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Abstract: The purpose of this review is to attempt to outline the potential role of fluoride in the
pathogenesis of brain tumours, including glioblastoma (GBM). In this paper, we show for the first
time that fluoride can potentially affect the generally accepted signalling pathways implicated in
the formation and clinical course of GBM. Fluorine compounds easily cross the blood–brain barrier.
Enhanced oxidative stress, disruption of multiple cellular pathways, and microglial activation are
just a few examples of recent reports on the role of fluoride in the central nervous system (CNS). We
sought to present the key mechanisms underlying the development and invasiveness of GBM, as well
as evidence on the current state of knowledge about the pleiotropic, direct, or indirect involvement
of fluoride in the regulation of these mechanisms in various tissues, including neural and tumour
tissue. The effects of fluoride on the human body are still a matter of controversy. However, given
the growing incidence of brain tumours, especially in children, and numerous reports on the effects
of fluoride on the CNS, it is worth taking a closer look at these mechanisms in the context of brain
tumours, including gliomas.

Keywords: fluoride; brain tumour; glioblastoma; invasiveness; multidrug resistance; environmen-
tal pollution

1. Introduction

Macro- and microelements are one of the factors potentially implicated in the pro-
gression and malignancy level of different types of cancer [1–11]. This can be evidenced
by the fact that the content of various mineral elements differs between cancerous and
noncancerous tissue [12]. While the overall number of studies is small, it would appear
that breast, thyroid, kidney, stomach, and colorectal cancers are the best studied in this
regard [13,14]. Unfortunately, there are only a few papers focusing on brain tumours [12].

The few existing reports point to significant disturbances in mineral concentrations
(including Cu, Zn, Mg, Br, Sr, Fe, Ca, P, S) in various brain tumours [15–18]. The observa-
tions usually reveal a significant increase or decrease compared with noncancerous tissue,
but results are very difficult to compare and are often contradictory. There are even fewer
reports from studies on heavy metals [19,20]. In the face of recent scientific evidence on the
high risk and wide range of adverse effects of fluoride on the central nervous system, it
may come as a surprise that none of the studies dedicated to mineral elements and brain
tumours to date have investigated the effects of fluoride [21].

Fluorine is a trace element. The levels of trace elements in the brain are regulated
in complex ways by brain barrier systems, such as the blood–brain barrier (BBB), blood–
cerebrospinal fluid (CSF) barrier, choroidal blood–cerebrospinal fluid interface, and even
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the CSF–brain barrier [22]. Studies have shown that fluorine is able to cross the blood–brain
barrier and enter the brain tissue. This disrupts the normal metabolic process of the brain,
generates free radicals, and causes various toxic effects in the brain [21,23,24].

Primary CNS tumours account for nearly 12% of all cancers; GBM is the leading type
of primary malignant CNS tumour, accounting for almost half of all primary malignant
CNS tumours and approximately 57% of all diagnosed gliomas [25,26]. Many of the brain
tumours described to date are characterised by an aggressive and invasive clinical course
and a high degree of malignancy. Brain tumours are one of the most common types of
childhood cancer [27]. Given the harmful effects of fluoride on the central nervous system
(CNS) in children [24] and the rise in the incidence of childhood brain tumours since the
mid-1980s [28], there seems to be good reason to take a closer look at the role of fluorine in
the context of brain cancer. The latest controversies surrounding fluoride are related to its
toxic effects on the developing brain [29]. The increasing incidence of gliomas of varying
degrees of malignancy in the brain and brain stem among children and the potential role of
unidentified environmental carcinogens support the need for further research [30,31].

2. Fluoride as an Environmental Toxin

Fluoride is regarded as an environmental pollutant associated with serious effects
on the functioning of organisms and ecosystems [32]. Fluorine in its elemental form is
practically not found on Earth, but it is present in the ecosphere in the form of fluorine
compounds. They occur naturally in a wide variety of minerals in the Earth’s crust, from
where fluorides are released into the soil and water through the Earth’s volcanic activity
and rock erosion [33,34]. Fluoride may pose a threat to human health, which has been
specifically documented for populations inhabiting industrialised areas. In these areas, soil
and water fluoride levels are elevated due to release from anthropogenic sources. These
include fertilizers, pesticides, and deposits of industrial air pollution. Sources of industrial
fluoride emissions include combustion of fluoride-rich coal, petroleum refining, production
of steel, clay, glass, enamels, bricks and ceramics, manufacture of chemicals, and nuclear
fuels [32,33].

The fluorides distributed in soil, air, and water are accumulated by plants and ani-
mals [35]. Consequently, drinking water, which may also be artificially fluoridated as a
public health measure, and food are major sources of fluoride uptake in humans. The de-
gree of fluoride exposure is affected by the quality of food and water, the amount consumed,
as well as individual variability [36–39].

The harmfulness of fluoride has been the topic of intense debate in the last twenty
years. There are different opinions as to the role of fluorine as an essential element and the
magnitude of its toxic effects on humans (especially through water fluoridation) [40], but
a growing body of literature suggests that labelling fluorides as an environmental toxin
appears to be correct.

The effects of fluoride on the human body can be considered in two ways. Low supply
of fluoride interferes with dental enamel formation and promotes growth of cariogenic
oral bacteria, leading to dental caries. Fluoride deficiency also causes bone demineraliza-
tion [32,34,41]. On the other hand, through complex molecular mechanisms of fluoride
action on the cellular level, acute and chronic exposure to elevated doses may trigger a
broad spectrum of disorders, both physiological and developmental.

Fluoride has been shown to inhibit or activate numerous enzymes crucial for cell
metabolism and signalling (Figure 1). It suppresses the activity of Mg-dependent enzymes,
including those that catalyse glycolytic reactions. It has also been shown to inhibit py-
rophosphatases, ATPases, acetylcholinesterase, and cytochrome c oxidase. On the other
hand, stimulatory effects of fluoride have been observed in, for example, glycogen phospho-
rylase, aspartate transaminase, and tyrosine kinase [40]. Furthermore, fluoride influences
intracellular signal transduction pathways by affecting signalling cascades involving, e.g.,
G proteins, adenylate cyclase, Hedgehog proteins, and transcription factors such as NF-κB
and Nrf2 [42,43]. It has also been demonstrated to induce abnormal methylation in some
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regions of the genome [44]. Consequently, with increased exposure, fluorine compounds
can exert toxic effects, including organelle damage, oxidative stress on the cellular level, cell
cycle disruption, inflammatory cytokine secretion, induction of apoptosis, and disruption
of synaptic neurotransmission [40,45,46]. Fluoride is also regarded as a potential endocrine
disruptor leading to the development of thyroid dysfunction [47].
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Figure 1. Fluoride action in normal cells. Fluoride affects normal cells in a pro-inflammatory
manner, which is associated with the activation of the NF-kB pathway. As an inhibitor of gly-
colysis enzymes, it leads to disturbances in energy metabolism. AKT—protein kinase B; COX-
2—cyclooxygenase-2; DKK1—Dickkopf-related protein 1; GLUT—glucose transporter; IKK—IκB
kinase; Il—interleukin; iNOS—inducible nitric oxide synthases; IκBα—nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor alpha; MMP—matrix metalloproteinase; NaF—sodium
fluoride; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; p50—NF-kappa-
B p105 subunit; PGE2—prostaglandin E2; PI3K—phosphoinositide 3-kinase; RelA—NF-kappa-B
p65 subunit; ROS—reactive oxygen species; SOST—clerostin protein; TNF—tumour necrosis factor;
TNFR—tumour necrosis factor receptor; Wnt/β-catenin—Wnt signalling pathway.

Fluoride Neurotoxicity

One of the better-known toxic effects of chronic fluoride exposure is dental and bone
fluorosis, manifested by structural abnormalities in dental enamel as well as bones, lig-
aments, and tendons [34]. Besides teeth and bones, fluoride accumulates in soft tissues,
hence chronic exposure can cause damage to the liver, kidneys, cardiovascular system,
and reproductive system [48–54]. Still, perhaps the most concerning data point to the
significant role of fluoride as a neurotoxin, fluoride penetrates the BBB and alters the
structure and function of nervous tissue [24,55–57]. Furthermore, in a study with a rat
model, chronic fluoride exposure was shown to increase the levels of metalloproteinase
9 (MMP-9) and p53 protein, leading to cell apoptosis and damage of the blood–spinal
cord barrier [58]. The neurodegenerative effects of fluoride are particularly critical in the
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early stages of biological development, which many authors attribute to its ability to cross
the blood–placenta barrier [59]. Fluoride causes degenerative changes in all parts of the
brain and in the spinal cord, including axon deterioration, myelin sheath degeneration,
mitochondrial damage, and alterations in synaptic ultrastructure [56,60]. It also affects
neurotransmitter metabolism and causes changes in the expression of neurotransmitter
receptors [61–63]. Fluorine compounds impair energy metabolism of the brain, depen-
dent primarily on the burning of glucose. Fluoride exposure may be associated with
changes in the profile of proteins involved in energy metabolism [64], and researchers
have suggested that impaired glucose metabolism in neurons is correlated with decreased
expression of the GLUT-1 transporter [65]. On the other hand, increased glucose trans-
port into brain cells has also been documented, although without changes in transporter
expression, suggesting a compensatory mechanism in response to damage [66]. Chronic
fluoride exposure also affects amino acid and lipid metabolism [61,67]. Neuronal dam-
age as a result of exposure to high doses of fluoride is associated with the induction of
cellular oxidative stress and inflammation. In vitro and in vivo studies have shown that
fluoride increases ROS levels through lipid peroxidation, decreasing GSH levels, and
suppressing antioxidant enzyme activity [68–70]. Fluoride exposure results in increased
secretion of pro-inflammatory interleukins and decreased production of anti-inflammatory
interleukins [42,68,71]. Fluoride-induced neuronal degeneration is associated with the acti-
vation of apoptotic signalling cascades [72], increased expression or higher levels of death
receptors [73] and pro-apoptotic proteins [58,71,74], as well as caspase activation [68,73]
and downregulation of anti-apoptotic protein expression [71]. Neuronal degeneration can
also occur via autophagy (Figure 2) [75].
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the blood–brain barrier integrity, as well as oxidative stress and inflammation induction in neurons
and microglia cells. These multidimensional interactions are believed to cause developmental
and cognitive impairments in the body. ADHD—attention deficit hyperactivity disorder; BBB—
blood–brain barrier; GLUT—glucose transporter; GSH—reduced glutathione; Ils—interleukins;
ROS—reactive oxygen species.

The described molecular-level changes leading to neuronal degeneration manifest
themselves in developmental and cognitive disorders that have been observed both in ani-
mal models and in population studies. It has been observed that chronic fluoride exposure
during the prenatal period and early life may manifest as deficits in learning and mem-
ory, reduced non-verbal intelligence (PIQ), and lower intelligence quotient (IQ) [24,76–79].
Some authors have also suggested that elevated fluoride levels are correlated with the risk
of dementia [80] and ADHD prevalence [81]. It should be noted that many authors disagree
with these conclusions, arguing that population-based studies are incomplete. They also
note that many of the behavioural studies were conducted in animal models utilizing acute
doses [21,82–84]. Nevertheless, as Till and Green [85] point out, the evidence is relatively
new and should rather be regarded as a potential early warning.

3. Gliomas

Gliomas are primary brain tumours. Recent data indicate that these tumours are
derived from neural stem cells (NSCs), NSC-derived astrocytes, and oligodendrocyte
precursor cells (OPCs) [86]. In the CNS, there are three types of glial cells: astrocytes,
oligodendrocytes, and microglia. Astrocytes are the most common type of glial cells in the
CNS. They are star-shaped cells that are responsible for metabolic homeostasis and can
acquire reactive phenotypes in response to pathogens or CNS injury. This process is very
complex and its deregulation promotes cancer development [87].

Description

Even though significant advances have been made in the last decade in the treatment
of many types of cancer, the survival rate of patients with glioblastoma (GBM) is still around
14 months—in spite of effective diagnosis, advanced radiotherapy, targeted chemotherapy,
and high-precision neurosurgical procedures [88]. The current standard of care for patients
diagnosed with GBM is maximum safe surgical resection and combination radiotherapy.
In addition, treatment involves oral administration of temozolomide (TMZ), a potent
alkylating agent able to penetrate the BBB [89]. Treatment of GBM is difficult; tumour
hypoxia is a common feature promoting multiple adverse mechanisms, including GBM cell
resistance and invasiveness and infiltration of surrounding normal brain tissue. Moreover,
the issue of drug delivery penetrating through the BBB is a challenge in the development
of new drugs [90].

Metastasis in GBM is different from other types of aggressive cancers. While most
cancers metastasize to other organs via the circulatory or lymphatic system, glioma cells
rarely spread outside the brain and usually migrate extensively through the extracellular
matrix, infiltrating normal brain tissue [91]. For this invasion to occur, glioma cells undergo
a number of biological changes, acquiring motility and the ability to degrade the extracel-
lular matrix (ECM), and transitioning into a mesenchymal phenotype [92]. Glioma cells
change their shape and size and squeeze through the tight spaces of normal brain tissue. In
addition, invasive glioma cells interact with many components of the extracellular matrix.
Even though the ECM represents a physical barrier to glioma cell invasion, it also provides
glioma cells with essential ligands to which glioma cells can bind and then use them to
migrate [93]. In addition, the ECM can exert chemical effects on glioma cells. Several
studies have shown that tumours affect surrounding stroma cells, causing reorganization of
the structure and composition of the extracellular matrix. These changes in the extracellular
matrix promote tumour growth and invasion [94]. In addition to their migratory ability,
glioma cells must be able to pass through the physical ECM barrier. By degrading ECM
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proteins, an invasive pathway is formed. Many studies suggest the involvement of matrix
metalloproteinases (MMPs), often overexpressed in glioma cells, in ECM degradation [95].

Moreover, the high radio- and chemoresistance of glioma cells is one of the main
reasons for treatment failure. Numerous, often unconventional, defence mechanisms and
the high heterogeneity of glioma cells within the tumour make GBM one of the world’s
most lethal cancers [96–98].

4. Mechanisms of Drug Resistance in Glioblastoma

Temozolomide (TMZ) is the most widely used drug in the treatment of glioblas-
toma [90]. TMZ is an alkylating agent which induces DNA double strand breaks, resulting
in cell cycle arrest leading to cell death. Due to its short half-life, TMZ is administered
in large doses, and prolonged systemic administration leads to a range of adverse effects.
Resistance to TMZ therapy is an important issue and also one of the main causes of treat-
ment failure, suggesting that overcoming TMZ resistance is crucial to improve patient
outcomes [99]. Although TMZ is a first-line chemotherapeutic, it yields a minimal increase
in median overall survival, because of ‘innate’ resistance due to pre-existing factors or ‘ac-
quired’ resistance, which develops during treatment. The leading mechanism of resistance
in glioma cells is the high activity of O-6-methylguanine DNA methyltransferase (MGMT),
which repairs TMZ-induced DNA damage and contributes to TMZ resistance [100]. TMZ re-
sistance in GBM has also been linked to a number of cellular signalling pathways, including
Hedgehog (HH) [101], NF-κB [102], Wnt/β-catenin (Wnt) [103], and Notch [104].

4.1. Hedgehog Signalling Pathway (HH/GLI1)

The Hedgehog signalling pathway plays an important role in the development of
the central nervous system and, in adult life, in maintaining normal neural tissue and the
stem cell pool [105]. However, through its regulatory potential, it often plays a key role
in tumourigenesis and progression of tumours, including gliomas [106]. Regulation of
Hedgehog signalling activity is complex and occurs via specific ligands, including Sonic
hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh), which bind to the
Patched receptor (PTCH) inhibiting a protein called Smoothened (SMO). The released
SMO protects the glioma-associated oncogene homolog 1 (GLI1) protein from splicing. As
a result, GLI1 can translocate into the nucleus and act as a transcription factor leading
to increased expression of many genes, including GLI1, PTCH1, cyclin D, Bcl-2, and
VEGF [106,107]. There are also alternative pathways of non-canonical GLI activation
occurring independently of SMO, such as those activated by PI3K/AKT or MEK, [108,109].
The GLI protein family (GLI1, GLI12, and GLI3) is a group of transcription factors that
contain zinc fingers. There is an additional truncated isoform of the GLI1 protein, known as
tGLI1, that has been shown to stimulate the motility and invasiveness of glioma cells [110].
Additionally, several papers have linked the tGLI1 factor to enhanced tumour vascularity
through upregulation of heparanase and VEGF expression (Figure 3) [110–112].

A study using the U251MG cell line showed that the HH/Gli1 signalling pathway
regulates MGMT expression and chemoresistance to TMZ in human GBM, irrespective
of the MGMT promoter methylation status [113]. A HH/Gli1 inhibitor (GANT61) was
found to sensitize U87MG and U251MG glioma cells to TMZ treatment by enhancing the
DNA damage effect, suppressing MGMT expression and the Notch1 pathway [114]. In
TMZ-resistant glioblastoma with high expression of MGMT, the repression of the HH
signalling pathway by PF403 also reduced MGMT expression [115].
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Figure 3. Effect of fluoride on signalling pathways in glioma cells. Although the data currently
available is incomplete on many issues, it appears that fluoride may affect signalling pathways in-
volved in the processes of apoptosis, autophagy, inflammation, and chemoresistance of glioblastoma
cells. Thus, this compound has the potential to promote the growth and invasiveness of gliomas.
Atg5—autophagy-related protein; Bcl-2—B-cell lymphoma 2 protein; Dhh—Desert hedgehog protein;
ECM—extracellular matrix; EMT—epithelial-mesenchymal transition; ERK/MAPK—MAPK/ERK
pathway; GANT—GLI antagonist; GLI1—zinc finger protein GLI1; Ihh—Indian hedgehog protein;
Il—interleukin; JNK—c-Jun N-terminal kinase; LC3-II—microtubule-associated proteins 1A/1B light
chain 3B; MGMT—O-6-alkylguanine DNA alkyltransferase; MMPs—matrix metalloproteinases;
NaF—sodium fluoride; NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells; NOX—
NADPH oxidase; p-62—ubiquitin-binding protein p62; PF403—Hedgehog signalling pathway re-
pressor; PTCH—Protein patched homolog; RNS—reactive nitrogen species; ROS—reactive oxygen
species; Shh—Sonic hedgehog protein; Slug—transcription factor Slug; SMAX—protein suppressor of
Max2 1; SMO—Smoothened protein; Snail—zinc finger protein SNAI1; TGF-β—transforming growth
factor β; TNF-α—tumour necrosis factor α; Twist—twist-related protein; uPA—urokinase-type
plasminogen activator; uPAR—urokinase plasminogen activator surface receptor; VEFG—vascular
endothelial growth factor; WNT—Wnt (Wingless/Int-1) proteins; Zeb1—zinc finger E-box binding
homeobox 1.

The Role of Fluoride in the Regulation of the Hedgehog Signalling Pathway

There is currently no direct evidence that fluorine compounds can lead to the activation
of the HH-GLI1 pathway in GBM cells. Nevertheless, there are several reports which
indirectly suggest that this influence cannot be completely ruled out. In a study by Wang
et al., disrupted osteoblast function and impaired bone formation were demonstrated
after excessive fluoride exposure (MC3T3-E1 cell line, 8 mg/L NaF for 7 days). The
observations included a marked increase in HH and Notch pathway activity, as well as
increased levels of insulin, TGF-β, and VEGF [116]. Another study in Wistar rats exposed
to NaF in drinking water (50 mg/L for 6 months) showed a significant increase in mRNA
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and protein expression of Shh, SMO, and GLI1 in hepatocytes [117]. Activation of the
HH signalling pathway and excessive expression of downstream target genes may be
responsible for chondrocyte damage in chronic fluorosis in rats [118]. A recent study (2021)
on rat osteoblasts clearly shows a significant dependence of Ihh, SMO, and GLI2 expression
in osteoblasts on the applied dose of fluoride (Figure 3) [119].

4.2. Nuclear Transcription Factor κB (NF-kB) Pathway

NF-κB signalling pathways can be activated by a range of diverse factors, such as
growth factors, ROS, oncogenic stress, DNA damage, ionizing radiation, UV, various cy-
tokines (TNF-α and IL-1β), and many others [120–124]. Nuclear transcription factor κB
(NF-kB) controls the expression of numerous genes associated with tumour invasiveness
and involved in proliferation, apoptosis, angiogenesis, and metastasis. Abnormal NF-κB ac-
tivity plays an important role in promoting tumour invasion and response to therapy [125].
Neovascularization in GBM is critical for supporting the growing tumour, and stimulation
of this process is dependent on several NF-κB target genes, including VEGF, IL-6, and
IL-8 [126,127]. NF-κB also plays an important role in regulating tumour cell infiltration
by controlling the expression of many adhesion molecules, such as fibronectin and vit-
ronectin [128] responsible for the invasion of matrix metalloproteinases such as MMP-2
and MMP-9 [129,130]. In addition, NF-κB activation may promote epithelial-mesenchymal
transition (EMT), important for tumour invasion and treatment resistance [121,131–134].

Excessively activated NF-κB features in the major inflammatory transcription pathway
associated with TMZ resistance in GBM [135]. However, the relationship between the
NF-κB pathway and MGMT expression in GBM cells is unclear. Given that both MGMT
and NF-κB are strongly expressed in the TR/U251 glioma cell line, a link between them
and TMZ resistance is likely. The IκBα inhibitor, BAY 11-7082, in combination with TMZ,
significantly suppressed MGMT levels in TR/U251 cells and promoted the initiation of
TMZ-induced apoptosis, suggesting that NF-κB plays a key role in the regulation of MGMT
expression [136]. It is also hypothesised that TMZ-induced DNA damage activates ataxia
telangiectasia mutated (ATM) kinase, which simultaneously triggers MGMT repair and
inappropriate activation of NF-κB [137].

The Role of Fluoride in the Regulation of the NF-κB Pathway

Several in vitro and in vivo studies have shown that fluoride may play an indirect role
in the regulation of the NF-κB pathway. Increased NF-κB expression induced by fluoride
has been observed, among others, in monocytes [138], macrophages [139], peripheral blood
mononuclear cells [140], and the human lung epithelial cell line (1.0–3.75 mM) [43]. The
results of a study in mice exposed to fluorine compounds showed that NaF at concentrations
exceeding 12 mg/kg induced renal inflammatory responses through the activation of NF-κB,
decreasing the expression of anti-inflammatory cytokines (IL-4 and IL-10), and increasing
the levels of PGE2, iNOS, COX-2, IL-6, and IL-8 compared with controls [141]. Another
study in mice demonstrated that inflammation also develops in the liver, in association with
the activation of the MAPK and NF-κB pathway, and with increases in IL-1β, IL-6, IL-8,
COX-2, and MCP-1 [42]. Similar observations have been reported in the spleen [142]. It
has further been shown that fluoride can activate the NF-κB pathway by promoting TNF-α
synthesis [143] and inhibiting the expression of vitamin D receptor (VDR) [144], involved
in downregulating NF-κB activation [145]. There are also several papers describing the
mechanism of action of NaF on various brain tissues [146–149], which nevertheless remains
unclear (Figure 3).

4.3. Wingless/Int1 Trail (Wnt) Pathway

The Wingless/Int1 (Wnt) signalling pathway plays an important role in the develop-
ment of the central nervous system. Wnt signals through two separate pathways, canonical
(β-catenin dependent) and non-canonical (β-catenin independent). The Wnt system is
often overactive in GBM tumours, enabling the proliferation and invasiveness of tumour
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cells [150]. The canonical Wnt pathway promotes GBM invasion by maintaining cancer
stem cells and promoting EMT processes [151]. Activation of the Wnt/β-catenin pathway
results in increased expression of EMT-promoting transcription factors such as Twist, Snail,
Slug, and Zeb1 [152]. The canonical pathway has also been linked to the development of
resistance to chemotherapy and radiotherapy [153]. Non-canonical Wnt activation, on the
other hand, is an important regulator of cell motility and tissue polarity, which controls
the migration of neuronal and epithelial cells [154], as well as GBM [155]. Research has
shown that Wnt5a, a non-canonical Wnt ligand, appears to be a critical master regulator of
the invasive capacity of human glioma stem cells (GSCs) in vivo [156]. Wnt5a enhances
glioma cell migration by regulating the expression of MMP-2, which is involved in ECM
degradation [157].

The Wnt/β-catenin pathway regulates MGMT gene expression [158] and its inhibition
may be a promising molecular target for GBM therapy. Some inhibitors of the Wnt/β-
catenin pathway, such as salinomycin, celecoxib, and Wnt-C59, restore TMZ sensitivity in
resistant GBM cells by reducing MGMT expression in GSCs.

The Role of Fluoride in the Regulation of the Wingless/Int1 (Wnt) Pathway

The effect of fluoride on the activation of Wnt signalling in cancer cells is unknown.
However, there are several studies implicating fluoride in Wnt signalling in healthy tissues
(Figure 3). Fluoride was shown to increase the production of IL-6, TNF-α, and ROS,
promoting inflammation and oxidative stress with concomitant inhibition of the canonical
Wnt signalling pathway activity and stimulation of the NF-κB pathway activity in BV2
microglial cells [159]. Other observations included elevated levels of a Wnt antagonist,
Dickkopf Wnt signalling pathway inhibitor 1 (DKK1), NF-κB activation, and increased
production of pro-inflammatory mediators IL-6, TNF-α, and ROS. In addition, the results
of another study indicate that long-term exposure to elevated fluoride levels can decrease
the concentrations of sclerostin (SOST) and DKK1, physiological Wnt/β-catenin pathway
inhibitors [72]. This association is also supported by research showing that increasing
exposure to fluorine and arsenic was accompanied by a gradual increase in the activation
of the Wnt/β-catenin pathway, while DKK-1 content significantly decreased [160].

A study by Luo et al. demonstrated for the first time that activation of the Wnt9a/b-
catenin/CyclinD1 pathway in osteoblasts is induced by fluoride exposure [161]. Another
study showed that NaF activated both canonical and non-canonical Wnt signalling path-
ways in an ameloblast cell line in vitro. Gsk-3β and Axin1 decreased significantly upon
stimulation with 1.5 mM NaF, whereas Dvl3 was significantly increased. The levels of
Wnt3a and Wnt5a, the canonical and non-canonical Wnt family proteins, significantly
increased in response to NaF treatment [162]. It has also been confirmed that both Wnt and
Rho pathways were upregulated by 1.5 mM NaF [163]. In addition, excessive fluoride in-
take (5–50 ppm F−) in rats led to the stimulation of calpain-1 (a proteolytic enzyme), which
was accompanied by a significant decrease in RhoA levels in the cytoplasm of hippocampal
cells and a high increase in its expression in cell membranes [164].

4.4. Notch Signalling Pathway

Notch (Notch-1, 2, 3, and 4) with ligands (Jagged-1, Jagged-2, and Delta-like-1, 3, and 4)
regulates core cellular processes, including proliferation, apoptosis, migration, self-renewal,
and differentiation of many cell types, and therefore plays a fundamental role in CNS
development [165]. Over the years, deregulated Notch signalling has also been detected in
several solid tumours, including brain tumours [166].

Both Notch mRNA and protein expression is higher in GBM cells than in normal brain
cells [167], and Notch was found to be more expressed in peritumour-tissue GSCs compared
with tumour-core GSCs [168]. Notch can stimulate β-catenin and NF-κB signalling through
PI3K/AKT activation in glioma cells. This often correlates with increased expression of
VEGF, Snail, Zeb1, and vimentin, and downregulation of the tumour suppressor gene
PTEN, which consequently promotes cell invasion and migration [149,169]. Activation
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of this pathway is often associated with radioresistance of GBM [170]. It is observed in
patients with shorter survival times and seen as a negative prognostic factor [171,172].

The Role of Fluoride in the Regulation of the Notch Pathway

There are no reports on the role of fluoride in regulating the Notch pathway activity
in humans. Few animal experiments have shown that excessive exposure to fluoride (50
and 100 mg/L NaF) decreases mRNA and protein expression of Notch-3 and Jagged-1, as
well as the expression of the target gene Hes-5 in rats, suggesting that fluoride may inhibit
the Notch signalling pathway [173]. However, the topic should be considered unexplored
and in need of further clarification.

5. Autophagy—Its Role in the Pathogenesis of Cancer

Autophagy is a highly conserved cellular process found in all eukaryotes which plays
an important role in maintaining cellular homeostasis. Its functions include the degradation
of damaged or unwanted intracellular proteins or cellular organelles. Furthermore, under
stress conditions associated with, for example, nutrient deprivation or hypoxia, autophagy
leads to the degradation of cellular components to provide amino acids or energy-rich
biomolecules [174]. There is evidence that autophagy may also be involved in preventing
oxidative stress, DNA damage, and oncogenic cell transformation [175]. However, it is be-
lieved that depending on the context, autophagy may inhibit carcinogenesis or, conversely,
promote cancer development by affecting different aspects of tumour cell growth. There is
ample evidence that autophagy can regulate pro-growth signalling and metabolic trans-
formation of cancer cells, promoting tumour growth, and also contribute to developing
resistance to chemo- or radiotherapy [175,176]. In light of recent studies, the autophagy
process has emerged as a very interesting molecular target for the development of novel
anticancer therapies in many types of cancer [177].

Unfortunately, the role of autophagy in gliomas is still not fully understood and
remains a matter of ongoing debate. Based on studies using other solid tumour models and
the few findings on glioma, autophagy may play a role, in a context-dependent manner, in
tumour initiation, development and response to treatment, or in the inhibition of various
aspects of tumour progression. By regulating receptor tyrosine kinase signalling and
trafficking, as well as providing metabolites to fuel unconstrained proliferation, autophagy
can accelerate tumour growth [178]. There is evidence that autophagy can regulate the
epithelial–mesenchymal transition (EMT) of glioma cells and also influence oncogenic Met
signalling [179]. By degrading proteins of the major histocompatibility complex (MCH-I),
autophagy may assist in cancer cell evasion of the immune system [180].

The Role of Fluoride in Autophagy Regulation

There is growing evidence that fluoride may play an important role in initiating au-
tophagy processes through different types of signalling in various cell lines and systems
in vivo (Figure 3). Because of the role played by fluorine in the body, the largest body of
data comes from studies on bone and dental tissues. In a study using osteoblast-like cells,
exposure to NaF was shown to enhance autophagy by upregulating the gene expression of
sirtuin 1 (SIRT1). The increase in SIRT1 promotes deacetylation of another protein, FoxO1,
and triggers a downstream cascade of reactions that suppress NaF-induced apoptosis and
enhance autophagy [181]. Another study in the MC3T3-E1 osteoblastic cell line suggests
that NaF may induce endoplasmic reticulum (ER) stress, leading to the initiation of both
autophagy and apoptosis [182]. Recent reports from studies on osteoblasts isolated from
Sprague-Dawley rats and treated with NaF solutions confirmed increased expression of
autophagy-related genes (LC3A and Beclin1) compared with controls [183]. Another ex-
periment with ducks exposed to long-term contact with fluoride showed that an excess of
this ion triggered autophagy (elevated markers: Beclin 1, mTOR, Pakin, Pink) and caused
cartilage damage in the tibia [184]. In turn, a study by Ma et al. [185] showed that NaF
significantly downregulated the expressions of mTOR signalling pathway-related genes,
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including PI3K, AKT, mTOR, 4EBP1, and S6K1, in the mouse ATDC5 chondrogenic cell line.
The mRNA and protein levels of autophagy-related genes, LC3, Beclin1, and p62, were sig-
nificantly changed after NaF treatment, promoting autophagy in ATDC5 cells. The findings
presented by Suzuki and Bartlett [186] show that fluoride initiates autophagy to protect
ameloblast cells (LS8) from exposure to the mineral by increasing SIRT1 expression, induc-
ing SIRT1 phosphorylation, and increasing the expression of autophagy-related genes (Atg5,
Atg7, and Atg8/LC3). The experiment repeated in rats confirmed the results obtained
in vitro [186]. In another study in a rat ameloblast line, using both in vitro and in vivo
models, an increase in the amount of autophagosomes was observed, as well as increased
LC3 and Beclin1 expression, proportional to the dose of fluoride administered [187].

Deregulation of autophagy associated with fluoride has also been demonstrated
outside the teeth and skeletal system. In rat kidney epithelial cells (NRK-52E) treated with
high concentrations of NaF, in the first 12 h of exposure only, autophagy was induced,
and after 24 h, the markers associated with apoptosis or necrosis were increased too [188].
In a study conducted on the offspring of rats whose mothers were administered fluorine
and/or arsenic, a significant increase was observed in renal tissue in the expression of a
number of genes closely related to autophagy, i.e., LC3, LC3I, LC3II, Beclin-1, ULK1, Atg13,
and Atg14, with a concomitant decrease in mTOR and Bcl-2 levels [189]. A similar study
undertaken by another team confirmed increases in the number of autophagosomes and
in the expression of autophagy markers in kidney tissue of the offspring of dams (mother
rat) exposed to fluorine compounds [190]. Fluoride also increased the levels of mRNA
and protein expression of autophagy markers LC3, Beclin1, and Atg 5 in primary Leydig
cells [129]. A similar effect was observed by Liu et al. when they examined the testes
of rat offspring exposed to the mineral. They demonstrated that fluoride can modulate
autophagy, causing increased levels of Beclin 1 and LC3 and decreased p62 expression [52].
An increase in autophagy markers (LC3, Beclin1, Atg16L1, Atg12, Atg5) was also observed
in mouse splenocytes exposed for 42 days to NaF administered in water [191]. There is
also evidence that fluoride induces apoptosis and autophagy via the IL-17 pathway in rat
liver [192].

There is little research on the effects of fluoride on autophagic processes within the
brain. What is more, the results of individual studies are inconsistent. Human neu-
roblastoma cells (SH-SY5Y) treated with different concentrations of fluoride exhibited
abnormalities related to autophagy. The amounts of autophagic vesicles were markedly
decreased in cells treated with higher concentrations of NaF (40–60 mg/L) compared with
controls. In addition, the expression levels of autophagy-relevant proteins (Atg5 and LC3-II)
were markedly lower, while p62 protein was significantly increased [193]. Further in vivo
studies suggested that at lower NaF concentrations (<30 mg/L), the mineral can promote
autophagy through a compensatory mechanism (increased expression of Beclin1, LC3-II
and p62 in the hippocampus) [60], while higher NaF concentrations (>40 mg/L) can inhibit
autophagy [75]. On the other hand, immunohistochemical analysis of the brain tissue of
rats treated with NaF in drinking water showed that NaF administration at 25–100 mg/L
induced autophagy, with a strong increase in Beclin1 protein in the hippocampal regions
gyrus dentatus (DG) and cornu ammonis (CA1) [194].

A growing body of research now confirms that fluoride may play an important role in
modulating autophagy-related processes. Nevertheless, it should be noted that there are
few studies investigating the effects of fluoride on autophagy within the brain. However,
given the potentially crucial role of autophagy in the progression and invasiveness of
gliomas, future studies aimed at clarifying the role of fluoride in this process seem to be
well-justified.

6. Glioma Microenvironment

The tumour microenvironment plays an important role in glioma progression. Mi-
croglia are the resident immune cells of the brain and are easily activated by a variety
of foreign substances, including environmental toxins. It has been shown that tumour-
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associated microglia may be responsible for promoting glioblastoma invasion [195]. Within
glioma, the functions of both microglia and macrophages are altered and they can enhance
tumour-mediated immunosuppression as well as promote tumour invasiveness [196]. Ex-
pression of MMPs, which degrade the extracellular matrix in the glioma microenvironment,
is associated with increased GBM cell invasion and enhanced angiogenesis. In particular,
the activation of the CX3CL1/CX3CR1 system (fractalkine and its receptor) has been shown
to upregulate the expression of metalloproteinases, both those secreted outside the cell
(MMP-2, MMP-9) and membrane-bound (MT1-MMP, MMP14) [195–197]. It has also been
suggested that microglia may promote angiogenesis by regulating VEGF [198]. In addition,
other factors secreted by microglia residing within the GBM, such as the epidermal growth
factor (EGF), IL-1β, IL-6, and IL-8, can activate receptors on GBM cells, promoting tumour
invasion [199].

The Role of Fluoride in Modulating the Glioma Microenvironment

There is evidence that fluorine compounds can activate microglia, leading to the
release of numerous pro-inflammatory cytokines. In studies on the BV-2 microglial cell
line, fluorine was shown to enhance oxidative stress by inducing the formation of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) [70], consequently leading
to the release of pro-inflammatory cytokines such as IL-1β and TNF-α [200]. In vivo
studies confirm these findings. In rats exposed to NaF in drinking water (60–120 ppm of
F−), microglia activation promoted the secretion of the cytokines IL-1β and TNF-α via
ERK/MAPK and P38/MAPK signalling pathways. Furthermore, fluorine-induced ROS
production was involved in the activation of the JNK/MAPK pathway and NOX [201].
Fluoride also causes excessive activation of microglia in mouse hippocampus [202].

Cytokines IL-1β and TNF-α are generally recognized as inhibitors of glioma growth
and associated with better prognosis [203,204]. However, some more recent studies cast
a different light on these cytokines. It is possible that DNA damage induced by IL-1β
stimulates relative protection of CSCs with concomitant accumulation of potential onco-
genic mutations [205]. Additionally, a study by Sarkar and Yong showed that increases
in IL-1β and TNF-α levels were positively correlated with glioma cell invasiveness and a
corresponding elevation of MMP-2 and MMP-9 proteins [206]. A study using the U251MG
human glioma cell line showed that IL-1β stimulates the production of IL-6 and IL-8, which
in turn promotes cell invasion [207]. Most glioma cells are insensitive to the proapoptotic
effects of TNF-α [208]. Nevertheless, TNF-α was observed to promote glioma cell motility
and invasion by activating NF-κB [209], by increasing mRNA expression of uPA and uPAR
genes in the U373MG cell line [210], and by modulating VEGF and IL-8 gene expression
in the U251MG cell line [211]. These results indicate that the impact of IL-1β and TNF-α
on glioma progression is not clear and may involve different intracellular pathways. The
potential role of fluoride in this context seems interesting (Figure 3).

7. Involvement of Metalloproteinases in Glioma Development

Experimental and clinical studies confirm that elevated levels of matrix metallopro-
teinases (MMPs) are implicated in brain tumour progression. Elevated MMP levels, includ-
ing MMP-1, -2, -7, -9, -11, -12, -14, -15, -19, -24, and -25 have been observed in malignant
glioma samples from patients, suggesting that malignant progression is correlated with
MMP expression [212]. MMPs have been shown to play a key role in the mechanisms
of glioma invasion [130]. Among other things, MMPs participate in remodelling and
degradation of the ECM (collagen, fibrinogen, proteoglycans) [213]. Moreover, MMPs are
involved in angiogenesis, tumour infiltration, and further metastasis. They may also affect
the metabolism of various cytokines, chemokines, and growth factors [214–217]. In the case
of GBM, the MMPs of greatest interest are MMP-2 and -9, due to the close association with
tumour growth and malignant progression [212]. Additionally, the expression of MMP-2
and MMP-9 was observed to be significantly higher in recurrent gliomas than in primary
gliomas, and correlated with increased resistance to radiotherapy [217].
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The Role of Fluoride in the Regulation of Metalloproteinase Activity

Several reports indicate that fluoride, depending on concentration, can interfere with
MMP levels in various tissues (Figure 3). Low doses slightly increase MMP-2 and -9
activities in preosteoblasts representing the MC3T3-E1 murine cell line after 24 h [218]. In
situ administration of NaF (150 mg/L) to rats resulted in a significant increase in protein
and mRNA expression levels of MMP-9 in uterine tissue [219], and an increase in MMP-9
and IL-17 in the cardiac muscle [220]. Chronic fluoride exposure upregulates the expression
of MMP-9 and induces BBB damage and neurocyte changes [58]. It also disrupts the balance
in gene and protein expression of MMP-2 and MMP-9 proteins and their inhibitors (TIMP2
and TIMP3) in brain structures such as the cerebellum, striatum, prefrontal cortex, and
hippocampus [146].

8. Glial Defence Mechanisms against Metabolic Stress (Glucose)

The capacity to change phenotype and, consequently, to regulate migration, prolifera-
tion, survival, and angiogenesis are key mechanisms enabling neoplasms to resist adverse
conditions such as metabolic stress. Depending on the prevailing conditions, glioma cells
may adopt one of two phenotypes: higher proliferative activity with enhanced angiogene-
sis, or higher migratory activity with attenuated proliferative ability [221]. There are several
theories on the modulation of glioma cell behaviour in response to hypoxia and glucose de-
privation. One of them is the regulation of carboxypeptidase E, a neuropeptide-processing
enzyme with anti-migratory and pro-proliferative effects [222]. Other research showed that
miRNA-451 controls the balance of cell proliferation and migration in different glioma cell
lines in response to glucose fluctuations [223,224]. When glucose is abundant, miRNA-451
is expressed in glioma cells, promoting proliferation, whereas low glucose levels are associ-
ated with miRNA-451 downregulation, resulting in a phenotype with increased glioma cell
migration. In addition, high glucose levels may promote GBM progression by enhancing
the function of chemoattractant and growth factor receptors (Figure 3) [225].

The Role of Fluoride in the Regulation of Metabolic Stress (Glucose)

This is an issue of interest in the context of the effects of fluorine compounds on
glucose metabolism. Studies in both humans and animals have shown that excessive
fluoride intake alters blood glucose levels by affecting the regulation of metabolic pathways
and release of hormones involved in carbohydrate metabolism [226]. A population-based
study on the consumption of fluoridated tap water showed that additional fluoridation of
tap water (0.7–1.2 ppm) was associated with an increase in the incidence and prevalence of
diabetes from 2005 to 2010 in the United States [227]. In a study evaluating the effects of
low-level fluoride exposure in drinking water (NaF 10 mg/L) in female NOD mice, there
was a marked increase in fluoride levels and a 20% reduction in plasma glucose levels
compared with controls [228]. This is correlated with earlier findings, showing a reduction
in serum glucose levels in the offspring of mother rats given NaF orally (40 mg/kg) [229].
Dissimilarly, rats given NaF in drinking water (15 mg/L and 100 mg/L) presented a
significant increase in plasma glucose and insulin resistance [230], as well as an increase
in serum insulin coupled with a decrease in serum glucagon [231]. Potential changes in
glucose uptake in the brain are an additional consideration. Studies in rats have shown
that NaF decreases the expression of GLUT1, a glucose transporter in the brain, but the
results of the few existing studies are conflicting. Some point to decreased expression
of the GLUT1 glucose transporter and reduced glucose uptake into the brain [65], while
others report compensatory increases in glucose uptake in the brain and peripheral tissues
without significant changes in GLUT1 and GLUT3 expression [66]. Due to the paucity of
data on the molecular mechanism underlying the effects of fluoride on brain glucose uptake,
transport, and metabolism, it is difficult to clearly assess its role in glioma progression and
invasiveness. However, given the significance of glucose levels in the phenotype adopted
by glioma cells and the role of fluoride in glucose regulation, an indirect effect of this
mineral seems plausible.
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9. Involvement of Insulin and Insulin-like Growth Factor (IGF-1) in
Glioma Development

Insulin and insulin-like growth factor (IGF-1) signalling pathways are complex sys-
tems involving key regulators of cell transformation, growth, and cell cycle progression.
Hence, their deregulation is often implicated in the development of many cancers, in-
cluding brain tumours [232]. InsR and IGF1R receptors are commonly expressed in GBM
tumours. Stimulation of these receptors promotes glioma cell proliferation and migration
through negative or positive modulation of PI3K/AKT/mTOR and RAS/RAF/MEK/ERK
signalling pathways [233,234]. Based on this, it is suggested that the interaction between
ligands and InsR and IGF-IR triggers the progression of low-grade glioma to GBM [235].
Targeting both InsR and IGF1R with dual inhibitors has shown good results and appears to
be one of the promising new treatment strategies [232,235].

The Role of Fluoride in the Regulation of Insulin and Insulin-like Growth Factor

According to some studies, fluorine compounds may affect insulin metabolism. Low
levels of fluoride exposure enhance insulin sensitivity [236]. In rats, plasma insulin levels
increased in proportion to the fluoride concentration in drinking water [231,237]. Further-
more, fluoride stimulated the mRNA expression of InsR in the MC3T3-E1 osteoblastic
cell line [231]. Finally, patients with endemic fluorosis were shown to exhibit significantly
higher fasting insulin levels, and this effect could be reversed once the level of fluoride in
drinking water was reduced [238].

It has been shown that in some cases, fluoride can activate the insulin-like growth
factor (IGF-1) pathway and significantly increase serum IGF-1 levels [239]. Although the
molecular mechanism of this process is not understood, it is known that fluoride at very
low concentrations (1–10 µM NaF) stimulates PGE2 synthesis [240]. An increase in PGE2
can stimulate IGF-1 synthesis through a cyclic AMP/PKA pathway [241].

10. The Role of Transforming Growth Factor β in Glioma Metabolism

Increased transforming growth factor β (TGF-β) signalling activity is associated with
glioma invasion due to its effect on cell migration. TGF-β induces EMT by activating
SMAD2 and ZEB1, leading to enhanced motility and invasion (Figure 3) [92]. TGF-β is also
a key regulator of glioma stem cells (GSCs). Recent studies have highlighted that TGF-β
plays an essential role in the upregulation of the transcription factor Sox9, which promotes
migration and invasion of glioma cells [242]. Furthermore, high TGF-β2 expression is
associated with poor clinical outcomes in GBM patients [243].

Effects of Fluoride on TGF-β

There is some evidence that TGF-β plays an important role in the body’s response to
fluoride toxicity. In vivo and in vitro experimental studies on fluorosis have shown that
fluoride upregulates the mRNA and protein expression of TGF-β1 in bone cells [244,245].
TGF-β1 is also known to play a mediating role in NaF-induced autophagy in mouse
osteoblast cells [246]. In studies on human osteoblasts, NaF was observed to activate the
TGF-β1/Smad2/3/CyclinD1 axis [247]. Animal studies demonstrated an increase in TGF-β
levels in periodontal soft tissues [248] and an increase in TGF-β expression through an
increase in IL-17A expression in testes [249]. Importantly, calcitonin, a hormone secreted
by the parafollicular cells of the thyroid, was found to be a potent stimulator of TGF-β1
mRNA and protein expression [250].

Epidemiological studies have shown calcitonin to be strongly induced in humans
upon exposure to fluorine compounds [251,252]. Dissimilarly, TGF-β1 expression in rat
ameloblasts in response to NaF was significantly lower than in the control group [253].
These results support the findings of Suzuki et al., who showed that fluoride significantly
decreased TGF-β1 transcript levels in rat tooth enamel [254]. Fluoride may also impair sig-
nal transduction between the epithelia and mesenchyma by inhibiting TGF-β3 expression in
ameloblasts [255]. Analysis of microRNA expression profiling in fluoride-exposed MC3T3-
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E1 cells revealed that fluoride treatment affects numerous pathways, notably including
TGF-β, Wnt, Hedgehog, and VEGF [116].

11. The Role of Thyroid Hormones in Glioma Development

Thyroid hormones and the individual steps of their genomic and non-genomic modes
of action are disrupted in GBM. There is a well-established hypothesis that these disrup-
tions have an effect on important pathways involved in the regulation of growth, prolifera-
tion, differentiation, and apoptosis of GBM cells, including the EGFR/PTEN/Akt/mTOR
pathway, the TP53/MDM2/pl4ARF pathway, the P16/RB1 pathway, and the IDH/HIF-1
pathway. This has been well-described in a comprehensive review by Nauman [256].

Furthermore, thyroid hormones may exhibit proangiogenic properties by stimulating
VEGF expression [257]. They can also activate microglia, stimulating microglial migration,
motility, and phagocytosis [258]. Thyroid hormones have also been shown to induce MMP-
9 gene expression in ovarian cancer and myeloma cells, promoting metastasis [259]. One of
the factors responsible for chemoresistance in GBM is membrane protein P-glycoprotein
(MDR1). Thyroid hormones are known to stimulate the transcription of the gene for this
protein and affect its activity through the integrin receptor [260].

Pharmacologically induced hypothyroidism has been observed to achieve long-lasting
regression of GBM, significantly prolonging patient survival, which indisputably confirms
the involvement of thyroid hormones in the development and treatment of GBM [261].
However, there is still very limited knowledge, especially in the clinical area, in this
matter [262,263].

Effects of Fluoride on the Production of Thyroid Hormones

Epidemiological studies carried out in different geographical regions have demon-
strated that fluoride exposure increases serum thyrotropin (TSH) levels in humans [264–266].
TSH stimulates thyroid follicular cells to produce thyroglobulin (Tg), triiodothyronine (T3),
and thyroxine (T4) [267]. As discussed in a comprehensive review [256], the activity of
thyroid hormones affecting various pathways involved in glioma progression and invasion
(including p53, HIF-1α, PI3K, EGFR, VEGF), the therapeutic efficacy of chemical hypothy-
roidism, and the effect of fluoride on thyroid hormone levels appear to be worthy topics
for investigation.

12. The Role of Glutamate in Gliomas

Migrating glioma cells undergo changes in shape and volume in order to facilitate their
movement through the very narrow and tortuous extracellular spaces of the brain [268].
High extracellular glutamate levels serve as an essential autocrine/paracrine signal in
tumour invasion through binding and activation of Ca2+ permeable AMPA receptors
(AMPA-R). Most healthy neuronal cells contain a GluR2 subunit which prevents Ca2+ from
passing through the AMPA-R channel pore. Gliomas, on the other hand, mainly express the
GluR1 subunit in combination with GluR3 or GluR4 [269]. Overexpression of GluR1 results
in an increase in glioma adhesion to ECM components such as collagen. Furthermore,
AMPA-R proteins accumulate at focal adhesion sites, where they may mediate interactions
between the ECM and integrins [270]. Ca2+ influx is essential in promoting cell motility
and invasion, while the absence of an additional GluR2 subunit critically influences Ca2+

permeability [269] and is associated with a poor prognosis [271].
One of the treatment strategies being investigated is the stimulation of GluR2 ex-

pression in glioma cells. Experiments in C6 glioma cells and in a rat model showed that
propofol significantly inhibited the viability, invasiveness, and migration of glioma cells
by increasing the expression of GluR2 [272,273]. It has also been demonstrated that GluR2
inhibits proliferation by inactivating Src-MAPK signalling and induces apoptosis through
caspase 3/6-dependent activation in glioma cells [274]. Perampanel treatment of human
glioma cell lines U87 and U138 resulted in an increased GluR2/3 subunit expression and
promoted apoptosis [275].
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Effects of Fluoride on Glutamate Metabolism

One of the few papers addressing this subject showed that maternal exposure to
NaF (25, 50, and 100 mg/L) during gestation and lactation significantly reduced mRNA
expression of the glutamate receptor GluR2 in the hippocampus of mouse pups. Otherwise,
no significant changes in GluR1 and mGluR5 mRNA expression levels were observed [63].
Similar results were obtained in another study, which found that fluorine compounds acti-
vated microglia, stimulated the secretion of inflammatory factors, and strongly decreased
GluR2 levels in the rat hippocampus [201]. If fluorine compounds can reduce GluR2 levels
in glioma cells, they may indirectly promote their invasive potential.

13. Conclusions and Perspectives

Fluorine is an environmental pollutant, which upon entering the human body disrupts
many of its processes. Its impact on many organs, including bones, liver, pancreas, lungs,
heart, skeletal muscles, and kidneys, can no longer be denied. Furthermore, the ability
of fluoride to cross the BBB means that it may also interfere with metabolic processes in
the central nervous system, which has been supported by the few studies investigating
the role of fluoride in the brain. However, there are virtually no well-documented studies
demonstrating a direct effect of fluoride on the development, invasiveness, or resistance
of brain tumours, including gliomas. The scant reports from in vitro studies in neuronal
cell lines and in vivo studies in rodents, as well as findings referring to other tissues and
organs, including human models, allow for the formulation of some tentative questions
and hypotheses on the adverse effects of fluoride in the context of brain tumours. What is
more, these findings suggest that the role of fluoride in this process may be indirect rather
than direct, including the effects exerted on normal cells and the tumour microenvironment.
The negative impact of fluoride on the central nervous system in children and the growing
incidence of pediatric brain tumours since the mid-1980s should serve as the most powerful
motivations in our efforts to explain this phenomenon.

Fluorine is a trace element which has not received much attention in basic and clinical
research. Nonetheless, with each passing year, there are more and more new papers shed-
ding new light on its still unknown pleiotropic effects. The latest reports from studies on
BBB permeation and the effects of fluoride on brain metabolism should inspire researchers
to work toward a better understanding of its mechanisms of action. There have now been
several studies on the role of micro- and macroelements in the development and treatment
of gliomas and, surprisingly, in each one, fluoride has been completely overlooked in the
analysis of minerals in brain tumours and whole brains.
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proteins family; HIF-1—hypoxia-induced factor; HMGB1—high mobility group box pro-
tein 1; ICAM-1—intercellular adhesion molecule 1; IDH—isocitrate dehydrogenase; IFNγ—
interferon γ; IGF-1R—insulin-like growth factor receptor; IGF2—insulin like growth factor 2;
Ihh—Indian hedgehog; IL—interleukin; IL-R—interleukin receptor; iNOS—inducible nitric
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kinases; KPNA2—carioferrin α2; MAPK—mitogen-activated protein; MCH-I—major histo-
compatibility complex 1; MCP-1—monocyte chemotactic protein-1; MDM2—E3 ubiquitin pro-
tein ligase; MEK—mitogen-activated protein kinase kinase; MGMT—methyl-guanine methyl
transferase gene; miR, miRNA—micro RNA; MMPs—matrix metalloproteinases; mPGES1—
microsomal prostaglandin E1 synthase; mTOR—mammalian target of rapamycin; NF-κB—
nuclear factor κB; NOX—NADPH oxidase; Nrf2—nuclear factor 2; PGE2—prostaglandin
E2; PGs—prostaglandins; PI3K—phosphatidylinositol 3-kinase; PIQ—non-verbal intelligence;
PKA—protein kinase type A; PTCH—Patched transmembrane protein; PTEN—phosphatase
and tensin homolog; RhoA—Ras homolog family member A; RNS—reactive species; ROS—
reactive oxygen species; Shh—Sonic hedgehog; SMO—Smoothened; SNAIL—Snail family zinc
finger; SOCS—cytokine signaling suppressors; SOD—superoxide dismutase; Sox9—Sry- like
HMG-box protein 9; Src—non-receptor tyrosine kinases; STAT3—signal transducers and activa-
tors of transcription; TAC—total antioxidant capacity; TGF-β—transforming growth factor β;
TIMPs—tissue inhibitors of matrix metalloproteinases; TMZ—temozolomide; TNFα—tumour
necrosis factor α; uPA—urokinase-type plasminogen activator; uPAR—urokinase plasmino-
gen activator receptor; VCAM-1—vascular cell adhesion protein 1; VDR—vitamin D receptor;
VEGF—vascular endothelial growth factor; VEGFR—vascular endothelial growth factor recep-
tor; Wnt—Wingless/Int1 Trail pathway; Zeb1—zinc finger E-box binding homeobox 1.
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