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Nanomedicine has offered new hope for cancer treatment.[1] Nanotherapeutics exhibit many

advantages over small-molecule chemotherapeutics, including diminished systemic toxicity

and improved circulation times. Unfortunately, non-uniformly leaky vasculature[2] and a
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dense interstitial structure[3] hinder their effective delivery to tumors.[4] These physiological

abnormalities make transvascular transport—movement from vessels to the interstitium—

and interstitial transport—movement through the interstitium to target cells—

heterogeneous.[4a] Hence the tumor microenvironment limits the uniform penetration of

nanotherapeutics by slowing or halting their transport through hydrodynamic and steric

hindrance.[2a,3a,5] Overcoming these physiological barriers in tumors is an outstanding

challenge for nanomedicine.

Rational design of nanotherapeutic physicochemical properties can optimize tumor

penetration by circumventing these barriers. Decreasing nanoparticle size improves delivery

to some degree, leading to longer circulation times[4c] and more rapid transport within

tumors,[4b,c] yet smaller nanoparticles have lower drug payloads and loading efficiencies.

The role of surface charge is similarly complex; cationic charge optimizes transvascular

transport in tumors[6] while neutral charge is ideal for long circulation times[7] and

interstitial transport in tumors,[8] making charge unattractive to modulate. Particle aspect

ratio can also affect diffusion rates through pores and porous media,[9] but the effects of

aspect ratio on tumor penetration are not known. We hypothesized that nanorods, through

enhanced transport across porous media, would penetrate tumors more efficiently than

nanospheres of the same effective hydrodynamic size.

To test this hypothesis, we studied whether nanospheres and nanorods with the same

diffusive transport rates in water would transport at different rates in porous media and

tumors. To this end, we designed and developed biostable colloidal quantum dot-based

nanospheres and nanorods that have tunable size but identical surface coating and charge

(Figure 1). The spectrally distinct fluorescence from the quantum dot cores in both these

nanoparticles (Supporting Information, Figure S1) allowed for real-time multiplexed in vivo

imaging with multiphoton microscopy within the same tumor. Applying this technology, we

measured transport in vitro and in vivo for a pair of nanospheres and nanorods with equal

hydrodynamic size.

We used recently developed polyethylene glycol-modified (PEG) CdSe/CdS quantum-dot

cores with spherical silica shells for the nanospheres[4c] and CdSe quantum-dot cores with

seed-grown elongated CdS shells[10] capped with a PEG layer for the nanorods. The

synthetic procedures for silica coating and PEG capping were adapted from the literature.[11]

Unlike for the case of spherical nanoparticles, aqueous solutions of stable and uniform

CdSe/CdS nanorods are difficult to obtain. Only longer PEG chains (MW 5000) provided

aqueous solutions of nanorods that could satisfy multiple criteria for in vivo imaging.[4c] To

determine the rod dimensions—including hydrodynamic aspect ratio—with PEG, we

measured the thickness of the PEG layer based on inter-rod packing distances with and

without PEG using transmission electron microscopy (TEM). We found this layer to be

approximately 5 nm, and confirmed the measurement by comparing the difference between

the hydrodynamic and inorganic sizes for spherical nanoparticles with the same PEG coating

(Figure S2 and Table S1). We then tested the particles for stability and serum adsorption at

37°C by incubating them in phosphate-buffered saline (PBS) and fetal bovine serum (FBS),

respectively. We found that both were stable and maintained their hydrodynamic size in

serum (Figure S3, S4) as expected for PEG coated particles,[12] though we could not exclude

the formation of a small protein corona.[13] We estimated particle surface charge by

measuring ζ-potentials, which were −5.9 ± 4.0 mV[4c] and −4.9 ± 6.2 mV for the

nanospheres and nanorods respectively (Figure S5).

To determine if nanorods would transport through porous media more rapidly than

nanospheres of the same hydrodynamic size, we compared 15 nm diameter by 54 nm length

rods with 35 nm diameter spheres. Both had a 33–35 nm hydrodynamic diameter, measured
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by dynamic light scattering (DLS) and fluorescence correlation spectroscopy, and therefore

had nearly identical diffusion rates in water (Table S2). We then measured transport for both

particles across porous membranes in vitro[9a] with pore diameters from 100–5000 nm

(Figure 2a). While both the nanospheres and nanorods diffused through 5000 nm pores at

the same rate, the nanorods passed through 100–400 nm pores—in the range of maximum

pore sizes in tumor vascular walls[2a]—up to an order of magnitude faster than the

nanospheres. Next, we tested transport through tumor-mimetic collagen gels[3a] for both

particles, and found that the nanorods diffused through these gels 5.3 times as fast as the

nanospheres (Figure 2b; p = 0.003, Student’s T-test, n =3).

Considering their superior transport through porous media in vitro, we tested to see if the

nanorods could penetrate tumors more effectively than the nanospheres in vivo. We

intravenously co-injected the same two 33–35 nm hydrodynamic diameter particles—

bearing different emission maxima—into female SCID mice bearing orthotopic E0771

mammary tumors in mammary fat pad windows,[14] and then intravitally imaged their

penetration in these tumors over time using multiphoton microscopy. We quantified

nanoparticle transvascular transport as transvascular mass flux per unit vascular surface area

and transvascular concentration difference (Figure 3a), also referred to as the effective

permeability.[15] We found that the nanorods penetrated tumors 4.1 times as rapidly as the

nanospheres (p =0.03, Student’s T-test, n =6).

We further measured nanoparticle distribution—a consequence of interstitial transport—

throughout tumors 1 h after injection (Figure 3b,c), quantified as the extravascular volume

fraction of each tumor that contained nanoparticles. We determined that the nanorods

penetrated to 1.7 times the volume to which the nanospheres distributed at 1 h post-injection

(p =0.01, Student’s T-test, n =6). Importantly these particles showed no difference in plasma

half-life in non-tumor bearing mice (Figure S6), indicating similar uptake and clearance

rates by the organs. We additionally found that these 14 nm diameter 55 nm length nanorods

transported into E0771 tumors nearly as rapidly as 13 nm diameter PEG-coated CdSe/CdS

quantum dots (Figure S7), suggesting that the short dimension for nanorods largely

determines transport rates across pores.

It is important to consider that even small improvements in nanotherapeutic penetration can

result in significant enhancements to therapeutic effectiveness. Preventing matrix production

in tumors with losartan, which improves probe diffusion rates by a factor of 1.6 and

nanoparticle distribution in tumors by a factor of 2, can more than double the effectiveness

of an oncolytic virus or nanoparticle therapy against tumor growth.[16] Similarly, degrading

tumor collagen with collagenase, which improves probe diffusion rates[3b] by a factor of

1.75–2 and virus distribution[5b] by a factor of 3, can more than triple the effectiveness of an

oncolytic virus against tumor growth.[5d] Finally, repairing abnormal tumor blood vessel

function through vascular normalization with anti-angiogenic agents, which improves probe

penetration in tumors[17] by a factor of 1.5, has shown great promise for improving small-

molecule chemotherapeutic effectiveness in preclinical and clinical studies.[18] A

meaningful comparison of nanosphere versus nanorod therapeutic effectiveness may prove

intractable due to the need to match size, charge, surface chemistry, drug loading, and

release kinetics. Still, considering historical data on the connection between transport rates

and therapeutic effectiveness, our results strongly suggest that nanorods will be more

effective drug carriers than nanospheres for anti-cancer therapy.

Our data show that nanoparticle shape is an important property to be explored for the design

of effective nanomedicine. Combining the in vitro and in vivo results, in which the

differences in transport rates are similar, it is likely that nanorods penetrate tumors more

rapidly than nanospheres due to improved transport through pores. Other mechanisms, such
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as alignment with bloodflow increasing the probability of convective delivery for

nanorods,[19] are very unlikely since tumors tend to have sluggish blood flow and low

transvascular fluid flux.[4a] We therefore speculate that reduced steric hindrance from and

viscous drag near vessel pore walls leads to the difference in nanosphere versus nanorod

delivery, as seems to be the case for transport across membranes with uniform pores in

vitro.[9a] Interestingly, flexible nanorods may be able to take greater advantage of this

mechanism, as they demonstrate reptation behavior that improves their transport versus rigid

rods through porous gels.[9b] Flexible rods also demonstrate superior circulation times when

compared to rigid rods, likely through enhanced evasion of phagocytosis.[20] Furthermore,

nanorods feature a larger surface/volume ratio than nanospheres, which may prove

advantageous since the addition of a targeting ligand can aid in cell binding, cell uptake, and

therapeutic effectiveness.[21] Considering these superior properties, it seems that rod shaped

nanotherapeutics—including nanotubes and nanoworms—may be far more effective for

cancer therapy than the currently approved spherical nanomedicines.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Nanospheres and nanorods designed for real-time in vivo imaging. a) Schematic

representation of nanospheres and nanorods. The PEG layer is depicted as a gray glow.

Dimensions obtained with TEM for the nanorod cores are shown (4.7 nm diameter and 44.0

length) as well as the approximate PEG-coated hydrodynamic lengths (15 nm diameter and

54 nm length). The hydrodynamic diameter range of the nanospheres and nanorods

(obtained with DLS) is also shown (33–35 nm). b) TEM images of nanospheres and

nanorods.
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Figure 2.

Transport rates in vitro for nanospheres versus nanorods of the same hydrodynamic diameter

(33–35 nm). a) Diffusion rates across membranes with varied pore size, quantified as

permeability. Both particles pass through micrometer-range pores at the same rate, while

nanometer-range pores hinder the nanospheres more than the nanorods. b) Diffusion

coefficients in 1% collagen gels. The nanorods diffuse 5.3-times as fast as the nanospheres

(p =0.003, *).

Chauhan et al. Page 7

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2012 January 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.

Transport and distribution in tumors in vivo for nanospheres versus nanorods of the same

hydrodynamic diameter (33–35 nm). a) Transvascular transport rates in orthotopic E0771

mammary tumors in mice. The nanorods are transported across vessel walls 4.1-times as fast

as the nanospheres (p =0.03, *). b) Nanoparticle distribution in orthotopic E0771 mammary

tumors in mice. The nanorods penetrate to 1.7 times the volume to which the nanospheres

distribute (p =0.01, *). c) Nanoparticle penetration in tumors. Intensities are normalized to

initial intravascular levels, and vessels are shown in black. The rods extravasate more and

penetrate deeper than the spheres. Scale bar 100 μm.
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