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Abstract: Iron oxide magnetic nanoparticles (MNPs) have been widely studied due to their versatility
for diagnosis, tracking (magnetic resonance imaging (MRI)) and therapeutic (magnetic hyperthermia
and drug delivery) applications. In this work, iron oxide MNPs with different single-core (8–40 nm)
and multi-core (140–200 nm) structures were synthesized and functionalized by organic and inor-
ganic coating materials, highlighting their ability as magnetic nanotools to boost cell biotechnological
procedures. Single core Fe3O4@PDA, Fe3O4@SiO2-FITC-SiO2 and Fe3O4@SiO2-RITC-SiO2 MNPs
were functionalized with fluorescent components with emission at different wavelengths, 424 nm
(polydopamine), 515 (fluorescein) and 583 nm (rhodamine), and their ability as transfection and imag-
ing agents was explored with HeLa cells. Moreover, different multi-core iron oxide MNPs (Fe3O4@CS,
Fe3O4@SiO2 and Fe3O4@Citrate) coated with organic (citrate and chitosan, CS) and inorganic (silica,
SiO2) shells were tested as efficient nanoheaters for magnetic hyperthermia applications for mild
thermal heating procedures as an alternative to simple structures based on single-core MNPs. This
work highlights the multiple abilities offered by the synergy of the use of external magnetic fields
applied on MNPs and their application in different biomedical approaches.

Keywords: iron oxide magnetic nanoparticles; nanomagnetism; cell tracking; magnetic hyperthermia;
nanowarming

1. Introduction

The numerous advances produced in recent decades in the field of magnetic nanopar-
ticles synthesis have provided several mature routes, such as coprecipitation, a simple
and cost-effective procedure but with a production of lower crystallinity and higher poly-
dispersity MNPs [1]; hydrothermal processes, based on the use of a water solvent but
whose high temperature and pressure produce higher energetic costs [2]; the solvothermal
method that allows morphological control from simple structures based on single-core
MNPs [3] to complex structures formed by multiple cores [4]; or thermal decomposition,
which allows the obtaining of monodisperse MNPs with high crystallinity and improved
magnetic properties but whose disadvantages are higher production costs, long-time re-
actions and particles with hydrophobic surfaces [5]. This plethora of synthetic routes
has allowed the design of MNPs with various morphologies, such as cubic, spherical or
hexagonal shapes [6], and sizes, from ultra-small (<5 nm) [7] to large MNPs [8], with
different architectures from single magnetic core to multi-core structures [9], with a direct
control on their physicochemical properties, for on-demand applications. Moreover, the
possibility of functionalizing MNPs with different coating materials, organic (polymers,
such as polyethyleneimine (PEI), polydopamine (PDA), polyacrylic acid (PAA), etc.) and
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inorganic (SiO2, carbon or graphene) or with biological moieties (proteins, polypeptides,
antibodies, etc.), allows the production of multi-functional nanostructures for an extended
list of applications that goes beyond the use of their magnetic functionality of MNPs [10].

The most remarkable property of sufficiently small MNPs is superparamagnetism
(SPM) [11], in which the multidomain structure of bulk ferromagnetic materials becomes a
single magnetic domain, whose magnetic moment fluctuates with thermal energy, above
the so known blocking temperature, TB, presenting negligible coercivity and remanence
values. If no magnetic field, H, is applied at temperatures above the TB, SPM ensures the
absence of magnetic interactions, avoiding the occurrence of embolism problems which is
of outmost importance in in vivo uses. Moreover, the full magnetic control achieved by the
MNPs switching on and off by applying an external H expands the applications of MNPs
for different biomedical procedures and places them in a leading position in nanomedicine
research [12].

Therefore, MNPs can be found as contrast agents in medical imaging processes either
by magnetic resonance imaging (MRI), magnetic particle imaging (MPI) [13] or magnetic
particle spectroscopy (MPS) [14,15]. Conventionally used gadolinium-based compounds
as contrast agents in MRI, present toxicity and side effects [16] and opens the way for the
development of iron oxides MNPs with improved performance as contrast agents [17,18]
that can be supplemented, through the addition of fluorescent components such as poly-
dopamine, fluorescein, or rhodamine, with optical properties for combined MRI and optical
imaging. One of the main strategies to develop hybrid fluorescent MNPs is the design
core-shell structures based on inorganic SiO2 coatings as supporting material to anchor
different fluorophores [19,20]. The incorporation of quantum dots (QDs) in the SiO2 shell
provides fluorescent nanomaterials with excellent optical properties [21], especially those
based on carbon dots due to low toxicity [22,23]. Additionally, polymers can be grafted
on the MNPs surface, being especially important in the use of MNPs conjugated with
PDA, which is a current area of interest [24], allowing for the frugal designs of fluorescent
nanoparticles [25,26] or nanorods [27] or even more complex structures, such as fluorescent
mesoporous silica [28].

This hybrid strategy compensates the limitations of both imaging techniques, such
as the low sensitivity of MRI or the low spatial resolution and low penetration depth of
optical imaging techniques, with a penetration depth of MRI and the high sensitivity and
cost-effectiveness of optical imaging techniques [29]. The benefits of combined imaging
strategies for in vivo disease diagnosis, as well as the in situ monitoring of living cells [30],
has boosted the design of multifunctional nanomaterials capable of acting as dual imaging
agents [31].

In addition, MNPs can be used as heat sources at the nanoscale taking advantage of
Néel and Brown relaxation processes, in magnetic hyperthermia processes for oncological
therapies [32], that have led to a clinically applied solution for glioblastoma treatment
(MAGFORCE). In the last times, magnetic hyperthermia has also emerged as a novel
technique known as nanowarming, where the homogeneous heating produced by MNPs
injected in organs submitted to cryopreservation makes it possible to rewarm large vol-
umes of tissues preventing serious damages due to slow and nonuniform heating [33,34].
Especially interesting is the clustering of several MNPs as a potential way to improve
the heating efficiency in hyperthermia processes compared to individually organized
MNPs [35]. Different strategies have been reported to produce complex structures, such
as nanoparticles clusters in a CTAB-mediated oil-in-water emulsion system [36], super-
nanoparticles [37], or silica coated magnetic nanocapsules [38]. In this regard, solvother-
mal methods [39], characterized by a one-step synthesis, allows the design of multi-core
MNPs with tailored physicochemical properties by varying the reactive agents used.
This has recently allowed the variation of the MNPs size from 125 to 539 nm by vary-
ing the surfactant concentration, allowing the improvement of the heating efficiency in
magnetic hyperthermia processes. However, despite obtaining specific absorption rate
(SAR) values close to 100 Wg−1 for the largest MNPs (359 and 539 nm), under the ap-
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plication of a magnetic field of 24 kAm−1, the SAR values decay when the nanoparticle
size decreases up to 125 nm (SAR = 20.8 Wg−1) and 180 nm (49.7 Wg−1) [40]. Since
the reported optimal nanoparticle size for cellular uptake is 50 nm and after observ-
ing a decrease in efficiency for larger MNPs (70–240 nm) [41], a reduction in the size
of multi-core MNPs as nanoheaters without worsening their heating efficiency would be
an advantage. Smaller iron oxide MNPs clusters with diameters of around 70–130 nm,
100 nm, or 158 nm were obtained presenting reduced SAR values of 10–35 Wg−1 [42],
22.8 Wg−1) [43] and 60 Wg−1 [44], respectively, highlighting the correlation of heating
efficiency and size. Composition can be also customized to increase SAR, as several
studies demonstrate the analysis of the effect of Mn or Co in different ferrites: MnFe2O4
(D = 54 nm, SAR = 390 Wg−1) [45], MnFe2O4 (D = 75 nm, SAR = 104 Wg−1), CoMn2O4
(D = 95 nm, SAR = 223 Wg−1) [46] or MnFe2O4 (D = 106 nm, SAR 332 Wg−1) [47]. However,
these last materials increase their SAR values at the expenses of higher toxicity compared
to maghemite/magnetite-based MNPs, questioning their clinical applicability [48].

Therefore, versatility, cost-effectiveness, good magnetic response and biocompatibility
of iron oxide MNPs, compared to other magnetic materials, explain their leading role in
combination with other materials, such as biopolymers, hydrogels, inorganic nanostruc-
tures (mesoporous silica, aluminum hydroxide, etc.), for producing advanced formulations
of scaffolds for tissue engineering, theragnostic agents or detection platforms [49].

In this work, the ability of iron oxide MNPs as magnetic nanotools to boost cell
biotechnological procedures was shown by studying their applicability as cell trackers
and nanoheaters for magnetic hyperthermia and nanowarming processes. By means of
thermal decomposition, co-precipitation and solvothermal methods, magnetic cores with
different physicochemical properties were obtained and coated with inorganic shells using
Stöber and microemulsion methods to produce two batches of MNPs with single core and
multi-core structure. Single core MNPs were functionalized using different techniques
with fluorescent entities, such us polydopamine (λem = 424 nm), fluorescein (λem = 515 nm)
and rhodamine (λem = 583 nm), providing fluorescent MNPs, Fe3O4@PDA, Fe3O4@SiO2-
RITC-SiO2 and Fe3O4@SiO2-FITC-SiO2 MNPs in order to test their ability as magnetic
tracers in a cellular isolation process assisted by external magnetic fields in HeLa cells was
subsequently demonstrated. On the other hand, different strategies for the design of MNPs
with multi-core structure were studied with the aim of comparing the clustering effects in
magnetic hyperthermia processes, which is of current interest due to the improved efficiency
versus simpler structures based on single MNPs. In this way, the heating capacity of multi-
core MNPs (Fe3O4@CS, Fe3O4@Citrate and Fe3O4@SiO2) of sizes between 140–200 nm
was studied by applying external magnetic fields for their use in magnetic hyperthermia
and nanowarming processes. In this case, SAR values up to 100 Wg−1 were obtained
for Fe3O4@Citrate MNPs, significantly improving the values obtained using Fe3O4@CS,
despite their smaller size. On the other hand, the encapsulation of Fe3O4@PEG MNPs in
SiO2 coatings allowed the obtaining of SAR values similar to those of Fe3O4@Citrate, being
of special interest due to the lower energy cost of this type of synthesis compared to the
solvothermal method.

2. Materials and Methods
2.1. Chemicals

All chemicals used in the synthetic processes were used as received without further
purification. Iron(III) chloride hexahydrate (FeCl3·6H2O, 99%), iron(II) sulphate heptahy-
drate (FeSO4·7H2O, 99%), iron-oleate complex, polyethilenglycol (PEG, C2nH4n+2On+1, Mw:
300), sodium citrate dihydrate (C6H9Na3O9 ·2H2O, 98%), tetraethyl orthosilicate (TEOS,
SiC8H20O4, 98%), chitosan (CS, C56H103N9O39, deacetylated chitin, low molecular weight),
dopamine hydrochloride (C8H11NO2·HCl, 98%), polyvinylpyrrolidone (PVP, C6H9NO,
Mw: 55,000), fluorescein isothiocyanate (FITC, C21H11NO5S, 90%), rhodamine B isothio-
cyanate (RITC, C28H30N2SO mixture of isomers), 3-Aminopropyl-triethoxysilane (APTS,
C9H23NO3Si, 99%), ammonium hydroxide (NH3 aq, 28%), sodium acetate (NaOAc, 99%),
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ethylene glycol (EG, C2H6O2, 99%), hydrochloric acid (HCl, 37%), ethyl acetate (C4H8O2,
99.8%), 1-octadecene (ODE, C18H36, 90%), 2-propanol (IPA, C3H8O, 99.5%), cyclohexane
(CHX, C6H12, 99.5%) and oleic acid (OA, C18H34O2, 99%) were purchased from MERCK
(Saint Louis, MO, USA). Ethanol (C2H5OH, absolute grade) was purchased from Panreac
(Madrid, Spain). Phosphate-buffered saline (PBS) and high-glucose Dulbecco’s modi-
fied Eagle’s medium (DMEM) containing GlutaMax, fetal bovine serum (FBS), penicillin-
streptomycin and trypsin were obtained from Gibco-Invitrogen (Gibco-InvitrogenTM-Fisher,
Carlsbad, CA, USA). Milli-Q (Millipore®, Burlington, MA, USA) deionized water was used
in all the experiments.

2.2. Synthesis of MNPs

Depending on the synthesis route followed to produce the magnetic nanoprobes,
single-core or multi-core structures can be obtained. In this work, magnetic cores were
synthesized using bottom-up routes (co-precipitation, solvothermal and thermal decom-
position methods), while the synthesis of core@shell MNPs were based on the Stöber and
microemulsion methods. Surface modification with organic materials, like small fluorescent
molecules (FITC or RITC), stabilizing agents (citrate or OA) or polymers (PDA, PEG or CS),
and inorganic materials (SiO2) was used in this work in order to modulate surface ionic
charge activity, improving colloidal stability and biocompatibility and providing specific
physicochemical properties, such as optical abilities for bioimaging. The synthesis routes
used to prepare different samples is compiled in Figure 1.
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Figure 1. Schematic representation of the single-core MNPs synthesized by different
methods—co-precipitation (Fe3O4@PEG, Fe3O4@PDA, Fe3O4@OA), thermal decomposition
(Fe3O4@OA) and microemulsion (Fe3O4@SiO2-RITC-SiO2 and Fe3O4@SiO2-FITC-SiO2)—and of
the multi-core MNPs (down) synthesized by the solvothermal (Fe3O4@CS and Fe3O4@Citrate) and
Stöber (Fe3O4@SiO2) methods.

2.2.1. MNPs Prepared by Co-Precipitation Method

Polymer/stabilized-coated MNPs were obtained following Massart’s procedure [50].
In a typical synthesis, FeCl3·6H2O (45 mmol) and FeSO4·7H2O (30 mmol) were dissolved
in 100 mL of 10 mM HCl aqueous solution through mechanical stirring. The mixture
was heated at 60 ◦C, then NH3 aq (770 mmol) and the desired biocompatible polymer
or stabilizing agent (PDA, PEG or OA; 1.11 mmol) were added, and the reaction was
carried out for 1 h. After that, the obtained MNPs were treated and washed differently
depending on the hydrophilic/hydrophobic nature of their surface. Samples of Fe3O4
coated with PDA or PEG were acidified up to pH 5 with the incorporation of the HCl
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solution at 9%. Magnetite NPs were separated from the reaction medium by a magnetic
field and washed several times with Milli-Q water. Finally, Fe3O4@PDA and Fe3O4@PEG
MNPs were redispersed in Milli-Q water. Samples of Fe3O4 nanoparticles coated with OA
were transferred to a beaker and placed on a hot plate at 100 ◦C to allow flocculation. The
precipitate containing Fe3O4@OA MNPs was separated from the reaction medium by a
magnetic field and washed three times with Milli-Q water. Finally, Fe3O4@OA NPs were
redispersed in CHX and the remaining water was completely removed from the organic
phase by using a decantation funnel.

2.2.2. MNPs Prepared by Thermal Decomposition Method

OA-coated MNPs (Fe3O4@OA) were prepared following Zhou’s procedure [51]. Typi-
cally, iron-oleate complex (3 mmol) and OA (1.5 mmol) were added to a flask containing
ODE (50 mL). After being filled with nitrogen atmosphere, the reaction mixture was heated
at 320 ◦C at a constant heating rate of 6 ◦C min−1 and then kept at that temperature for
120 min. MNPs were precipitated, magnetically separated and washed with ethanol (x4)
and cyclohexane (x4). Finally, Fe3O4@OA NPs were resuspended in CHX.

2.2.3. MNPs Prepared by Microemulsion Method

Fluorescent single core@shell silica MNPs were prepared according to a water in
cyclohexane reverse microemulsion process [52,53], modified to incorporate the fluores-
cent molecule (FITC or RITC) into a silicate matrix and the silica coating on the MNPs
through a four-stage method. In this case, Fe3O4@OA MNPs previously synthesized by
co-precipitation and thermal decomposition methods were used as magnetic cores for
the design of Fe3O4@SiO2-RITC-SiO2 and Fe3O4@SiO2-FITC-SiO2 MNPs, respectively,
following a microemulsion procedure.

RITC (0.037 mmol) was dissolved in a sample vial (previously covered with aluminum
foil to avoid damage of the fluorescent molecule during all the procedure) in deoxygenated
ethanol (35 mL) and kept under magnetic stirring (200 rpm) for 30 min. After that, APTS
(150 µL) was added to the mixture and left for 16 h under the same magnetic shaking
conditions to facilitate the coupling completely. After 16 h of incubation, the solvent was
evaporated to obtain a final mixture volume of 1 mL. The obtained fluorescent complex
(APTS-FITC or APTS-RITC) was stored at a low temperature (4 ◦C) and protected from
light by an aluminum foil envelope until further use.

In a typical synthesis, Fe3O4@OA NPs (10 mg dispersed in CHX), Igepal CO-520
(3.6 mmol) and cyclohexane (18.7 mL) were mixed in a sample vial and orbital shaken
using an incubator for 30 min. Finally, the addition of NH3 aq (210 µL) and the tetraethyl
orthosilicate, TEOS, was added in three stages to the reaction and kept under the same
orbital conditions during the entire procedure. First, TEOS (112 mmol) was added to the
synthesis and left 2h, followed by the addition of the desired fluorescent complex (30 µL).
After 1h of incubation, TEOS (56 mmol) was added to the mixture and left for 1 h to facilitate
crosslinking. Finally, TEOS (56 mmol) was introduced to the solution and the reaction
required a further 16h at room temperature to complete the silica coating. After that, IPA
was added to precipitate the fluorescent single core@shell MNPs, which were magnetically
separated and extensively washed with IPA (four times) and water (four times). Finally,
the fluorescent single core@shell MNPs were redispersed in Milli-Q water.

2.2.4. MNPs Prepared by Solvothermal Method

CS-coated multi-core MNPs (Fe3O4@CS) were obtained following Shen´s proce-
dure [54]. FeCl3·6H2O (5.6 mmol), CS (0.5 g), NaOAc (44 mmol) and PVP (1 g) were
added to 70 mL of ethylene glycol to give a transparent solution via vigorous stirring. This
mixture was then transferred to a 125 mL Teflon-lined autoclave for treatment at 200 ◦C for
8 h. The obtained multi-core Fe3O4@CS NPs were extensively washed with Milli-Q water
and separated by magnetic decantation for several times. Finally, MNPs were redispersed
in Milli-Q water.
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Citrate-coated multi-core MNPs (Fe3O4@Citrate) were prepared as reported by
Jiang et al. [55]. Briefly, FeCl3·6H2O (3.75 mmol) and sodium citrate (0.4 mmol) were
dissolved in EG (30 mL) under magnetically stirring (200 rpm) for 30 min. Then, NaOAc
(33 mmol) was added and kept under magnetically stirring until it was totally dissolved.
The solution was transferred to a 45 mL Teflon-lined autoclave, which was sealed and
maintained at 200 ◦C for 15 h. After the reaction, the autoclave was allowed to cool down to
room temperature naturally. The obtained multi-core Fe3O4@Citrate MNPs were washed
with Milli-Q water and ethanol several times and then redispersed in Milli-Q water.

2.2.5. MNPs Prepared by Stöber Method

Multi-core@shell silica MNPs (Fe3O4@SiO2) were synthesized following Mohammad’s
procedure [56], with some modifications. In this section, the TEOS precursor was used
for seed-mediated growth of silica on the surface of previously synthesized magnetite
nanoparticles functionalized with PEG by the co-precipitation method [50]. First, 1 mL
of Fe3O4@PEG (3.5 mg/mL) was dispersed in ethanol (5 mL) with a sonication bath for
15 min to ensure adequate dispersion. Then, NH3 aq (114.6 µL) and TEOS (100 µL) were
added to the mixture and orbitally stirred using an incubator at room temperature for
24 h. Afterwards, the multi-core@shell MNPs were magnetically separated, washed and
redispersed in Milli-Q water.

2.3. Physicochemical Characterization
2.3.1. XRD Structural Characterization

The characterization of the crystalline phases was performed by X-ray diffraction
(XRD) with powder samples using a Philips PW1710 diffractometer (Panalytical, Brighton,
UK) with a Cu Kα radiation source, λ = 1.54186 Å. Measurements were collected in the 2θ
angle range between 10◦ and 80◦ with steps of 0.02◦ and 10 s/step. The peak broadening of
XRD patterns was used to obtain crystallite size using Scherer’s equation [57]:

d =
kλ

β cos θhkl
(1)

where d is the mean size of the crystallite (nm), k is the Scherrer constant (0.9, dimension-
less), λ is the wavelength of the X-ray beam used (0.154060 nm), β is the full width at half
maximum (FWHM, radians) of the peak and θ is the Bragg angle (degrees).

2.3.2. Microscopy Morphological Characterization

The morphology and size of the MNPs were studied by transmission electron mi-
croscopy (TEM) using a JEOL JEM-1011 microscope operating at 100 kV (JEOL, Tokyo,
Japan). Samples were placed on copper grids with Formvar® films for analysis. The Image
J program (distributed by NIH, USA) was used to measure the diameters of the MNPs.

2.3.3. Surface Chemistry Characterization

Fourier transform infrared (FTIR) spectra of the surface functional groups of the
nanostructures were recorded with a Thermo Nicolet Nexus spectrometer (Thermo Fisher
Scientific, Madrid, Spain) using the attenuated total reflectance (ATR) method from 4000 to
400 cm−1.

2.3.4. Hydrodynamic Particle Size and Zeta Potential Measurements

Measurements of hydrodynamic particle size and ζ-Potential of MNPs were routinely
performed on the same instrument by a Zetasizer Nano ZS (Malvern Instruments, Worces-
tershire, UK) equipped with a He–Ne laser (633 nm) and operating at a scattering angle
of 173◦ and at room temperature. All analysis were performed in triplicate. All multi-
functional magnetic nanoprobes were dispersed in Milli-Q water with an iron or magnetic
material concentration of 0.4 mg/mL (approx.) and at pH 6.5.
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Zeta potential measurements were carried out using a Malvern Nano ZS instrument
(Malvern Instruments, Worcestershire, UK) supplied by DTS Nano V7.11 software (Malvern
Instruments, Worcestershire, UK) when the functionalized nanoprobes were dispersed in
Milli-Q water with an iron or magnetic material concentration of 0.4 mg/mL (approx.) and
at pH 6.5. The Smoluchowski equation was used for zetametry measurements.

2.3.5. Compositional Characterization

The iron content of the MNPs samples was determined by flame atomic absorption
spectroscopy (FAAS) performed with an Atomic Absorption Spectrometer (Perkin Elmer,
Waltham, MA, USA).

The composition of the samples was analyzed with a TGA Perkin Elmer model 7
(Perkin Elmer, Waltham, MA, USA).

2.3.6. Optical Properties

The optical properties were measured using a Fluorescent Spectrophotometer (Varian
Cary Eclipse).

Additionally, fluorescent MNPs imaging was performed with a fluorescence confocal
multispectral imaging Confocal Laser microscope Leica TCS SP8 SMD. Technical specifica-
tions: resolution, 1024 × 1024; scan direction X, bidirectional; objective, HC PL APO CS
63×/1.40 OIL, using the 405 nm, 488 nm and 552 nm laser lines to PDA, FTIC and RITC
fluorescent visualization, respectively.

Cell micrographs were imaged in a Leica DMI 6000 B microscope with the software
LAS AF 1.0.0 (Leica Microsystems, Wetzlar, Germany).

2.3.7. DC Magnetic Characterization

Direct current (DC) magnetization curves of dried samples were measured using a
vibrating sample magnetometer (VSM) (DMS, Lowell, MA, USA). In such a device, the
measurement of magnetic hysteresis loops at room temperature was carried out under
external magnetic fields from −10 to 10 kOe. Temperature dependence measurements
of the MNPs magnetization were made in field-cooled (FC) and zero-field-cooled (ZFC)
conditions using a Superconducting Quantum Interference Device (SQUID) Magnetometer
(Quantum Design, Darmstadt, Germany).

2.3.8. AC Magnetic Characterization

AC magnetometry measurements were performed using a commercial inductive
magnetometer (AC Hyster Series; Nanotech Solutions, Madrid, Spain) with the application
of a magnetic field of 20 kAm−1 at a frequency of 200, 250, 300 and 350 kHz.

2.3.9. Magnetic Hyperthermia Characterization

Magnetic hyperthermia response of MNPs was measured using a commercially avail-
able setup (MagneTherm, Nanotherics, Warrington, UK) equipped with a fiber optic,
operating at a fixed magnetic field of 20 kAm−1 and different frequencies.

3. Results and Discussion
3.1. X-ray Diffraction (XRD)

To determine the crystalline phases of the MNPs, X-ray diffraction was used, and
powder X-ray patterns of all samples are shown in Figure 2. Diffractograms of fluorescent
single-core MNPs (Fe3O4@PDA, Fe3O4@SiO2-FITC-SiO2 and Fe3O4@SiO2-RITC-SiO2) and
multi-core MNPs (Fe3O4@SiO2, Fe3O4@CS and Fe3O4@Citrate) are shown in Figure 2a,b,
respectively. The XRD characterization of the magnetic cores composed of Fe3O4@OA and
Fe3O4@PEG MNPs, corresponding to Fe3O4@SiO2-FITC-SiO2, Fe3O4@SiO2-RITC-SiO2 and
multi-core Fe3O4@SiO2 is shown in Figure S1. The diffraction peaks of all MNPs match the
theoretical diffraction peaks at (1 1 1), (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), (4 4 0), (6 2 0) and
(5 5 3), corresponding to the inverse spinel structure crystalline phase of magnetite from
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the Inorganic Crystal Structure Database (ICSD card No. 98-015-8742) [58]. However, the
presence of other iron oxide phases, such as maghemite, cannot be discarded. It is worth
noting the presence of peaks corresponding to the functional inorganic coatings of the
MNPs, as in the case of fluorescent single-core@shell and multi-core@shell (Fe3O4@SiO2-
FITC-SiO2, Fe3O4@SiO2-RITC-SiO2 and Fe3O4@SiO2) with a broad band located between
15◦–30◦, indicating the amorphous nature of silica shell [59]. In addition, a broad band
located at 18◦ is observed in the multi-core Fe3O4@CS pattern, which corresponds to the
chitosan coating [60]. The crystallite size of single-core and multi-core MNPs, compiled
in Table 1, was calculated using Scherrer’s equation, Equation (1) and applied to the most
intense peak (311). The crystallite sizes are almost the same or slightly smaller than the
particle sizes, indicating that each particle consists of a single crystal.
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Core Coating Layer Content (wt %) DH (nm)  DXRD (nm) DTEM (nm) PDI Zeta Potential (mV) 

Single-Core 
PDA 41.70 163.00 ± 131.50 12.27 14.90  0.445 (+) 28.70 

SiO2-RITC 75.10 44.14 ± 19.73 9.28 22.50  0.195 (−) 38.00 
SiO2-FITC 82.60 142.20 ± 50.47 8.59 40.09  0.265 (−) 45.50 

Multi-Core 
CS 34.10 201.20 ± 52.56 13.04 178.44  0.259 (+) 12.00 

Citrate 7.10 339.80 ± 218.00 13.25 145.96  0.233 (−) 50.50 
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Figure 2. XRD patterns of (a) single-core MNPs, Fe3O4@PDA (blue pattern), Fe3O4@SiO2-FITC-SiO2

(green pattern) and Fe3O4@SiO2-RITC-SiO2 (red pattern), and (b) multi-core MNPs, Fe3O4@SiO2

(dark cyan pattern), Fe3O4@CS (orange pattern) and Fe3O4@Citrate (violet pattern), compared to the
XRD pattern of magnetite from the ICDS card No. 98-015-8742 data base.

Table 1. Non-magnetic content, hydrodynamic size (DH), crystal size obtained by XRD character-
ization (DXRD), TEM size obtained by TEM micrographs (DTEM), polydispersity index (PDI) and
zeta potential.

Core Coating Layer Content
(wt %)

DH
(nm)

DXRD
(nm)

DTEM
(nm) PDI Zeta Potential

(mV)

Single-Core
PDA 41.70 163.00 ± 131.50 12.27 14.90 0.445 (+) 28.70

SiO2-RITC 75.10 44.14 ± 19.73 9.28 22.50 0.195 (−) 38.00
SiO2-FITC 82.60 142.20 ± 50.47 8.59 40.09 0.265 (−) 45.50

Multi-Core
CS 34.10 201.20 ± 52.56 13.04 178.44 0.259 (+) 12.00

Citrate 7.10 339.80 ± 218.00 13.25 145.96 0.233 (−) 50.50
SiO2 78.1 215.50 ± 61.91 9.82 197.27 0.146 (−) 45.93

The FTIR spectra, presented in Figure 3a for the single-core MNPs and Figure 3b for
the multi-core MNPs, were used to assess the effective surface functionalization through the
absorption bands. FTIR spectra of all samples show similar absorption bands at 3400 cm−1,
which is characteristic peak to the presence of hydroxyl groups from the adsorbed water
molecules and attributed to O-H stretching [61], and at around 550 cm−1, associated with
the stretching vibration of the tetrahedral groups (Fe3+–O2−) for Fe3O4 [62]. For PDA coated
Fe3O4 MNPs, the bands located at 3358, 2919, 2857, 1610, 1431 and 1290 cm−1, associated
at -NH stretching, -CH2 (asymmetric and symmetric), -C-N stretching, -NH bending and
-C-N-C stretching vibrations, respectively [63]. For single- and multi-core@shell MNPs
FTIR spectra, silica coating can be confirmed by the appearance of three peaks at around
1050, 4793 and 463 cm−1, corresponding to the stretching modes of Si-O-Si (asymmetric and
symmetric) and the scissoring vibration of Si-O-Si, respectively [64]. Chitosan-coated Fe3O4
NPs show a weak peak at 3377 and 1610 cm−1 associated to the presence of amine groups
(-NH stretching and -NH bending vibrations, respectively). The absorptions band at 2923,
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2862 cm−1 are correlated to the asymmetric and symmetric CH2 stretching of copolymer
chitosan, respectively. In addition, two peaks appear around 1410 and 1034 cm−1, which
prove the presence of the amide group of chitosan (C-N and C-O-C stretching vibrations,
respectively). Moreover, citrate-coated Fe3O4 FTIR spectra demonstrated the correct citrate
coating by the presence of clearly observed absorptions bands at 1373, 1367 and 1060 cm−1,
which are attributed to the stretching mode (asymmetric COO-, symmetric COO- and
-CH2, respectively) groups of citrates [64]. The FITR characterization of the magnetic cores
composed of Fe3O4@OA and Fe3O4@PEG MNPs, corresponding to Fe3O4@SiO2-FITC-SiO2,
Fe3O4@SiO2-RITC-SiO2 and multi-core Fe3O4@SiO2 is shown in Figure S2.
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Figure 3. FTIR spectra of (a) single-core MNPs, Fe3O4@PDA (blue pattern), Fe3O4@SiO2-FITC-SiO2

(green pattern) and Fe3O4@SiO2-RITC-SiO2 (red pattern), and (b) multi-core MNPs, Fe3O4@SiO2

(dark cyan pattern), Fe3O4@CS (orange pattern) and Fe3O4@Citrate (violet pattern).

3.2. Transmission Electron Microscopy (TEM)

The morphology and size of iron oxide MNPs, characterized by TEM micrographs,
are shown in Figures 4 and 5 for single-core and multi-core MNPs, respectively. All MNPs
show a quasi-spherical morphology and sizes, compiled in Table 1, between 14.90 nm
(Fe3O4@PDA NPs) and 197.30 nm (Fe3O4@SiO2 multi-core MNPs). Regarding the single-
core MNPs, from these images it was possible to observe a higher agglomeration in the
MNPs synthesized by the coprecipitation method (Fe3O4@PDA), compared to the MNPs
synthesized by the microemulsion method (Fe3O4@SiO2-RITC-SiO2 and Fe3O4@SiO2-FITC-
SiO2), where magnetite cores (dark contrast) are individually embedded within the silica
(light contrast) with averaged size of 22.50 nm and 40.09 nm, respectively. On the other hand,
the TEM images of the multi-core MNPs revealed particle sizes an order of magnitude
larger than the single-core MNPs: Fe3O4@CS (178.44 nm), Fe3O4@Citrate (145.96 nm)
and Fe3O4@SiO2 (197.27 nm). A clear structure formed by small magnetic cores was
observed in the MNPs synthesized by the solvothermal method Fe3O4@CS (Figure 5a) and
Fe3O4@Citrate (Figure 5b) and, for multi-core Fe3O4@SiO2 MNPs synthesized by Stöber
method (Figure 5c), a core@shell structure formed by the clustering of small MNPs covered
by a thick SiO2 shell with spherical shape can be observed.
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(b) and the core@shell Fe3O4@SiO2 (c). Insets show magnetic cores prior to silica coating.

Thermogravimetry and FAAS analyses allowed the quantification of the amount of
organic and inorganic content, respectively, contained in each MNPs. In this way, different
values of the %w of the shell content, compiled in Table 1, were obtained, depending on
the synthesis, with the multi-core Fe3O4@Citrate MNPs being the ones with the lowest
percentage of organic content (7.14%) and the single-core Fe3O4@SiO2-FITC MNPs the
ones with the highest content (82.60%). Regarding the single-core MNPs, Fe3O4@PDA
MNPs have the lowest organic content (41.70%) compared to the highest values revealed
for Fe3O4@SiO2-RITC (75.1%) MNPs. On the other hand, Fe3O4@CS present a higher
percentage of organic content (34.12%) than multi-core Fe3O4@Citrate (7.14%) synthesized
by the solvothermal method but much lower values than Fe3O4@SiO2 multi-core MNPs
(78.10%) synthesized by the Stöber method.

The colloidal stability of single- and multi-core MNPs was evaluated by hydrodynamic
size and zeta potential analysis (Table 1). DLS measurements revealed that the fluorescent
single core@shell (Fe3O4@SiO2-RITC-SiO2) MNPs possess a relatively small hydrodynamic
diameters, close to the particle size and their zeta potential (−45.50 mV), and PDI (0.195)
indicates that the MNPs are stable and that the nanoparticle size distribution is relatively
uniform compared to the single-core Fe3O4@PDA MNPs, where their PDI, greater than 0.4,
indicates a moderate aggregation of the MNPs in aqueous medium [65] and its positive zeta
potential (+28.70 mV) indicates the correct functionalization with PDA of the entire surface
of the MNPs [66]. On the other hand, the PDI values of multi-core MNPs are lower than 0.4,
which indicates a good dispersion in aqueous solution. From the results of zeta potential,
listed in Table 1, it was found that the surfaces of CS-coated MNPs have positive charges
(+12 mV), which is common due to the cationic characteristic of CS [67]. Moreover, negative
charges were found in the surfaces of multi-core MNPs (Fe3O4@Citrate and Fe3O4@SiO2),
indicating the presence of carboxylic acid groups and silanol groups from citrate and silica
layers, respectively [68,69].
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3.3. Optical Characterization of Fluorescent Single-Core MNPs

The optical characterization of the fluorescent activity of PDA- (Fe3O4@PDA), FITC-
(Fe3O4@SiO2-FITC-SiO2) and RITC (Fe3O4@SiO2-RITC-SiO2)-functionalized MNPs, ob-
served in Figure 6, reveals well-defined peaks, both excitation and emission, with maxima
located at 424 nm (Fe3O4@PDA), 515 nm (Fe3O4@SiO2-FITC-SiO2) and 583 nm (Fe3O4@SiO2-
RITC-SiO2) agreeing with those reported theoretically for each fluorophore [70–72]. To
verify whether fluorescent single-core MNPs have a sufficient response to be used in mi-
croscopy images for biological studies, these were analyzed by confocal microscopy using
laser excitation lines of 405, 488 and 522 nm, showing the images in Figure 6d,e, respectively,
and allowing the visualization of PDA, FITC and RITC, respectively.
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cent single-core MNPs, functionalized with fluorescent agent: PDA (a,d), FITC (b,e) and RITC
(c,f), respectively.

3.4. Magnetic Characterization

To characterize the DC magnetic properties of the single core and multi-core MNPs,
hysteresis loops, presented in Figure 7a,b, respectively, were performed at 300 K using a
magnetic field between −10 and 10 kOe with a VSM magnetometer. The insets show the
low-field region in more detail, where the coercivity (HC) and remanence (MR) of MNPs,
compiled in Table 2, can be observed. The saturation magnetization (MS) values obtained
in single core MNPs differ from one MNP to another. On the one hand, the MNPs synthe-
sized by the coprecipitation method, Fe3O4@PDA and Fe3O4@SiO2-RITC-SiO2 (formed
by Fe3O4@OA magnetic core) MNPs, present similar MS values, 65–70 emu g−1; while
Fe3O4@SiO2-FITC-SiO2 MNPs, (produced from Fe3O4@OA magnetic core by thermal de-
composition method) show a reduced saturation magnetization around MS = 50 emu g−1.
Regarding the MNPs produced with magnetic cores obtained from coprecipitation meth-
ods, the obtained MS values are in the range of what is expected for this type of syn-
thesis previously reported. However, the difference of about 5 emu/g between both
(Fe3O4@PDA and Fe3O4@SiO2-RITC-SiO2) can be ascribed to the effect of the coating mate-
rial added in the synthesis (PDA and OA) that may modify the growth of the MNPs. On
the other hand, the lower MS of Fe3O4@SiO2-FTC-SiO2, whose core was synthesized by
the thermal decomposition method, agrees with the results reported for MNPs obtained
through this type synthesis and is ascribed to the spin-canting effect on the surface of
the MNPs that considerably reduces the MS [51]. This does not occur in the multi-core
MNPs which, despite being formed by different methods, present similar MS values:
Fe3O4@CS (MS = 67.35 emu g−1), Fe3O4@Citrate (MS = 67.45 emu g−1) and Fe3O4@ SiO2
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(MS = 67.05 emu g−1). The magnetization values obtained were lower than the value of
bulk magnetite (MS

bulk = 92 emug−1) [73], which is concordance to the surface dead mag-
netic layer of magnetic nanoparticles that reduces their magnetization [74]. However,
although the MS values were revealed to be similar in the multi-core MNPs, differences
are observed in the magnetization curves. The main difference is observed in the high-
field region of the hysteresis loop, where the saturation process starts to be seen. For
Fe3O4@SiO2 MNPs, a steeper slope was observed, as was a less clear saturation (flattening
of the curve), than in Fe3O4@CS and Fe3O4@Citrate. This phenomenon hints at a slightly
higher paramagnetic contribution to the hysteresis loop that is related to a larger size of the
spin dead layer [75]. This difference may be due to the different synthesis methods used to
produce multi-core MNPs. While Fe3O4@CS and Fe3O4@Citrate were synthesized at high
temperatures (above 200 ◦C) and present a large particle size (150–200 nm), Fe3O4@SiO2
MNPs were formed by Fe3O4@PEG magnetic cores, previously synthesized by the copre-
cipitation method at lower temperatures (60 ◦C) and with a smaller size (10 nm). These
may suggest that Fe3O4@CS and Fe3O4@Citrate MNPs have a better crystalline structure
with magnetite/maghemite crystals in purer composition, which is reflected in the lower
paramagnetic contribution in the hysteresis loops.
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Figure 7. Magnetization curves at room temperature for the single-core (a) MNPs, Fe3O4@PDA
(orange triangle), Fe3O4@SiO2-RITC-SiO2 (black dots) and Fe3O4@SiO2-FITC-SiO2 (gray dots), and
multi-core (b) MNPs, Fe3O4@CS (black triangles), Fe3O4@Citrate (purple triangles) and Fe3O4@SiO2

(blue dots).

Table 2. Saturation magnetization (MS), coercivity (HC), remanence (MR) and blocking temperature
(TB) obtained by DC magnetometry.

Coating MS
(emug−1)

MR
(emug−1) HC (Oe) TB (K)

Single-Core
PDA 65.38 5.74 51.7 >350

SiO2-RITC 71.44 0.65 3.53 96
SiO2-FITC 49.89 3.35 13.45 216

Multi-Core
CS 67.35 0.70 3.85 >350

Citrate 67.45 2.33 17.19 >350
SiO2 67.05 1.44 10.18 ~350

On the other hand, the coercivity values are close to zero for all MNPs (HC > 20
Oe), except for Fe3O4@PDA MNPs, whose coercivity increases up to 50 Oe, probably
due to the larger nanoparticle size (DTEM = 14.9 nm). The same behavior is observed in
the remanence values where Fe3O4@PDA MNPs present the highest remanence value
(MR = 5.34 emu g−1).

The temperature dependence of the magnetization, presented in Figure 8, was ob-
tained by the ZFC-FC measurements from very low temperature (10 K) to room tempera-
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ture (350 K), revealing clearly differentiated behaviors. Regarding the single core MNPs,
observed in Figure 8a, the Fe3O4@PDA MNPs (orange line) do not exhibit superparam-
agnetic behavior at room temperature, while the Fe3O4@SiO2-RITC-SiO2 (gray line) and
Fe3O4@SiO2-FITC-SiO2 (black line) MNPs exhibit blocking temperatures, obtained as the
maximum of the ZFC curve, of 96 K and 216 K, respectively, showing superparamagnetic
behavior at room temperature. On the other hand, ZFC-FC curves of multi-core Fe3O4@CS
(black line) and Fe3O4@Citrate (purple line) MNPs, presented in Figure 8b, synthesized
by the solvothermal method, reveal TB that is higher than 350 K, while in multi-core
Fe3O4@SiO2 MNPs (blue line), the corresponding TB is around 350 K. These results sug-
gest that magnetic interaction effects noticeably affect the overall behavior of the MNPs
when they are agglomerated in a powder state to carry on measurements. Therefore, the
use of functional SiO2 coatings in the Fe3O4@SiO2-FITC-SiO2 and Fe3O4@SiO2-FITC-SiO2
single-core MNPs and in the Fe3O4@SiO2 multi-core MNPs avoids the direct interaction
between the magnetic cores, acting as spacers, and ensures the superparamagnetic behavior
observed in these MNPs [76]. On the other hand, for the multi-core MNPs synthesized by
solvothermal method, formed by small grouped MNPs, the interaction effects are strong
and superparamagnetic behavior is inhibited.
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Figure 8. Zero-field-cooled (ZFC) and field-cooled (FC) measurements of (a) single core MNPs, 
Fe3O4@PDA (orange line), Fe3O4@SiO2-RITC-SiO2 (gray line) and Fe3O4@SiO2-FITC-SiO2 (black line), 
and (b) multi-core MNPs, Fe3O4@CS (black line), Fe3O4@Citrate (purple line) and Fe3O4@SiO2 (blue 
line). 

  

Figure 8. Zero-field-cooled (ZFC) and field-cooled (FC) measurements of (a) single core MNPs,
Fe3O4@PDA (orange line), Fe3O4@SiO2-RITC-SiO2 (gray line) and Fe3O4@SiO2-FITC-SiO2 (black
line), and (b) multi-core MNPs, Fe3O4@CS (black line), Fe3O4@Citrate (purple line) and Fe3O4@SiO2

(blue line).

3.5. Magnetic Uptake and Cell Isolation with Fluorescence Single-Core MNPs

Single core MNPs with fluorescent properties were tested as multifunctional tools for
the magnetic isolation of living cells using A HeLa cell line (ATCC® CCL-2™), as presented
in Figure 9a. Cells were maintained in DMEM (Dulbecco’s modified Eagle’s medium)
containing 10% fetal bovine serum and 1% penicillin/streptomycin and were cultured with
this complete medium under a humidified atmosphere containing 95% air and 5% of CO2 at
37 ◦C. Next, MNPs were poured over the cells and a transfection process stimulated by the
presence of external permanent magnets located underneath the culture plates was carried
out with the aim of boosting the cellular uptake procedure [77]. For this, cells were seeded
at a density of 104 cells/well in a 12 plate and were incubated at 37 ◦C containing 95% air
and 5% CO2 for 24 h. Then, 50 µL of fluorescence MNPs (100 µg/mL) were inoculated after
24 h with 80% confluency incubated for 15 min with a magnetic plate under the 12 well
plate. After this time wells were washed with PBS to eliminate nanoparticle remains and
medium to then trypsinize it.
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Figure 9. Microscope images of (a) Hela control cells and magnetic uptake (up) and confocal fluo-
rescence micrographs (dow) of fluorescent single-core MNPs, functionalized with fluorescent agent:
PDA (b,e), FITC (c,f) and RITC (d,g), respectively.

Afterwards, to test the magnetic cell isolation procedure, cells were detached and
moved to a 15 mL tube. Then, with the help of an external magnetic field, cells transfected
with magnetic nanoparticles were separated from non-transfected cells. The supernatant
was discarded, and “magnetized” cells were seeded again in other plate. For the observation
of the isolated cells a fluorescence microscope (Zeiss Axio Scope A1, Oberkochen, Germany)
was used to check uptake efficiency of the fluorescent tagging with the single-core MNPs,
allowing the demonstration of the correct separation by means of external magnetic fields.

Figure 9 shows the micrographs corresponding to the magnetic uptake of the MNPs
by the cells after 15 min of incubation and the corresponding fluorescence images of the
MNPs internalized in the HeLa cells, where the emissions corresponding to the different
fluorescent entities can be observed: Fe3O4@PDA (Figure 9b,e), Fe3O4@SiO2-FITC-SiO2
(Figure 9c,f) and Fe3O4@SiO2-RITC-SiO2 (Figure 9d,g). Through fluorescence images,
it can be observed that the magnetic internalization efficiency using Fe3O4@PDA and
Fe3O4@SiO2-RITC-SiO2 NPs seems similar, while fluorescent Fe3O4@SiO2-FITC-SiO2 NPs
have lower internalization efficiency. This can be occasioned by the lower magnetization of
FITC-MNPs compared to the other fluorescent single-core MNPs that experience a weaker
attraction to the external magnets and are less efficient in cell transfection.

Moreover, the simultaneous transfection with different fluorescent MNPs was per-
formed to assess the possibility to transfer different moieties for cell engineering in a single
procedure. Figure 10 shows the transfection of HeLa cells with three different fluorescent
MNPs in a single step as it can be corroborated by the emission signal produced by the
different MNPs, Fe3O4@PDA (Figure 10a, λ = 424 nm), Fe3O4@SiO2-FITC-SiO2 (Figure 10b,
λ = 512 nm) and Fe3O4@SiO2-RITC (Figure 10c, λ = 583 nm), and the merged emission of
the three fluorescent entities, as observed in Figure 10d, within the same HeLa cells. This
proof of concept shows that magnetic uptake allows a not only a fast transfection procedure
(15 min of magnetic incubation versus several hours in passive transfection) but also the
transfection of multiple moieties within a single and fast step that allows cost-effective
bio-engineering processes which may prevent the degradation of proteins, drugs and cells
when exposed to long incubation times [78–80].
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3.6. Heat Capacity of Multi-Core MNPs for Magnetic Hyperthermia and Nanowarming

The use of external magnetic fields, besides being used to improve transfection and
cell isolation processes, can also be used to generate heat on the nanoscale using MNPs
through relaxation processes. To show the heating capability of MNPs, multi-core MNPs
were employed and their response under exposure to external magnetic fields was studied
to explore their capacity as nanoheaters in magnetic hyperthermia and nanowarming
processes, using AC magnetometry measurements by commercial inductive magnetometers
(AC Hyster Series; Nanotech Solutions, Madrid, Spain) with the application of a magnetic
field of 20 kA/m at a frequency of 350, 300, 250 and 200 kHz. From the hysteresis loops
obtained under these conditions, the values of HC, MR and area, compiled in Table 3, were
collected. To carry out the measurements, 40 µL of the multi-core MNPs dispersed in water
at a concentration of 5 gFe3O4/L were used and their response was quantified by obtaining
the specific absorption rate (SAR), denotes as SARAC = A·f, where A is the magnetic area
and f is AC magnetic field frequency.

Table 3. Coercivity (HC), remanence (MR) and maximum magnetization (Mmax) obtained by AC
magnetometry; SAR values obtained by AC magnetometry (SARAC) under the application of a
magnetic field of 20 kAm−1 at a frequency of 350 kHz and by magnetic hyperthermia processes
(SARMH); and temperature increases (from room temperature) obtained after 10 min under the
application of a magnetic field of 20 kAm−1 at a frequency of 605 kHz.

Sample HC-AC
(kAm−1)

MR-AC
(Am2kg−1)

MMax-AC
(Am2kg−1)

Area
(mJkg−1)

SARAC
(Wg−1)

SARMH
(Wg−1)

∆T
(◦C)

Fe3O4@Cs 1.4 3.1 36.9 181.4 63.2 19.56 16.54

Fe3O4@Citrate 1.8 4.7 47.8 302.2 105.2 34.13 27.24

Fe3O4@SiO2 3.8 4.5 22.4 288.5 100.5 34.55 24.37

Figure 11 shows the hysteresis loops obtained at an applied field of 20 kAm−1 at
four frequencies, 350, 300, 250 and 200 kHz, of the three multi-core MNPs: Fe3O4@CS
(Figure 11a), Fe3O4@Citrate (Figure 11b) and Fe3O4@SiO2 (Figure 11c). From these hystere-
sis loops, HC, MR, MMax and area values were obtained, which allows the SARAC to be
obtained, revealing differences between multi-core MNPs. On the one hand, the maximum
magnetization values differ from a minimum value of 22.4 Am2kg−1 (for Fe3O4@SiO2
MNPs) to a maximum of 47.8 Am2kg−1 (for Fe3O4@Citrate MNPs). Although the satu-
ration values obtained by DC characterization at very high fields (10 kOe or 796 kAm−1)
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revealed very similar MS values in the multi-core MNPs, the maximum magnetization
values and thus their response to lower field strengths (20 kAm−1) differ from each other.
This phenomenon may be because of precipitation and aggregation effects of the MNPs
in liquid media during AC characterization processes, which, unlike DC measurements
where the samples are in a powdered state, leads to a reduction in the magnetization of the
MNPs [81,82]. The coercivity values revealed to be similar for the multi-core MNPs synthe-
sized by the solvothermal method (1.4 and 1.8 kAm−1 for Fe3O4@CS and Fe3O4@Citrate)
are higher for Fe3O4@SiO2 (3.8 kAm−1). However, despite the high coercivity value of
the Fe3O4@SiO2 MNPs, the lower magnetization (MMAX = 22.4 Am2kg−1) means that the
area obtained from these MNPs is not the highest of the three MNPs and, therefore, they
do not have the highest SAR value (100.5 Wg−1). Due to the higher magnetization of the
Fe3O4@Citrate MNPs and, despite having a lower coercivity value than the Fe3O4@SiO2
MNPs, the area obtained is the largest of the three multi-core MNPs (A = 302.2 Am2kg−1),
also obtaining the highest SAR value (105.2 Wg−1). The Fe3O4@CS, however, reveals the
lowest SAR value (63.2 Wg−1), which corresponds to the lower values of 1.4 kAm−1 and
3.1 kAm−1, giving an area of 181.4 mJkg−1. It is also observed that the coercivity values
are higher than those obtained by DC magnetometry (0.3, 1.4 and 0.8 kAm−1), which is in
agreement with the increase of coercivity with increasing frequency [83]. The dependence
of SARAC on the four frequencies used is shown in Figure 11d, where a decay of SAR with
frequency is generally observed.
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ferent frequencies. 

  

Figure 11. AC hysteresis curves under HAC (20 kAm−1) and four frequencies, 350 (black),
300 (orange), 250 (gray) and 200 (blue) kHz at room temperature for the multi-core MNPs:
(a) Fe3O4@CS, (b) Fe3O4@Citrate and (c) Fe3O4@SiO2. The iron oxide content was 5 gFe3O4/L
for all measurements. (d) Specific absorption rate values were obtained by the AC hysteresis curves
(SARNTSOL) at the different frequencies.

The use of multi-core MNPs in magnetic hyperthermia processes has been explored
using a commercially available setup (MagneTherm, Nanotherics) equipped with a fiber
optic, operating at a fixed magnetic field of 20 kAm−1 and four different frequencies 605,
428, 252 and 168 kHz. Measurements were carried out by placing MNPs dispersed in
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water (400 µL at a concentration of 5 mg/mL) in the sample holder in the midpoint of a
water-cooled hollow coil (maximum of RF magnetic field) and recording the temperature
increase versus time with a fiber-optic thermometer during 10 min of magnetic field on and
2 min of magnetic field off. Figure 12 shows the heating curves of the multi-core MNPs,
Fe3O4@CS (Figure 12a), Fe3O4@Citrate (Figure 12b) and Fe3O4@SiO2 (Figure 12c). The
temperature increments at 10 min, recorded after the application of a 20 kAm−1 field at
a frequency of 605 kHz (blue lines in Figure 12), compiled in Table 3, reveal increments
of 16.54, 27.24 and 24.37 ◦C (from room temperature, 23 ◦C), for the samples Fe3O4@CS,
Fe3O4@Citrate and Fe3O4@SiO2, respectively, reaching temperatures valid for application
of the multi-core MNPs in magnetic hyperthermia processes (42–45 ◦C) [84].
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Figure 12. Heating curves of (a) Fe3O4@CS, (b) Fe3O4@Citrate and (c) Fe3O4@SiO2 under the
application of a 20 kAm−1 magnetic field at different frequencies, 168 kHz (black), 252 kHz (grey),
428 kHz (orange) and 605 kHz (blue), for 10 min at a MNPs. The iron oxide content was 5 gFe3O4/L
for all measurements.

From the heating curves observed in Figure 12 it was possible to study the heating
efficiency by determining the SAR:

SAR = χ0H2
0µ0π

2πf2τ

1 + (2πfτ)2 (2)

where χ0 is the initial susceptibility, H0 is the amplitude of the magnetic field, f is the
frequency, and τ is the effective relaxation time accounts for a combination of Néel (τN)
and Brown (τB) relaxation times. The SAR was obtained experimentally using the follow-
ing expression:

SAR =
P

mNP
=

Q
∆t

mNP
=

mNPcNP + mwatercwater

mNP

(
∆T
∆t

)
0

(3)

where mNP and mwater mass of iron oxide based MNPs and water were calculated from the
total mass of each sample and, taking into account iron oxide weight percentage determined
by FAAS or thermogravimetry analysis and cNP = 0.746 (Jg−1K−1) and
cwater = 4.18 (Jg−1K−1), are, respectively, the specific heat of magnetite and water. The SAR
values of the different MNPs, obtained from Equation (3) and compiled in Table 3, revealed
values of 19.56, 34.13 and 34.55 Wg−1 for the Fe3O4@CS, Fe3O4@Citrate and Fe3O4@SiO2
MNPs. These values present the same trend as those obtained by AC magnetometry
(SARAC) with the Fe3O4@Citrate and Fe3O4@SiO2 MNPs presenting the highest values and
the Fe3O4@CS sample presenting a lower value, although they are significantly lower than
those obtained by AC magnetometry. This is probably due to the larger volume used in the
magnetic hyperthermia processes (400 µL), which makes heating more difficult.

4. Conclusions

In this work, multifunctional single-core and multi-core MNPs, with average sizes
from 8 to 200 nm, were synthesized using different bottom-up routes (co-precipitation,
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solvothermal and thermal decomposition methods) functionalized by polymeric coatings,
through in situ processes using synthesis methods, or by inorganic (SiO2) coatings, using
the micro-emulsion method to design MNPs with a single core structure or the Stöber
method to organize the magnetic cores into multi-core structures. Structural, morpho-
logical, colloidal stability and the magnetic characterizations of all MNPs were carried
out using different experimental techniques, XRD, FTIR, TEM, DLS, FAAS, TGA, VSM
and SQUID magnetometry, to assess the overall physicochemical properties achieved by
synthetic control.

Thus, single-core MNPs, functionalized with fluorescent agents with emissions at
different wavelengths (PDA, FITC and RITC) were developed with optical properties for
cell labelling and multi-core MNPs, based on clustering of MNPs, were prepared as op-
timized systems for a nanoscale heat emission approach. Fluorescent single-core MNPs
were tested as efficient carriers in magnetic transfection procedures revealing by confo-
cal microscopy imaging, that, with a magnetic incubation of only 15 min and after the
magnetic isolation of HeLa cells, different MNPs efficiently internalize in cells. Moreover,
simultaneous transfection with different fluorescent MNPs (with PDA, RITC or FITC moi-
eties) can be achieved, demonstrating the suitability of magnetic transfection for complex
bioengineering procedures.

On the other hand, the efficiency of multi-core MNPs in heating processes was demon-
strated by AC magnetometry study and by the application of external magnetic fields,
exploring the heating efficiency for magnetic hyperthermia and nanowarmimg processes.
In this case, it was observed that the heating efficiency varies notably, using the same
synthesis method, the solvothermal one, but varying the reactive agents (citrate and CS) as
well as the temperature and time, obtaining SAR values up to 100 Wg−1. On the other hand,
it was shown that the Stöber method can be used for the grouping of MNPs in clusters as a
synthesis method with lower energy cost than the solvothermal method and with similar
heating efficiencies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/magnetochemistry8080083/s1; Figure S1. XRD patterns of
Fe3O4@PEG NPs (wine pattern), Fe3O4@OA NPs, synthesized by decomposition method, DT (dark
yellow pattern) and Fe3O4@OA NPs, synthesized by co-precipitation method, COP (grey pattern),
compared to the XRD pattern of magnetite from the ICDS card No. 98-015-8742 data base; Figure S2.
XRD patterns of Fe3O4@PEG NPs (wine pattern), Fe3O4@OA NPs, synthesized by decomposition
method, DT (dark yellow pattern) and Fe3O4@OA NPs, synthesized by co-precipitation method, COP
(grey pattern), compared to the XRD pattern of magnetite from the ICDS card No. 98-015-8742 data
base; Figure S3. Representative TEM micrographs of Fe3O4@OA NPs, synthesized by co-precipitation
method, Fe3O4@OA NPs, synthesized by decomposition method and Fe3O4@PEG NPs [58,62,85–87].
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