer contain- 
ing 0.05% Triton X-100 (Sigma Chemical Co.) for 3 rain at room tempera- 
ture (,,o2 × 107 ceUs/ml). The permeabilized cells were washed once. 
Run-on transcription was performed in transcription buffer (100 mM KC1, 
50 mM Tris-HCl, pH 7.4, 5 mM MgC12, 0.5 mM EGTA, 25% glycerol, 
25 /~M S-adenosyl-L-methionine (Bonhringer), 5 U/ml RNase inhibitor 
from human placenta (Boehringer), 1 mM PMSF, 0.5 mM ATP, 0.5 mM 
CTP, 40 #M [3H]GTP (500 dpm/pmol; NEN DuPont, 's Hertogenbosch, 
The Netherlands) and 0.2 mM BrUTP (Sigma Chemical Co.) or UTP; ,'°3 
× 106 permeabilized cells/100 #1 of assay) at room temperature. The reac- 
tion was stopped by adding TCA to a final concentration of 5 %, and 1.6 
mg/ml BSA as carrier protein, and was kept on ice for 30 rain. Precipitates 
were recovered by centrifugation and washed six times with 5 % TCA. Fi- 
nally, the precipitates were solubilized in Solvable (DuPont De Nemours, 
Bad Homburg, Germany) according to the manufacturer's instructions and 
counted in a LKB 1214 Rackbeta liquid scintillation counter, a-Amanitin 
(Sigma Chemical Co.) was included in some run-on transcription assays to 
discriminate between the different RPs (Roeder, 1976) as indicated in the 
text. 

Cells on Coverslips. Cells were transferred onto gelatine-coated glass 
coverslips and allowed to grow for 40-45 h. Subsequently, the coverslips 

were washed once with TBS and once with glycerol buffer. Then the cells 
were permeabilized with glycerol buffer containing 0.05 % Triton X-100 for 

3 rain at room temperature. Identical results were obtained when L-s- 
lysolecithin or digitonin were used as permeabilizing agents (data not 
shown). The detergent-containing buffer was removed and transcription 
buffer containing 0.5 mM of ATP, CTP, GTP and 0.2 mM BrUTP was 
added. In control experiments c~-amanitin or actinomycin D was included. 
Run-on transcription was performed at room temperature for 10-30 rain. 
Then the coverslips were washed once with TBS containing 0.5% Triton 
X-100 and 5 units/ml RNase inhibitor for 3 min, and once with TBS con- 
taining 5 U/ml RNase inhibitor. Cells were fixed immediately afterwards. 

Fixation and Immunofluorescence Microscopy 

Cells were fixed in either 2 % (wt/vol) formaldehyde in PBS (140 mM NaCI, 

2,7 mM KCI, 6.5 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4), or in a mix- 
ture of 2% formaldehyde and 0.01% glutaraldehyde (grade 1, specially 
purified 25% aqueous solution; Sigma Chemical Co.) in PBS for 15 rain 
at room temperature. More cells were retained on the coverslips when 0.01% 
glutaraldehyde was present while no effect on the labeling pattern was ob- 
served. The formaldehyde solution was freshly prepared from parafor- 
maldehyde (Merck, Darmstadt, Germany) by depolymerization. Subse- 
quently, the coverslips were incubated as follows: 2 × 5 rain in PBS; 10 
rain in PBS containing 0.5% Triton X-100; 2 × 5 rain in PBS; 10 min in 
PBS containing 0.4% NaBI-I4 (Fluka Chemical Co., Buchs, Switzerland) 
(only when glntaraldehyde was present during fixation); 10 min in PBS con- 
taining 100 mM glycine; 2 × 5 min in PBS; 3 × 15 min in PBG (PBS con- 
taining 0.5% [wt/vol] BSA and 0.05% [wt/vol] gelatin [from cold water fish 
skin, Sigma Chemical Co.]); overnight at 4"C with a rat mAb raised against 
BrdU (Sera-Lab, Crawley Down, UK) diluted 1:500 in PBG; 4 × 5 rain 
in PBG; 1.5 h with biotin-conjugated donkey anti-rat IgG (H+L) (Jackson 

ImmunoResearch Laboratories, West Grove, PA) diluted 1:30 in PBG; 4 × 
5 min in PBG; 30 rnin with either streptavidin-FFl'C conjugate (Gibco) 
diluted 1:500 in PBG or streptavidin-Texas Red conjugate (Amersham, 
Amersham, UK) diluted 1:250 in PBG; 2 × 5 rain in PBG; 2 × 5 min in 
PBS; 3 min in PBS containing 0.4 #g/ml Hoechst 33258 (Sigma Chemical 
Co.) to stain DNA; 5 rain in PBS. Coverslips were mounted in PBS contain- 
ing 90% glycerol and 1 mg/ml p-phenylenediamine (Sigma Chemical Co.). 

Preparations were examined in a Leitz Aristoplan microscope equipped 
with epifluorescence optics, and photographed on Kodak Tri-X films at 400 
ASA. 

Microinjection 

Ceils were grown on marked glass coverslips (Cell-line Associates, New- 
field, NJ) as described above. They were injected into the cytoplasm by 
glass micropipettes essentially as described by Capecchi (1980) and Granss- 
mann and Graessmann (1983). The injection buffer contained 140 mM KCI, 
100 mM BrUTP, 2 mM Pipes, pH 7.4. To inhibit RPII a-amanitin (20 
#g/ml) was included in the injection buffer in control experiments. About 
5 % cell volume was injected. After microinjection cells were either fixed 
directly oi" were returned to normal cell culturing conditions for up to 60 
rain and then processed for immunofluorescence as described above. 

Double Immunolabeling, Confocal Laser Scanning 
Microscopy, and Image Processing 

MAb anti-SC-35, recognizing a 35-kD non-snRNP splicing factor (Fu and 
Maniatis, 1990) was purified from culture supernatant on a protein A-Seph- 

arose CL-4B column (Pharmacia, Uppsala, Sweden). The mAb was eluted 
with 100 raM glycine-HC1, pH 2.5 (Goding, 1983). 

For double-immunolabeling experiments, preparations were processed 
exactly as described above. Coverslips were incubated overnight at 4°C with 
anti-BrdU and anti-SC-35 simultaneously. After washing the coverslips, 
anti-BrdU was detected with biotin-conjugated donkey anti-rat IgG(H+L) 
(Jackson ImmunoResearch Laboratories) diluted 1:30, whereas anti-SC-35 
was detected with TRITC-conjugated goat anti-mouse Ig (Nordic Immuno- 
logical Lab., Tilburg, The Netherlands), diluted 1:100 in PBG. Subse- 
quently, the coverslips were incubated with streptavidin-FITC conjugate 
(Gibco) diluted 1:500 in PBG. When anti-SC-35 and anti-BrdU were in- 
cubated separately the same localization results were obtained. The 
specificity of each of the secondary antibodies was tested by omitting one 
of the primary antibodies. No cross reaction was observed. 

Optical sections of doubly stained cells were recorded with a Leica con- 
focal laser scanning microscope equipped with a 63×/1.4 N.A. oil immer- 

The Journal of Cell Biology, Volume 122, 1993 284 



sion lens. A dual-wavelength laser was used to excite FITC and TRITC 

simultaneously at 488 nm and 514 nm, respectively. A 580-nm longpass 

dichroic beamsplitter separated red and green fluorescence. A 590 nm long- 

pass filter and a 530-555 nm bandpass filter in front of two detectors were 

used. The z-resolution was about 0.9 #m. No crosstalk was observed. The 

fluorescence signals from both fluorochromes were recorded simultane- 
ously in one scan. Photographs were taken directly from screen, using Ko- 
dak Tri-X 400 ASA black and white film. 

Results 

BrUTP Is a Substrate for Mammalian RPII  

To study the spatial distribution of RPII transcription sites 
we have developed an immunocytochemical technique to 
visualize nascent RNA. A method to label DNA with bromo- 
deoxyuridine (BrdU) has been used successfully already 

(Gratzner et al., 1975; Gratzner, 1982; Wilson et al., 1985; 
Nakarnura et al., 1986; Nakayasu and Berezney, 1989; 
Mazotti et al., 1990). Antibodies raised against BrdU also 
recognize bromouridine (BrU) with high specificity and 
affinity (Vanderlaan and Thomas, 1985; Schutte et al., 
1987). If cells are exposed to BrU in their growth medium, 
however, BrU will most likely be identified as a thymidine 
analogue and incorporated into DNA, rather than RNA 
(Eidinoff et al., 1959; Brockrnan and Anderson, 1963). 
Therefore, we have used BrUTP instead of BrU to label na- 
scent RNA in living cells after microinjection, and in run-on 
experiments in permeabilized cells. 

We have investigated the efficiency of incorporation of 
BrUTP into RNA by mammalian RPII to establish the use- 
fulness of BrUTP for our purposes. With purified calf thy- 
mus RPH RNA synthesis followed simple Michaelis-Menten 
steady state kinetics for UTP and BrUTP (data not shown). 
The K~ of calf thymus RPII was 17 #M for BRUTE and 22 
#M for UTE The V ~  of [3H]GTP incorporation into RNA 
in the presence of BrUTP was "040 % lower than with UTE 
Comparable results on BrUTP incorporation into RNA have 
been obtained with cherry salmon RPII (Nakayama and 
Saneyoshi, 1984). The rate of transcription was essentially 
constant in time up to a least 60 min. This indicates that RPII 
was not inactivated by BRUTE 

The incorporation rate of BrUTP into RNA was also de- 
termined in a run-on transcription assay using permeabilized 
human bladder carcinoma cells. Because very little, if any, 
initiation of transcription occurs under run-on conditions, 
mainly elongation of in vivo-initiated transcription is mea- 
sured (Weber et al., 1977). Run-on transcription took place 
at progressively decreasing rates (Fig. 1; See also Weber et 
al., 1977). ~Amanitin was used to discriminate between the 
three different nuclear RPs (Roeder, 1976). The difference 
between the values measured in the presence of 1 #g/ml 
ct-amanitin and those determined in the absence of a-amani- 

tin represents RNA synthesis by RPII (inset, Fig. 1). RPII 
transcription accounted for "075% of total RNA synthesis 
under our conditions. At any timepoint the amount of 
[3H]GTP incorporation by RPH in the presence of BrUTP 
was "020% lower than in the presence of UTP. This shows 
that the decrease of the rate of synthesis by RPII during run- 
on transcription with BrUTP is the same as with UTE 
Therefore, the incorporation of BrUTP did not result in an 
increase of premature termination of transcription. 

From the inset of Fig. 1 it can be calculated that after 30 
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Figure ]. Time course of incorporation of BrUTP during run-on 
transcription in permeabilized human bladder carcinoma cells. Hu- 
man bladder carcinoma cells were permeabilized with Triton X-100 
and incubated with ATE CTP, [3H]GTE and either UTP (circles) 
or BrUTP (triangles) (See Materials and Methods). Reaction mix- 
tures were incubated for 5, 15, or 30 min at room temperature. 
Reactions were stopped with TCA, and radioactivity in TCA- 
precipitable material was measured. Reactions were done in the 
presence (dotted symbols) or absence (filled symbols) of 1 pg/ml 
a-amanitin, which blocks RNA polymerase II activity. The radio- 
activity which was measured when UTP as well as BrUTP were 
omitted from the reaction mixture was subtracted. The difference 
between transcription in the absence and presence of 1 #g/ml 
ot-amanitin represents transcription by RNA polymerase II and is 
depicted in the inset. Shown are the results of an experiment in 
triplicate. Error bars denote standard errors. 

min of run-on transcription 2 x 107 nucleotides per cell 
had been incorporated into RNA by RPII, in the presence 
of BRUTE assuming equimolar use of all four ribonucleo- 
tides. The number of engaged RPII molecules in a growing 
cell is ,020,000 per cell (Cox, 1976; and references therein), 
so that on the average, ,ol,000 nucleotides have been incor- 
porated in each run-on transcript. Because full-length RPII 
transcripts contain on the average 10,000 nucleotides (Le- 
win, 1980), only a small fraction of the engaged RPII mole- 
cules can have terminated transcription properly under our 
experimental conditions. This implies that BrUTP-labeled 
run-on transcripts represent predominantly nascent RNA, 
i.e. RNA bound to engaged RPII. 

BrUTP was also incorporated by RPI (not sensitive to 
c~-arnanitin), albeit less efficiently. The rate of incorporation 
of BrUTP by RPI was about 50% of the rate in the presence 
of UTP. Finally, only very little R i m  (activity blocked by 
100 #g/ml a-amanitin) was detected in the presence of either 
UTP or BrUTP (data not shown). This is in agreement with 
reported low activities of R i m  in nuclei of cultured cells 
(Marzluff and Huang, 1984). 

We conclude that BrUTP substitutes for UTP in RNA un- 
der these conditions, thereby validating our use of this nucle- 
otide analogue for visualizing sites of RNA synthesis. 

Run-on RPII  Transcripts Are Concentrated 
in Subnuclear Domains 

Having demonstrated that BrUTP is efficiently incorporated 
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Figure 2. Localization of BrUTP-labeled RNA in vitro. Run-on 
transcription was carded out in Triton X-100 permeabilized human 
bladder carcinoma cells for 30 rain at room temperature. Subse- 
quently, ceils were fixed in 2 % formaldehyde. Coverslips were in- 
cubated with an anti-BrdU mAb from rat, followed by biotin- 
conjugated donkey anti-rat Ig and streptavidin-FITC conjugate. (A, 
C, and D) Run-on transcription was carded out in the presence of 
BrUTP. (B) BrUTP was substituted by UTP to examine the spec- 
ificity of the mAb. (C) To inhibit RPII transcription 1 #g/ml 
c~-amanitin was included during run-on transcription. (D) Before 
fixation cells were incubated with 50 #g/ml RNAase A for 10 rnin 
at room temperature. Bar, 5/zm. 

Figure 3. Localization of BrUTP-labeled RNA in DNase-digested 
and salt-extracted nuclei. Run-on transcription was carried out in 
Triton X-100 permeabilized human skin fibroblasts in the presence 
of BrUTP for 30 rain at room temperature. Subsequently, labeled 
cells were treated with sodium tetrathionate, digested with RNase- 
free DNase and extracted with 0.25 M ammonium sulfate. Then the 
extracted nuclei (nuclear matrices) were fixed and immunolabeled 
as described in Fig. 2. (A) Nascent RNA, (B) DNA stained with 
Hoechst 33258, 0.25-s exposure, under these conditions nuclei give 
a bright image, (C) as in B but 10 s exposure, (D) phase contrast. 
Note that most DNA has been extracted. In these extracted prepara- 
tions nucleolar RNA is stained (compare D with A), whereas the 
nucleoplasmic staining has not altered, as compared to labeling in 
unextracted preparations. Bar, 5 #m. 

into RNA by mammalian RPII, we developed an immunocy- 
tochemical method to visualize the sites of incorporation in 
the cell nucleus. Run-on transcription in permeabilized cells 
was used to incorporate BrUTP into nascent RNA. After 
run-on transcription for a defined period of time, nonincor- 
porated BrUTP was removed. Then cells were fixed with 

formaldehyde, and incorporated BrUTP was detected with a 
mAb raised against BrdU, which also recognizes BrU. A 
clear nuclear staining was first observed after 10 min of incu- 

bation. Longer labeling (up to 30 min) resulted in a similar, 
more intense punctated pattern (Fig. 2 A). The anti-BrdU 
mAb was specific for BrUTP, because no labeling was seen 
when UTP was used instead of BrUTP (Fig. 2 B). The stain- 
ing was fully obliterated by incubation with RNase A, or by 
carrying out the run-on reaction in the presence of 1 #g/ml 

ot-amanitin (Fig. 2, C and D). This indicates that the punc- 
tater pattern represents RNA synthesized by RPII. 

The question arises whether the punctated immunofluo- 
rescence pattern reflects the actual sites of RPII transcrip- 
tion, or other sites where newly synthesized RNA may have 
accumulated. We have already argued above that the 
majority of engaged RPII molecules can not have terminated 
transcription properly after 30 rain of run-on transcription. 
This implies that BrUTP-labeled transcripts represent pre- 
dominantly nascent RNA. Premature termination or cleav- 
age of run-on transcripts cannot be excluded, however. 
Resulting fragmented transcripts may have accumulated in 
places spatially separated from the sites of RNA synthesis. 
To test this possibility we examined whether chasing with 

UTP after a short BrUTP labeling would affect the labeling 
pattern. We found that a chase with UTP after a 10-min 
BrUTP pulse neither affected the intensity of the spots, nor 
the overall labeling pattern, whereas longer labeling times 

with BrUTP ordy resulted in a pattern of spots of higher in- 
tensity (data not shown). Therefore, it is urdikely that the 

fluorescent spots correspond to sites containing prematurely 
terminated or artifactually cleaved RNA, that was synthe- 
sized somewhere else in the nucleus. In conclusion, the 
punctated pattern represents the sites of RNA synthesis by 
RPII. 

In most experiments we did not observe nucleolar label- 
ing. This observation was unexpected, because RPI, which 
is localized in the nucleolus and responsible for 20-30% of 
total nuclear transcription under our conditions, did incor- 
porate BrUTP (see above). However, nucleolar labeling be- 
came visible when BrUTP-labeled, permeabilized ceUs were 
incubated with DNAse I and extracted with buffer containing 
0.25 M ammonium sulfate (Fig. 3 A). By this procedure, 
,090% of the DNA and protein material in the nucleus was 
removed (Fig. 3, B and C), whereas most BrUTP-labeled 
RNA remained associated with the residual structure (the 
nuclear matrix; van Driel et al., 1991; Jack and Eggert, 
1992). Nucleolar remnants could still be recognized (Fig. 3 

D). Under these conditions BrUTP-labeled nucleolar RNA 
became detectable. This indicates that the absence of fluo- 
rescent labeling in nucleoli of permeabilized cells is due to 
inaccessibility of the nucleoli to the mAb against BrU. The 
question arises then whether also some RPII transcripts 
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Figure 4. Localization of BrUTP-labeled RNA in vivo. Human skin 
fibroblasts were microinjected with BrUTP to investigate transcrip- 
tion in vivo. After microinjection, cells were cultivated for 15 min 
(A, C, and D) or 1 h (B) at 37"C. To inhibit RPII c~-arnanitin was 
co-injected (C and D). Cells were processed as described in Fig. 
2. (A, B, and D) Newly synthesized RNA. (C) Phase contrast of 
nucleus shown in panel (D). Nucleolar labeling became apparent 
after RPII inhibition. Bar, 5/~rn. 

might escape detection because of antibody inaccessibility. 
Removal of 90 % of the DNA and protein did not alter the 
nucleoplasmic staining, neither its punctated pattern, nor its 
overall intensity. Therefore, we conclude that nascent RPII 
transcripts in permeabilized cells are accessible to the anti- 
BrU mAb, so that the fluorescent pattern represents the sites 
of RPII transcription. 

Several cell lines from human, mouse, rat and chicken ori- 
gin were tested to establish whether the observed punctated 
pattern represents a common distribution of nascent RPII 
transcripts in the interphase nucleus. All cell lines inves- 
tigated so far displayed similar punctated patterns. In all 
cases no labeling was observed if 1 #g/ml ot-amanitin was 
present during RNA synthesis, or after incubation with 
RNase A (data not shown). This shows that the pattern 
represents transcription by RPII. The number of spots per 
nucleus differed between cell lines, ranging from '~100 to 
several hundreds. We conclude that the observed punctated 
pattern represents a common distribution of RPII transcrip- 
tion sites in interphase nuclei. 

Visualization of Newly Synthesized RNA In Vivo 

To analyze the distribution of nascent RNA in vivo, we have 
studied RNA synthesis after microinjection of BrUTP into 
living cells followed by immunofluorescence. Incubation 
with BrUTP for 15 min resulted in a clear punctated 
nucleoplasmic pattern (Fig. 4 A). Labeling was sensitive to 
RNase A as well as to ct-amanitin (1 #g/ml) (data not 
shown). This shows that RPII incorporates BrUTP into RNA 
in vivo, similarly as observed in vitro. A similar, but weak 
punctated nuclear staining was already observed after 4 min 
of incubation with microinjected BrUTP (data not shown). 
Given a mean length of ,x,10,000 nucleotides for primary 
RPII transcripts and an in vivo incorporation rate of 20 
nucleotides/s, ,'~70% of the incorporated BrUTP is in na- 

scent RNA after 4 min of incubation with BRUTE This indi- 

cates that the punctated pattern represents sites of RNA syn- 
thesis. 

Permeabilization with Triton X-100 before fixation with 
formaldehyde did not change the spatial distribution of 
BrUTP-labeled RNA. This excludes the possibility that the 
punctated pattern results from a reorganization of newly syn- 
thesized transcripts after permeabilization. In vivo labeling 
after microinjection resulted in the same punctated pattern 
as observed after run-on transcription in permeabilized 
cells. This indicates that our in vitro labeling procedure did 
not cause any major distortion of nuclear structure. 

As in permeabilized cells, nucleoli in most microinjec- 
tion experiments were not labeled. However, a bright nucleo- 
lar labeling was frequently observed in vivo when RPII tran- 
scription was inhibited by co-injecting o~-amanitin with 
BrUTP (Fig. 4 D). This labeling must be the result of RPI 
transcription, because RPII was inhibited by tx-amanitin and 
the contribution of RPIII transcription was too small to be 
detected (compare Fig. 2 C). Therefore, the observed nu- 
cleolar staining can not result from a reorganization of non- 
nucleolar transcripts with the nucleolus. The ot-amani- 
tin-induced nucleolar staining can be explained by a change 
in antibody accessibility, related to an indirect effect of RPII 
inhibition on nucleolar structure. It has been shown that inhi- 
bition of RPII in vivo (e.g., by tx-amanitin or 5,6-dichloro-1- 
/3-D-ribofuranosyl benzimidazole) results in disaggregation 
of nucleoli (reviewed by Brasch, 1990). This disaggregation 
may loosen the dense nucleolar ultrastructure and enable the 
antibodies to penetrate. The observed nucleolar staining in 
the presence of ot-amanitin consisted of some tens of dots in- 
side nucleoli, whereas the nucleoplasm remained unlabeled. 
Nucleolar rRNA dots seemed to be larger than nucleoplas- 
mic spots containing RPII transcripts. The nuclear RNA 
labeling pattern was reminiscent of the localization of RPI 
(Scheer and Rose, 1984; Scheer and Ra~ka, 1987). These 
observations are in agreement with the notion that RPI tran- 
scription takes place in nucleolar fibrillar centers (Scheer 
and Benavente, 1990; Thiry and Goessens, 1992). 

Unlike labeling in vitro, the in vivo labeling pattern 
changed as microinjected cells were incubated for a longer 
time. After 1 h, the discrete labeling pattern had changed to 
a strong, diffuse labeling throughout the nucleoplasm (Fig. 
4 B). This diffuse labeling may reflect intranuclear transport 
of BrUTP-labeled RNA. RNA tracks, as have been reported 
after in situ hybridization using a probe for a specific RNA 
species (Lawrence et al., 1989), were never observed. Only 
a weak cytoplasmic staining was detectable after 1 h of incu- 
bation with BrUTP (data not shown). This suggests that 
BrUTP-labeled RNAs are processed and transported to the 
cytoplasm. It is known, however, that in a normal cell only 
part of the total transcript population ever leaves the nucleus 
(Salditt-Georgieff et al., 1981). So, even if BrUTP-labeled 
transcripts are transported out of the nucleus, the concentra- 
tion of newly synthesized transcripts in the cytoplasm is 
likely to be low compared to that in the nucleus after 1 h of 
labeling (assuming that the volume of the nucleoplasm and 
the volume of the cytoplasm are about the same). 

Summarizing, we conclude that labeling of living cells 
with BrUTP is a rapid, simple, and sensitive technique to 
visualize newly synthesized RNA. The fluorescent domains 
of incorporated BrUTP observed after labeling for a short 
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Figure 6. The intensity of the RPII transcription pattern diffe~ from 
cell to cell. Human bladder carcinoma cells were permeabilized 
with Triton X-100 and incubated with BrUTP for 15 rain at room 
temperature. Coverslips were processed as indicated in Fig. 2. (A) 
Nascent RNA. (B) DNA stained by Hoechst 33258. A typical group 
of cells exhibiting patterns of different intensities is shown. Note 
cell in anaphase. Bar, 10 #m. 

Figure 5. Distribution of nascent RPII transcripts in the nucleus. 
Triton X-100 permeabilized human skin fibroblasts were labeled 
with BrUTP for 15 rain at room temperature. After fixation with 
2% formaldehyde, incorporated BrUTP was detected by incubating 
coverslips with anti-BrdU, biotin-conjugated donkey anti-rat Ig, 
and streptavidin-Texas Red conjugate. The use of streptavidin-Texas 
Red conjugate resulted in a somewhat less diffuse background 
staining compared to streptavidin-FITC. The nucleus of a single 
cell is shown comparing phase contrast (A), nascent RNA (B), and 
DNA stained by Hoechst 33258 (C). Note that nascent-RPII tran- 
scripts are present near the nuclear envelope as well as in the nu- 
clear interior. Nascent RNA is present in areas of low and of high 
DNA concentration. No nucleolar labeling is observed. Bar, 5 #m. 

period of time in vivo obviously correspond to genuine sites 

of RPII transcription. 

Distribution of  Nascent RPII Transcripts 
in the Nucleus 

The distribution of transcription by RPII was investigated in 
nuclei of human skin fibroblasts in more detail. As in all 
other cell types investigated so far, nascent RPII transcripts 
were found in well-defined nuclear domains, rather than 
being distributed homogeneously throughout the nucleus. 
Some hundred nascent-RNA spots per nucleus were ob- 
served (Fig. 5 B). The spots had different intensities and 
were scattered seemingly at random throughout the nucleo- 
plasm. Spots were present in the periphery as well as in the 

nuclear interior and near the nucleolus. The nucleolus itself 

was not labeled. The nascent-RNA pattern was compared 
with the distribution of DNA, visualized by the DNA- 
specific fluorochrome Hoechst 33258 (Fig. 5 C). Nascent 
transcripts were observed in both low and high DNA concen- 
tration areas. 

The localization of nascent RNA during different stages of 

the cell cycle was investigated in asynchronous cultures. We 
did not observe RNA labeling in any stage of mitosis (Fig. 
6 A, cell in anaphase). In interphase cells the intensity of the 
spots, but not their overall distribution, differed considerably 
from cell to cell (Fig. 6 A). These differences probably 
reflect fluctuations in transcriptional activity related to dif- 

ferent stages in the cell cycle, as was reported earlier by 
Fakan and Nobis (1978). Pfeiffer and Tolmach (1968) deter- 
mined that the overall rate of RNA synthesis is constant dur- 
ing G1, doubles during the first half of S-phase, and then re- 
mains constant during the second half of S-phase up to 
mitosis. Probably, the doubling in transcription rate is due 

to a doubling of the number of active genes, which are repli- 
cated predominantly in early S phase (see Goldman, 1988). 

Summarizing, we find that RPII transcription domains are 

not restricted to any specific region of the nucleoplasm, but 
are scattered throughout the nucleus, with exception of the 
nucleolus. 

Localization of Nascent RNA with Respect to Domains 
Enriched in Splicing Components 

Several co- and posttranscriptional processes like capping, 
cleavage, polyadenylation, methylation, splicing, and intra- 
nuclear transport occur between pre-mRNA synthesis and 

translocation of mature mRNA through the nuclear pores. 
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Figure 7. Double labeling of 
nascent RNA and SC-35 do- 
mains enriched in splicing 
components. Triton X-100 pcx- 
meabilized human skin fibro- 
blasts were labeled with 
BrUTP for 15 min at room 
temperature. Cells were fixed 
in 2 % formaldehyde. Incorpo- 
rated BrUTP was visualized 
as described in Fig. 2. In the 
same cell domains enriched in 
snRNPs were visualized with 
anti-SC-35, a mAb against an 
essential splicing component. 

Anti-SC-35 was detected by TRITC-conjugated goat anti-mouse Ig. Preparations were examined in a confocal laser scanning microscope. 
(A) Nascent RNA labeled with BrUTP. (B) Domains enriched in splicing components stained by anti-SC-35 (same optical section as in 
A). Essentially no colocalization was observed between sites containing nascent RNA and intensely labeled SC-35 domains. Some colocali- 
zation was observed between sites containing nascent RNA and areas showing weak SC-35 staining. Bar, 5 #m. 

Thus far, the nuclear location of most of the above mentioned 
RNA processing events has not been identified yet. Only the 
distribution of splicing components has been extensively 
studied (Lerner et al., 1981; Nyman et al., 1986; Verheijen 
et al., 1986; Fu and Maniatis 1990; Carmo-Fonseca et al., 
1991, 1992; Zhang et al., 1992). Pre-mRNA splicing takes 
place in spliceosomes, which are composed of small nuclear 
ribonucleoprotein particles (snRNPs) associated with non- 
snRNP proteins (reviewed by Liihrmann et al., 1990; Green, 
1991). 

We have examined the distribution of nascent RPII tran- 
scripts with respect to the localization of the essential splic- 
ing component SC-35 (Fu and Maniatis, 1990). SC-35 is a 
non-snRNP protein involved in spliceosome assembly, that 
is essential for the first step of the splicing reaction (Fu and 
Maniatis, 1990, 1992a,b). We carried out double immuno- 
fluorescence labeling experiments by combining anti-SC-35 
staining with BrUTP labeling of nascent RNA. Fig. 7 A 
shows BrUTP labeling in permeabilized human skin fibro- 
blasts, detected by confocal laser scanning microscopy. Fig. 
7 B shows the same optical section labeled with anti-SC-35. 
In the SC-35 pattern intensely labeled structures and weakly 
labeled, smaller structures can be recognized. The majority 

of nascent-RNA sites did not colocalize with the intensely 
labeled domains (compare Fig. 7, A and B). Although 
nascent transcripts sometimes were found close to these 
domains, they only rarely coincided with them. Many na- 
scent-RNA domains were not situated near a SC-35 cluster. 
Therefore, there seems to be no relationship between the dis- 

tribution of RNA synthesis and the intensely labeled, large 
SC-35 domains. Careful visual inspection of confocal im- 
ages of nuclei double labeled for nascent RNA and SC-35 
showed some colocalization between sites containing na- 
scent RPI/transcripts and areas showing weak SC-35 stain- 
ing. The above described double labeling was also carried 
out for human bladder carcinoma cells, leading to identical 
conclusions (data not shown). 

Discussion 

Visualization of Nascent RPII Transcripts In Situ 

We have examined the distribution of RPII transcription sites 
in the interphase nucleus of a number of cell types. To this 

end, we developed a technique based on the incorporation 
of BrUTP into nascent RNA. BrUTP-labeled RNA is visual- 
ized by immunofluorescence microscopy using a specific 
anti-Br(d)U antibody. The immunofluorescence pattern ob- 
tained after short time in vivo transcription or after run-on 
transcription consists of hundreds of spots scattered through- 
out the nucleoplasm. 

Several lines of evidence indicate that this staining repre- 
sents sites of synthesis of authentic RPII transcripts. (a) 
BrUTP is efficiently incorporated by RPII. The time courses 
of run-on transcription are similar for BrUTP and UTP, ex- 
cept that at any time point the rate of transcription in the 
presence of BrUTP is ~20 % lower than in the presence of 
UTP. This shows that BrUTP does not induce premature ter- 
mination of transcription. We conclude that BrUTP simply 
substitutes for UTP in RNA, so that the same transcripts are 
synthesized in the presence of either BrUTP or UTP. (b) La- 
beled RNA is already detectable after 4 min of in vivo label- 
ing, or after 10 min of run-on transcription. In both cases, 
most BrUTP-labeled RNA is still nascent. (c) The same 
punctated pattern is observed in living cells, after microin- 
jection with BRUTE and in permeabilized cells, under run- 
on transcription conditions. It is known that during run-on 
transcription the same RNAs, in the same relative amounts, 
are made as in vivo (McKnight et al., 1979; Darnell, 1982). 
In addition, short term in vivo labeling is independent of per- 
mobilization before fixation. So, the BrUTP-labeled do- 
mains are not a result of reorganization of newly synthesized 
RNA after permeabilization of labeled cells. (d) Extraction 
of ,~90% of the DNA and protein from nuclei of permeabi- 
lized ceils did neither alter the spatial distribution, nor the 
number and intensity of nascent-RNA domains in the nu- 
cleoplasm. This shows that there are no "hidden" RPII tran- 
scription sites that might have escaped detection. Moreover, 
these results are in agreement with the notion that nascent 
RNA is attached to an underlying organizing structure (Cie- 
jek et al., 1982; Xing and Lawrence, 1991). 

Summarizing, labeling nascent RNA with BrUTP is to our 
knowledge the first technique to in situ visualize sites of 
RNA synthesis by immunofluoreseence microscopy. The 
technique is simple, rapid, and sensitive, and provides in- 
teresting possibilities for studying the localization of active 
chromatin in relation to other nuclear structures and func- 
tions. Independently, Jackson et al. (1993) used the same 
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technique to visualize newly synthesized RNA in permeabi- 
lized cells. 

The Spatial Distribution of RPII Transcription Sites 
in the Nucleus 

Our results and those of Jackson et al. (1993) show that na- 
scent RPII transcripts are concentrated in a few hundred do- 
mains that are scattered throughout the nucleoplasm. RPII 
transcripts were found near the nuclear envelope as well as 
in the nuclear interior and near the nucleolus. This observa- 
tion has important consequences for our understanding of 
the relation between RPII transcription and RNA process- 
ing, which will be discussed below. 

The distribution of newly synthesized RNA in interphase 
nuclei has been investigated by labeling transcripts with 
PH]uridine, followed by autoradiography (Fakan and Bern- 
hard, 1971; Fakan et al., 1976; reviewed by Fakan, 1986). 
A strong labeling of the nucleoli was observed, obviously 
representing transcripts of RPI. The nucleoplasm was la- 
beled only weakly; no specific pattern or clusters could be 
discerned. Autoradiography in combination with immuno- 
gold labeling has shown [3H]uridine at perichromatin fibrils 
where also snRNPs and hnRNPs were localized (Fakan et 
al., 1976; Bachellerie et al., 1975). A cluster ofperichroma- 
tin fibrils may correspond to one BrUTP-labeled transcrip- 
tion domain. In that case, results obtained with our BrUTP 
labeling technique would be compatible with earlier au- 
toradiographic studies. 

Because, under our conditions, we visualize nascent RPII 
transcripts, we label at the same time the sites where active 
genes are localized in the nucleus. Other techniques have 
been used to investigate the localization of active chromatin 
in interphase nuclei. Actively transcribed chromatin is char- 
acterized by an increased sensitivity to nucleases (Weintraub 
and Groudine, 1976). Because nuclease-sensitive DNA was 
found predominantly at the nuclear periphery (Hutchison 
and Weintraub, 1985; de Graaf et ai., 1990; Krystosek and 
Puck, 1990), this was interpreted to indicate that most active 
genes are located in that specific region of the interphase nu- 
cleus. Our results clearly show that RNA synthesis by RPII 
is not confined to the nuclear periphery but takes place 
throughout the nucleoplasm. Therefore, nuclease sensitivity 
may not be a useful in situ parameter for the localization of 
active chromatin. 

The localization of a few individual genes has been exam- 
ined by in situ hybridization. Integrated, actively transcribed 
Epstein-Barr virus genes in a human lymphoma cell are only 
present in the nuclear interior (Lawrence et ai., 1988, 1989). 
The dystrophin gene, on the other hand, was found near the 
nuclear envelope, irrespective whether the gene was active 
or inactive (Lawrence et al., 1990; Lawrence and Singer, 
1991). Although the evidence is still limited, it seems that 
each gene, active or inactive, is confined to its own region 
in the interphase nucleus. The lack of correlation between 
a geometric nuclear region and gene activity is in agreement 
with our results that RPII transcription domains are localized 
throughout the entire nucleoplasm. In situ hybridization has 
also been used to localize RNA. Specific transcripts have 
been found to be concentrated in foci and tracks in inter- 
phase nuclei (Lawrence et al., 1989; Spector et al., 1990). 
It is not clear how these tracks are spatially related to the ac- 
tual sites of transcription. Therefore, it would be interesting 

to investigate the spatial distribution of specific transcripts 
visualized by in situ hybridization in relation to nascent RNA 
domains. 

Summarizing, RPII transcription takes place in many 
small domains that are dispersed throughout the nucleus. No 
distinct, large nuclear regions exist that contain only active 
or only inactive chromatin. 

Subnuclear Localization of Pre-mRNA Synthesis 
in Relation to Splicing 

We have compared the localization of nascent RPII tran- 
scripts (i.e., predominantly pre-mRNA) with the distribu- 
tion of the splicing machinery in the interphase nucleus. 
Conclusions are important for our understanding of the 
functional organization of the nucleus. As a marker for the 
localization of splicing components we have used the protein 
SC-35, which is essential for splicing of pre-mRNA (Fu and 
Maniatis, 1990, 1992a,b). In immunofluorescence, anti-SC- 
35 antibodies intensely label 20 to 50 domains in interphase 
nuclei. These domains colocalize with nuclear regions la- 
beled by antibodies against snRNPs (Spector et al., 1991). 
In addition, anti-SC-35 antibodies and anti-snRNP antibod- 
ies weakly label diffuse areas between the sharply defined, 
strongly labeled domains (Spector et al., 1991). Another es- 
sential splicing factor, U2AF, shows a more widespread nu- 
cleoplasmic distribution (Zhang et al., 1992). 

Our results show that there is no relationship between the 
distribution of clusters of nascent RPII transcripts and the 
subnuclear localization of domains containing a high con- 
centration of SC-35 (Fig. 7). It is thought that splicing al- 
ready starts before the transcript is completed, and may be 
continued post-transcriptionally (reviewed by Beyer and Os- 
heim, 1991). This implies that cotranscriptional splicing 
takes place outside strongly labeled SC-35 domains. Scru- 
tinizing confocal microscopy images after double labeling 
(like Fig. 7) shows that many sites of transcription coincide 
with weakly labeled SC-35-containing areas. So, these areas 
are most likely sites of cotranscriptional splicing. Evidently, 
if the strongly labeled SC-35 domains would be sites of post- 
transcriptional splicing, pre-mRNA has to be transported 
from the site of synthesis to these domains. However, assum- 
ing that BrUTP-labeled pre-mRNA is processed normally, 
we have no evidence that rapid post-transcriptional translo- 
cation of pre-mRNA to SC-35 domains occurs. This is based 
on the similarity of the spatial distribution of BrUTP-labeled 
nascent RNA in vitro and the distribution in vivo 15 minutes 
after microinjection with BRUTE suggesting that also RNA 
labeled in vivo is located predominantly outside SC-35 do- 
mains. Therefore, it seems that no transport of BrUTP- 
labeled RNA takes place between sites of RNA synthesis and 
SC-35 domains, although many BrUTP-labeled transcripts 
are not nascent any more after 15 min and, therefore, avail- 
able for translocation. We conclude that cotranscriptional 
splicing must occur outside the strongly labeled SC-35 do- 
mains and that post-transcriptional splicing may also occur 
at sites spatially separated from these domains. 

Several observations relate to this problem. First, Spector 
et ai. (1991) showed evidence that the weakly labeled SC-35- 
containing areas in the nucleus correspond to perichromatin 
fibrils. These fibrils become rapidly labeled after expos- 
ing a cell to [3H]uridine (Fakan, 1986), and contain also 
snRNPs (Fakan et al., 1984), indicating that cotranscrip- 
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tional splicing may occur at these structures. This is in agree- 
ment with our observations. Second, Wang et al. (1991) have 
presented evidence that microinjected pre-mRNA accumu- 
lates in the snRNP and SC-35-containing nuclear domains. 
Furthermore, in situ hybridization experiments with a bi- 
otinylated oligo-dT probe suggest that poly(A)-containing 
transcripts are localized in the same domains (Carter et al., 
1991, 1993). These two observations suggest that RNA pro- 
cessing does take place in the SC-35 domains. However, ac- 
cumulation of microinjected intron-containing pre-mRNA 
in these domains does not necessarily reflect the physiologi- 
cal pathway of endogenous pre-mRNA. It is also not clear 
whether the distribution of the oligo-dT probe after in-situ 
hybridization reflects the in vivo distribution of poly(A) 
RNA. Third, Spector et al. (1991) have presented evidence 
that the strongly labeled SC-35 domains, observed after 
immunofluorescent labeling, correspond to interchromatin 
granules seen by electron microscopy. Also snRNPs have 
been localized in interchromatin granules (Fakan et al., 
1984). Fakan (1986) showed by electron microscopy, com- 
bined with autoradiography, that these structures become 
only slowly labeled after exposing living cells to [3H]uri- 
dine. These observations can best be explained by assuming 
that SC-35 domains are not major sites of RNA processing. 
Fourth, in two cases specific transcripts have been found 
close to both the respective genes (Xing et al., 1993) and do- 
mains enriched in splicing components (Huang and Spector, 
1991; Xing et a l . ,  1993). We also observed sites containing 
nascent RNA in close association with strongly labeled SC- 
35 domains. In addition, many transcription sites were found 
at some distance from those domains. Therefore, the local- 
ization of c-fos and fibronectin transcripts may not reflect a 
general organization principle of active chromatin. Fifth, 
very recently Jackson et al. (1993) reported colocalization of 
snRNPs with transcription sites. Unfortunately, they did not 
discriminate between strongly and weakly stained snRNP 
domains. 

Taking these observations together the following picture 
emerges. Pre-mRNA synthesis takes place at numerous sites 
scattered throughout the nucleus. At many, if not all, of these 
sites splicing machinery is present (weakly labeled SC-35 
areas), allowing cotranscriptional splicing. Subsequently, 
splicing is completed at the site of transcription. Presum- 
ably, as has also been suggested by others, strongly labeled 
SC-35 domains have other functions than splicing pre- 
mRNA, like storage of RNA processing components (Fakan 
et al., 1984; Wang et al., 1990), assembly of spliceosomes 
(Fu and Maniatis, 1990), regeneration of spliceosomes, or 
digestion of introns (Wang et al., 1990). It would be interest- 
ing to study the kinetics of recycling of splicing components 
between the weakly and strongly labeled domains. 

Is Transcription by RPII Organized in Clusters 
of Active Genes? 

Nascent RPH transcripts are localized in one hundred to sev- 
eral hundreds of nucleoplasmic domains per nucleus, de- 
pending on the cell type. The number of active pre-mRNA 
genes, however, in a typical eukaryotic cell is estimated to 
be 10,000 to 30,000 (Davidson and Hough, 1971; Galau et 
al., 1974; Bishop et al., 1984; Lewin, 1975). Only few genes 
are transcribed at a high rate. The majority of active genes 

shows a relatively low transcription rate. In addition, there 
may be a limited set of active genes at distinct phases of the 
cell cycle. The discrepancy between the number of nascent- 
RNA domains and the number of active genes can be ex- 
plained in two ways: (a) one RPI/transcription domain cor- 
responds to the position of one highly active gene; a large 
number of genes do not give rise to detectable accumulation 
of nascent RPII transcripts, or (b) one RPII transcription do- 
main corresponds to the transcription of a cluster of a num- 
ber of active genes. Our experiments do not discriminate be- 
tween these two possibilities. However, like transcription, 
early replicating DNA is localized in a few hundred nuclear 
domains (Nakamura, 1986). Each replication domain con- 
tains 20-100 replicons and therefore must comprise on aver- 
age several genes (Hand, 1978). Early replicating DNA is 
enriched in active genes (reviewed by Goldman, 1988). It 
has been claimed that the localization of early replicating 
DNA in discrete regions exists throughout the cell cycle and 
is passed on to daughter ceils (Meng and Berezney, 1991). 
These findings support the idea that active genes are orga- 
nized in clusters throughout interphase. Double-labeling ex- 
periments that combine visualization of replication and tran- 
scription should result in a better understanding of the higher 
organization of active chromatin. 
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