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SUMMARY
Migration of chemicals from packaging materials to foods may lead to human exposure. Polyfluoroalkyl substances (PFAS) can be

used in technical mixtures (TMs) for use in food packaging of paper and board, and PFAS have been detected in human serum and

umbilical cord blood. The specific structures of the PFAS in TMs are often unknown, but polyfluorinated alkyl phosphate esters

(PAPs) have been characterized in TMs, food packaging, and in food. PAPs can be metabolized into fluorotelomer alcohols (FTOHs)

and perfluoroalkyl carboxylic acids (PFCAs). Some PFAS have endocrine activities, highlighting the need to investigate these effects.

Herein, we studied the endocrine activity of less characterized PFAS, including short-chain PFCAs and FTOHs, PAPs, and TMs of

unknown chemical composition. Long-chain PFCAs were also included. We applied seven assays covering effects on estrogen, gluco-

corticoid, androgen, and peroxisome proliferator-activated receptor (PPAR) activity, as well as steroidogenesis in vitro and ex vivo. In

general, PAPs, FTOHs, TMs, and long-chain PFCAs showed estrogenic activity through receptor activation and/or increasing 17b-
estradiol levels. Furthermore, short- and long-chain PFCAs activated PPARa and PPARc. Collectively, this means that (i) PAPs,

FTOHs, and PFCAs exhibit endocrine activity through distinct and sometimes different mechanisms, (ii) two out of three tested TMs

exhibited estrogenic activity, and (iii) short-chain FTOHs showed estrogenic activity and short-chain PFCAs generally activate both

PPARa and PPARc with similar potency and efficacy as long-chain PFCAs. In conclusion, several new and divergent toxicological

targets were identified for different groups of PFAS.

INTRODUCTION
The road from food production to consumption can be long

and complex. It involves multiple steps where chemical contam-

ination of foodstuff can occur. Food packaging materials are

potential sources of such contamination (Borchers et al., 2010).

For example, food packaging of paper and board can contain

chemicals originating from printing inks, adhesives and coat-

ings. If these chemicals migrate to the food, there is a risk for

human exposure that may cause adverse health effects, particu-

larly because they inevitably will be present in combination with

other chemicals from various sources.

Among chemicals used in food packaging materials of paper

and board are polyfluoroalkyl substances (PFAS). These are

added to technical mixtures (TMs) used for coatings or sizing

agents to impart water and oil resistance to the material (Kissa,

2001). Polyfluorinated alkyl phosphate esters (PAPs) constitute

one group of PFAS which has been found in TMs, food packag-

ing, and food (Begley et al., 2005, 2008; Tittlemier et al., 2006;

Stahl et al., 2011; Trier et al., 2011; Gebbink et al., 2013), but

TMs containing other PFAS are also available on the market. The

specific structures of the PFAS in many TMs are unknown, which

pose challenges with respect to assessing toxicity and exposure,

and ultimately their risk to humans. Paper and board food pack-

aging is not covered by a specific regulation in Europe, however

a general regulation exists stating that the compound must not

be transferred to food in amounts that can adversely affect

human health (The European Commission 2004). To our knowl-

edge, some TMs and PFAS for use in paper and board are
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presently covered by regulations for instance in the US and Ger-

many (BfR 2015, US FDA, 2015).

PFAS synthesized from fluorotelomer alcohols (FTOHs) can

degrade to perfluoroalkyl carboxylic acids (PFCAs) during pro-

duction, use and disposal (Scheringer et al., 2014). Consequently,

FTOHs and PFCAs may be present in TMs as impurities (Begley

et al., 2005; Prevedouros et al., 2006). PAPs can also be metabo-

lized into PFCAs, likely through the intermediate metabolites

FTOHs (Fig. 1) (D’eon & Mabury, 2007, 2011). Thus, PFCAs and

FTOHs represent potential direct and indirect sources of expo-

sure. Indeed, both PAPs and the final metabolites have been

detected in human blood (Houde et al., 2006; Calafat et al., 2007;

D’eon et al., 2009; Olsen et al., 2012) and breast milk (So et al.,

2006; Kubwabo et al., 2013), with PFCAs also detected in umbili-

cal cord blood (Monroy et al., 2008; Kim et al., 2011). This means

that humans could be exposed to PFAS during fetal, neonatal, as

well as adult life. This is of general concern considering the long

half-life of some PFAS in human blood (Olsen et al., 2007), and

of particular concern in relation to fetal exposure because endo-

crine disrupting chemicals may contribute to disrupted develop-

ment leading to compromised health at birth or later in life

(Skakkebaek et al., 2001). These concerns have recently led Den-

mark to introduce a guidance limit-value for the sum of PFAS in

food packaging materials (The Danish Veterinary and Food

Administration, Ministry of Environment and Food, 2015).

Some PFAS are reported to have endocrine disruptive poten-

tial, interfering with both the thyroid and steroid hormone

systems (Lau, 2012). Effects on steroid hormones include

increased 17b-estradiol levels in blood following exposure to

some PFCAs and FTOHs (Cook et al., 1992; Biegel et al., 1995,

2001; Feng et al., 2009; Liu et al., 2009, 2010) and decreased

testosterone levels following in vivo exposure to some PFCAs

(Bookstaff et al., 1990; Cook et al., 1992; Shi et al., 2010). Expo-

sure to PAPs can result in increased estrogen and decreased

androgen levels in vitro (Rosenmai et al., 2013). Additionally,

many PFCAs interfere with the activity of peroxisome prolifera-

tor-activated receptor a (PPARa) (Wolf et al., 2008, 2012; Buhrke

et al., 2013), a mechanism associated with tumour development

in the liver, pancreas and testicles (Lau, 2012). PFCAs also acti-

vate the PPARc (Buhrke et al., 2013; Zhang et al., 2014), a recep-

tor which plays a role in preadipocyte differentiation into

adipocytes (Ferr�e, 2004). Thus, PFAS may be involved in the

development of obesity through affecting this receptor.

Notably, the above-mentioned studies typically analysed long-

chain PFAS, whereas short-chain PFAS and fluorinated con-

stituents of some TMs remain poorly characterised with respect

to their ability to interfere with hormone systems. This is of par-

ticular concern because the industry has moved from long-chain

to short-chain chemistry (Scheringer et al., 2014), meaning that

humans will be increasingly exposed to short-chain PFAS.

PFHxA and PFBA have already been detected in several types of

foods (P�erez et al., 2014) and in liver, brain, kidney and/or lung

tissue of twenty post-mortem individuals (P�erez et al., 2013).

Therefore, we sought to gain new insight into the endocrine

activity of short-chain PFAS and TMs by assessing their in vitro

activity across a range of established endocrine-related assays.

We analysed short-chain PFCAs of chain lengths 4–7, three

FTOHs, four PAPs, as well as three TMs of unknown chemical

composition. Additionally, we included PFCAs of longer chain

lengths from 8 to 12. The combination of substances enabled

comparison between effects based on length of fluorinated

chain, degree of fluorination, presence of hydrocarbon groups in

the substance, and the role of the functional head group.

MATERIALS ANDMETHODS

Test substances and technical mixtures

All substances used in the study are listed in Table 1 together

with their respective elemental composition, CAS numbers and

reported purity. In addition, three commercially available fluo-

rine-based TMs for use in food contact materials were tested

and are denoted TM1, TM2, and TM3, corresponding to Solvera

PT5045 (Solvay Solexis, Bollate, Italy) [fluoropolyether ammo-

nium phosphate salt, 16–20% dry matter (measured 23.2%)],

Capstone P-620HS (DuPont de Nemours, Leiden, the Nether-

lands) [fluorinated acrylic cationic copolymer, total fluorine con-

tent 25 � 1% (measured 27.3%)], and Cartafluor CFI (Clariant

presently owned by Archroma, Vienna, Austria) (fluorinated

acrylic cationic copolymer, measured dry matter 40.8%), respec-

tively. Although the overall chemical structure was given, the

specific structures, the distribution of the homologues series and

the concentrations in the commercially available TMs were

unknown.

Stock solutions were prepared by dissolving PFdoDA and TM3

in ethanol, TM1 and TM2 in H2O, and all other substances in

dimethyl sulfoxide (DMSO). PFdoDA was dissolved in ethanol as

it was not dissolvable in DMSO at the desired concentration,
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Figure 1 Metabolic pathway of PAPs into the intermediate metabolites

FTOHs and the final metabolite PFCAs (D’eon & Mabury, 2007; D’eon &

Mabury, 2011). RF = F(CF2)n. In this study: diPAPs (n = 8 or 10), monoPAP

and triPAP (n = 8), FTOHs (n = 4, 6, or 8), PFCAs (n = 3–11).
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whereas the solvents for the TMs were based on recommended

solvents according to technical datasheets supplied by the man-

ufacturers. Notably, the TMs are of unknown composition, and

it is therefore unclear whether all components are dissolved.

However the stated fluorinated constituents, fluoropolyether

ammonium phosphate salts and fluorinated acrylic cationic

copolymers, as well as some impurities including FTOHs and

PFCAs are soluble in water and/or ethanol and should thus be in

solution. Nevertheless, results for the TMs should be interpreted

with caution. Concentrations of stock solutions were 20 mM for

PAPs and 40 mM for all remaining substances. Stated intervals

of substances, for example, PFBA-PFHpA, denotes an interval of

chain-lengths with increasing number of repeats of CF2 units, in

this case, the substances PFBA, PFPeA, PFHxA and PFHpA.

Steroidogenesis assay

The steroidogenesis assay was performed using the NCI-

H295R human adrenal corticocarcinoma cell-line (ATCC) as

described previously (Rosenmai et al., 2013). Briefly, cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM)/F12

(Life Technologies, Bleiswijk, the Netherlands) with 1% Insulin–

Transferrin–Sodium selenite plus premix (VWR) and 2.5%

Nu-Serum (BD Bioscience, Brøndby, Denmark). Cells were

seeded in 24-well plates at a density of 3 9 105 cells/well and left

to grow for 24 h before exposure. Cells were exposed to test

compounds for 48 h with a successive sampling of medium for

hormone analysis. The MTT assay was performed on cells after

medium removal as described previously (Rosenmai et al., 2013)

to assess cell viability. Forskolin (1 and 10 lM) (Sigma-Aldrich,

Copenhagen, Denmark) and prochloraz (0.3 and 3 lM) (Ehren-

storfer, VWR & Bie & Berntsen, Denmark) were included in all

experiments to monitor assay performance. Extraction and

quantification of progesterone, testosterone and 17b-estradiol
(DelfiaTM time-resolved fluoroimmunoassays; PerkinElmer, Skov-

lunde, Denmark), were performed as previously described (Ving-

gaard et al., 2002; Rosenmai et al., 2013). For PFDA-PFdoDA, a

fluorescamine cell viability assay was conducted, as an unex-

plained increased response was observed in some of the MTT

assays. The assay was performed by washing cells with PBS, add-

ing 150 lL lysis buffer (25 mM trisphosphate pH 7.8, 15% glyc-

erol, 1% Triton-X, 1 mM 1,4-Dithiothreitol (DTT)), followed by

addition of 600 lL of a 1.8 mM fluorescamine solution to each

well. Successively, plates were incubated for 20 min, shaken and

then fluorescence measured with excitation wavelength 390 nm

and emission 460 nm. Substances causing increased 17b-estra-
diol levels were tested for immunoassay interference and

showed no effect (data not shown).

TMs, 6 : 2 FTOH, 4 : 2 FTOH, PFBA-PFHpA, and PFNA-

PFdoDA were tested in 2–5 experiments in triplicate reactions.

Test substances were tested at a maximum concentration of

50 lM and TMs were tested at a maximum concentration of

0.25% of original material across seven twofold dilutions. Vehicle

concentrations were kept constant within each cell plate. Testos-

terone and 17b-estradiol levels were quantified in cell media

from experiments with PFBA-PFHpA, 6 : 2 FTOH, and 4 : 2

FTOH exposure, whereas testosterone, 17b-estradiol, as well as

progesterone were quantified for PFNA-PFdoDA and the TMs.

Reporter gene assays

The ER, androgen receptor (AR), PPARa, and PPARc reporter

gene assays were conducted as previously described (Vinggaard

et al., 2002; Taxvig et al., 2012; Rosenmai et al., 2014). The gluco-

corticoid receptor (GR) CALUX reporter gene assay was con-

structed and performed at BioDetection Systems essentially as

described previously (Piersma et al., 2013). All assays used luci-

ferase as the reporter.

The ER reporter gene assay was conducted in stably trans-

fected human ovarian adenocarcinoma cell-line (BG1Luc4E2)

(Michael Denison, University of California, USA) cultured in

RPMI 1649 medium (Life Technology) supplemented with 0.9%

pen/strep (Life Technology) and 8% fetal bovine serum (FBS)

(Life Technology) until ~72 h before the experiment, where cells

were transferred to the DMEM medium (Life Technology) sup-

plemented with 110 mg/mL sodium pyruvate (Fisher Scientific,

Hvidovre, Denmark), 1.9% L-glutamine (Fisher Scientific), 0.9%

pen/strep (Life Technology), and 4.5% charcoal-treated FBS

(Biological Industries, Cromwell, CT, USA). The experiment was

initiated by seeding cells at a density of 4 9 104 cells/well in 96-

well plates. After ~48 h cells were exposed to test compounds for

~22 h. 17b-estradiol (Steraloids, Newport, RI, USA) was used as a

positive control and was tested in concentrations ranging from

3.6 9 10�13 to 3.7 9 10�10 M. Cell viability was assessed

Table 1 Names, abbreviations, CAS numbers and purity of test compounds

Abbreviation Name Elemental composition CAS Purity (%)

4 : 2 FTOH 4 : 2 fluorotelomer alcohol F(CF2)4(CH2)2OH 2043-47-2 97

6 : 2 FTOH 6 : 2 fluorotelomer alcohol F(CF2)6(CH2)2OH 647-42-7 97

8 : 2 FTOH 8 : 2 fluorotelomer alcohol F(CF2)8(CH2)2OH 678-39-7 97

PFBA Perfluorobutanoic acid F(CF2)3COOH 375-22-4 98

PFPeA Perfluoropentanoic acid F(CF2)4COOH 375-85-9 97

PFHxA Perfluorohexanoic acid F(CF2)5COOH 307-24-4 97

PFHpA Perfluoroheptanoic acid F(CF2)6COOH 375-85-9 99

PFOA Perfluorooctanoic acid F(CF2)7COOH 335-67-1

3825-26-1

96

98

PFNA Perfluorononanoic acid F(CF2)8COOH 375-95-1 97

PFDA Perfluorodecanoic acid F(CF2)9COOH 335-76-2 98

PFunDA Perfluoroundecanoic acid F(CF2)10COOH 2058-94-8 95

PFdoDA Perfluorododecanoic acid F(CF2)11COOH 307-55-1 97

8 : 2 monoPAP 8 : 2 polyfluoroalkyl phosphate ester F(CF2)8(CH2)2OP(O)OH2 57678-03-2 99.5

8 : 2 diPAP 8 : 2/8 : 2 polyfluoroalkyl phosphate ester [F(CF2)8(CH2)2O]2P(O)OH 678-41-1 98

10 : 2 diPAP 10 : 2/10 : 2 polyfluoroalkyl phosphate ester [F(CF2)10(CH2)2O]2P(O)OH 1895-26-7 94.6

8 : 2 triPAP 8 : 2/8 : 2/8 : 2 polyfluoroalkyl phosphate ester [F(CF2)8(CH2)2O]3P(O) NA 99.5

NA, Not available.
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visually as previously described (Rosenmai et al., 2014) or by

adding resazurin for 3 h followed by fluorescence measurement.

The AR reporter gene assay was conducted in a Chinese ham-

ster ovary cell-line (ATCC), cultured in DMEM/F12 medium (Life

Technologies), supplemented with 10% FBS (Life Technologies),

and 1% pen/strep/fungi (Thermo Fisher Scientific, Hvidovre,

Denmark). Cell were seeded at a density of 7000 cells/well in 96-

well plates in the same medium as above, but now with 10%

charcoal-treated FBS (Biological Industries). After ~24 h, cells

were transiently transfected with receptors, pSVAR0 (antagonist

mode) or pSVAR13 (toxicity) and the reporter gene, MMTV-LUC

(Gifts from Albert Brinkmann, Erasmus University, Rotterdam,

The Netherlands). Total plasmid concentration was 75 ng/well

of 2 : 100 or 1 : 100 for antagonist and toxicity mode respec-

tively. Transfection was conducted with 0.3 lL Fugene/well

(Roche, Hvidovre, Denmark) 5 h prior to exposure. R1881 (Per-

kin Elmer) and hydroxy-flutamide (Toronto Research Chemicals,

Ontario, Canada) were used as positive controls and were tested

in concentrations ranging from 0.0012 to 2.7 nM and 1 to

5000 nM respectively, in all experiments. Cells were exposed to

test compounds for ~19 h. Testing of antagonistic effects of test

compounds was done in concert with 0.03 nM or 0.1 nM R1881.

The PPARa and PPARc reporter gene assay was conducted in

NIH-3T3 cells transiently transfected with plasmids, expressing

the ligand-binding domain of murine PPARa or PPARc as well as

a plasmid containing the upstream-activating sequence (UAS)

(Gifts from Professor Susanne Mandrup, University of Southern

Denmark). Cells were grown in DMEM/F12 medium (Life Tech-

nologies) supplemented with 10% charcoal-treated FBS (Sigma-

Aldrich) and 1% pen/strep/fungi (Thermo Fisher Scientific).

Cells were seeded at a density of 7000 cell/well in 96-well plates.

After 20 h, transfection was performed with 0.45 lL/well Fugene

(Roche) and 75 ng cDNA/well of 1 : 2 and 1 : 1 for PPARa:UAS

and PPARc:UAS respectively. The solution was added to the

plates and after 5 h incubation the cells were exposed to test

compounds for 22 h. Finally luciferase activity was measured.

Positive controls were rosiglitazone (Sigma-Aldrich) and WY

14,643 (Sigma-Aldrich) for PPARc and PPARa respectively.

Rosiglitazone and WY 14,643 were tested in concentrations of

0.01–100 lM. Cytotoxicity was checked in parallel cells trans-

fected with pCMV-luciferase construct, using the same transfec-

tion procedure as for the receptor constructs.

The GR-CALUX reporter gene assay was performed in a stably

transfected human U2OS osteosarcoma cell-line cultured in

DMEM (InVitrogen, Taastrup, Denmark) supplemented with

7.5% FBS (InVitrogen), 19 non-essential amino acids (InVitro-

gen) and 10 U/mL penicillin and 10 g/mL streptomycin

(InVitrogen). Experiments were conducted in DMEM without

phenol red (InVitrogen) supplemented with 5% dextran-coated

charcoal-stripped fetal calf serum, and amino acids and antibi-

otics as above. Cells were seeded in 384 well plates at a density

of 3 9 103 cells/well. After 24 h cells were exposed to test com-

pounds for another 24 h. Dexamethasone was used as a positive

control tested in the range 0.000015–50 nM in all experiments.

No cell toxicity measurements were performed in this assay.

All test substances and TMs were tested by ER, PPARa and

PPARc reporter gene assays. TMs, 6 : 2 FTOH, 4 : 2 FTOH, and

all PFCAs excluding PFOA, were tested in the AR reporter gene

assay and PFOA-PFdoDA were tested in the GR CALUX reporter

gene assay.

All assays were performed in 2–6 replicate reactions across

6–10 concentrations and repeated 2–7 times, except 10 : 2 diPAP

and 8 : 2 triPAP, which were only tested once for PPARa and

PPARc activity. The maximum tested concentration for TM1 and

TM2 was 0.25% of original material and 100 lM for all PFCAs

and FTOHs. The maximum tested concentration for PAPs was

50 lM, except in the ER reporter gene assay in which it was

100 lM. A 1 mg/lL ethanol solution of TM3 was prepared,

which was diluted by a factor 400 for the tested maximum con-

centration in the respective assays. Vehicle concentrations were

constant for the compounds within each experiment in the AR,

PPARa, PPARc and the GR CALUX reporter gene assay. In the ER

reporter gene assay, the vehicle concentration was ≤0.25% in all

wells, except for PAPs for which vehicle concentration was 0.5%,

but only at the maximum tested concentration.

Ex vivo rat fetal testis steroidogenesis

8 : 2 diPAP, 8 : 2 monoPAP and 8 : 2 FTOH, previously

reported to affect testosterone levels in the H295R assay

(Rosenmai et al., 2013), were analysed using an ex vivo rat

fetal testis culture system (FEGA) (Lassurgu�ere et al., 2003;

Chauvign�e et al., 2009). Animals were housed in a licensed

facility in accordance with the French Ministry of Agriculture

(agreement # C 35-238-19). Animal experiments were carried

out in accordance with the ethical guidelines stipulated by the

NIH Guide for Care and Use of the Laboratory Animals and

were approved by the Rennes Animal Experimentation Ethics

Committee (#R-2012-CCh-01). In brief, fetuses were collected

from pregnant Sprague–Dawley rats 14.5 days post-coitum and

testes dissected out in medium under the microscope. Individ-

ual testes were placed on a filter and floated atop of culture

medium with test substances for 72 h. Medium was changed

at 24 and 48 h, and collected at 24, 48 and 72 h for hormone

analysis. 3–5 independent experiments were conducted in 4–8

repeated reactions in six twofold dilutions with a maximum

concentration of 50 lM and a constant vehicle concentration.

Hormone analysis was conducted using RIA assays according

to manufacturer’s protocol (Immunotech, Quebec, Canada,

Beckman Coulter, Copenhagen, Denmark) or by High-Perfor-

mance Liquid Chromatography-Mass Spectrometry (HPLC-

MS/MS) (Mortensen & Pedersen, 2007; Rosenmai et al., 2013).

Data processing and statistical analysis

All statistical analyses for in vitro measurements were per-

formed on normalized data from individual experiments, except

a few instances where normalized means were pooled. Residuals

to normalized mean within each exposure group were pooled

and tested for normal distribution by use of the D’Agostino Pear-

son’s Omnibus test. If pooled residuals were normally dis-

tributed, a one-way ANOVA (post-test Dunnett) was performed. A

Kruskal–Wallis (post-test Dunn) was performed, if pooled resid-

uals were not normally distributed.

If the post-test led to a significant dose-dependent effect in

the majority of experiments in the GR CALUX, PPARa, PPARc,
AR and ER reporter gene assays, this was perceived as an effect.

If statistically significant dose-dependent cytotoxicity was

observed, these exposure groups were not considered further. In

the steroidogenesis assay, effects were reported if the majority of

experiments showed significant changes in the post-test in

response to increasing non-cytotoxic exposure concentrations.
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Hormone measurements from the ex vivo testis assay were

statistically analysed according to the same criteria as that for

in vitro data on absolute concentrations from single experiments

and pooled normalized means from independent experiments.

All data processing and statistical analyses were performed in

GraphPad Prism 5 (GraphPad Software Inc, La Jolla, CA, USA).

RESULTS

Effects on steroidogenesis

Basal hormone production in the H295R steroidogenesis assay

was 521–1940 pg/mL, 365–646 pg/mL, and 8–61 pg/mL for

testosterone, progesterone and 17b-estradiol, respectively. Here

17b-estradiol and testosterone were induced by forskolin by

11.6–54.6 and 1.6–11.5-fold change compared to the control

respectively, and inhibited with 0.1–0.7 and 0.004–0.04-fold

change by prochloraz (data not shown) in the experiments pre-

sented in Fig. 2, showing responsiveness of cells to known

inducers and inhibitors of steroidogenesis.

As PAPs, 8 : 2 FTOH and PFOA had previously been found to

affect in vitro steroidogenesis in our laboratory, we decided to

investigate a broader panel of PFAS in this assay. Exposure

to TM2, 6 : 2 FTOH, PFDA, PFunDA, and PFdoDA caused a sig-

nificant increase in 17b-estradiol levels (Fig. 2). PFDA-PFdoDA

showed effects at concentration ≥25 lM, whereas 6 : 2 FTOH

exhibited effects at 6.3 lM. TM2, 6 : 2 FTOH, PFDA, and

Figure 2 17b-estradiol levels following exposure to TMs, FTOHs, and PFCAs in the steroidogenesis assay. TM2, 6 : 2 FTOH, and PFDA-PFdoDA increased

17b-estradiol levels, and TM1, TM3, 4 : 2 FTOH, PFBA-PFHpA, and PFNA did not. Fold change (�SD) as a function of percent (%) original material provided

for TMs and exposure concentration (lM) for FTOH and PFCAs. Graphs depicts one representative experiment. The markings *, **, and *** correspond to

p-values of <0.05, <0.01, and <0.001.
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PFunDA caused increases in response of around 100%, whereas

PFdoDA was less efficacious. For PFDA-PFdoDA, the increase

was accompanied by an increased response in the MTT assay in

one or all experiments, however this was not observed in the flu-

orescamin assay, and was thus not considered a result of

increased cell number. MTT data for experiments presented in

Fig. 2 are shown in Figure S4. PFBA-PFHpA, PFNA, TM1, TM3

and 4 : 2 FTOH did not affect 17b-estradiol levels (Fig. 2). None

of the test substances affected testosterone or progesterone

levels (data not shown).

Effects on rat fetal testis steroidogenesis ex vivo

8 : 2 FTOH, 8 : 2 monoPAP and 8 : 2 diPAP did not signifi-

cantly affect testosterone levels in the FEGA at any of the time

points measured (Figure S1). In support of these RIA measure-

ments, testosterone and androstenedione levels did not change

significantly with exposure to 8 : 2 FTOH, 8 : 2 monoPAP, and

8 : 2 diPAP when measured by HPLC-MS/MS (data not shown).

ER activity

17b-estradiol-induced ER activity with 4.9–7.7-fold change

compared to vehicle controls for the experiments presented in

Fig. 3.

TM2, TM3, 8 : 2 monoPAP, 4 : 2 FTOH, 6 : 2 FTOH, and 8 : 2

FTOH led to increased ER activity with TM3, 4 : 2 FTOH, and

6 : 2 FTOH showing the largest change in response (200–400%)

(Table 2, Fig. 3). PFOA and PFNA led to an apparent increase in

ER activation at high exposure concentrations, however an

increased response was also observed in one of two resazurin

cell viability experiments at the same concentrations (data not

shown). PFBA-PFHpA and PFDA-PFdoDA did not affect ER

activity (data not shown) neither did TM1, 8 : 2 diPAP and 10 : 2

diPAP exposure, whereas 8 : 2 triPAP led to an apparent

decreased response (Fig. 3).

AR antagonism

R1881 exposure led to a maximum induction of AR activity of

15.6–74.8-fold change, whereas OHF reduced the AR-mediated

activity by 0.1–0.3-fold change compared to the vehicle controls

in the experiments presented in Figure S2. None of the test sub-

stances led to effects on AR activity (Figure S2) without concomi-

tant cell toxicity at the same concentrations (Figure S5).

PPARa and PPARc activity
Rosiglitazone led to increased PPARc activity with 24.8–74.4-

fold change, whereas WY 14,643 increased PPARa activity with

Figure 3 Estrogen receptor activity following exposure to TMs, PAPs, and FTOHs as measured in the ER reporter gene assay. TM2, TM3, 8 : 2 monoPAP,

and 4 : 2–8 : 2 FTOH increased ER activity, whereas TM1, 8 : 2 diPAP, and 10 : 2 diPAP did not, and 8 : 2 triPAP led to an apparent decrease. Fold change

(�SD) as a function of percent (%) original material provided for TMs and exposure concentration (lM) for FTOHs and PAPs. Graphs depicts one representa-

tive experiment. The markings *, **, and *** correspond to p-values of <0.05, <0.01, and <0.001.
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2.3–6.9-fold change compared to the vehicle controls in the

experiments presented in Fig. 4.

All PFCAs led to increased PPARa and PPARc activity from

exposure concentrations of 30 lM or 100 lM, except for PFBA,

which did not cause any change in PPARc activity (Fig. 4). The

increases in response on PPARa and PPARc ranged between 37

and 139%. The FTOHs, PAPs and TMs did not cause any signifi-

cant change in activity of the PPARs (data not shown). None of

the test compounds affected cell viability in a dose-dependent

manner (Figure S6).

GR CALUX reporter gene activity

Dexamethasone increased GR activity by 75.2 and 81.5-fold

change compared to the vehicle controls in the two experiments

conducted, however the PFOA-PFdoDA did not lead to increased

activity of the receptor (Figure S3).

DISCUSSION
We have analysed the endocrine activity of a number of PFAS,

with particular focus on; (i) substances used in food packaging

materials (PAPs), (ii) short-chain PFAS occurring as metabolic

products of the functional coating ingredient or as impurities in

some TMs (FTOH and PFCAs), and (iii) three commercially

available TMs containing PFAS of unknown chemical composi-

tion. As summarized in Table 2, the most prominent effect was

estrogenic activity as well as PPARa and PPARc activity. The

potency and/or efficacy of PFAS on these endpoints were gener-

ally lower than the positive controls. Nevertheless, humans will

be exposed to other PFAS and other compounds with similar

activities, and may thus combine to elicit an effect.

Some long-chain PFCAs are reported to exhibit estrogenic and

antiandrogenic activities. Regarding estrogenic activity, PFNA

exposure can increase serum 17b-estradiol levels in vivo (Feng

et al., 2009) and in vitro (Kraugerud et al., 2011). We observed

elevated 17b-estradiol levels following PFDA-PFdoDA, but not

PFNA exposure. These increases could be due to interferences

with aromatase activity or metabolism of estrogen. Taken

together, the estrogenic activity of long-chain PFCAs is of con-

cern, not least because some of these substances are persistent

in humans and that in utero exposure to estrogenic compounds

is associated with adverse health effects, including breast cancer

(Soto et al., 2013) and altered male fetal reproductive develop-

ment (Toppari et al., 1996).

Regarding anti-androgenicity, PFOA-PFDA did not affect AR

activity as reported previously (Kjeldsen & Bonefeld-Jorgensen,

2013). PFDA and PFdoDA can decrease blood testosterone levels

in male rats (Bookstaff et al., 1990; Shi et al., 2009), however we

observed no effect on testosterone levels in the H295R assay.

These deviations between in vitro and in vivo responses indicate

that the in vivo effects are not always due to a direct effect on

the intracellular steroidogenic pathway, but rather a result of, for

instance differences in toxicokinetics or interferences with the

hypothalamic–pituitary axis.

8 : 2 diPAP, 8 : 2 monoPAP, and 8 : 2 FTOH can inhibit testos-

terone synthesis in the H295R assay (Rosenmai et al., 2013).

Therefore, we tested these substances on explanted rat fetal

testes in a model that previously established anti-androgenic

activity of environmental contaminants such as bisphenol A and

phthalates (Chauvign�e et al., 2009; Maamar et al., 2015). We

observed no significant effect on secreted testosterone levels fol-

lowing 3 days of exposure. The reason for this discrepancy

between assays is unclear, but could be because of differences

between a cell-line and an intact organ, or human adrenal vs. rat

Leydig cell steroidogenesis. Furthermore, no serum was added

to the medium in the FEGA assay, which may have affected the

tissue bioavailability of PFAS, as protein can serve as a ‘carrier’

for a wide range of perfluoroalkyl acids, including carboxylates

and sulphonates (Bischel et al., 2010, 2011), thereby transporting

PFAS to the tissue and limiting non-specific binding to plastics,

etc. Additional studies on the potential anti-androgenic effect of

these substances are therefore warranted, particularly because

an association is suggested between in utero exposure to antian-

drogenic compounds and male reproductive abnormalities

(Skakkebaek, 2002).

Even though the industry is changing from long-chain to

short-chain chemistry (Scheringer et al., 2014), knowledge about

their potential endocrine activities remain limited. Thus, we also

included their intermediate metabolites 4 : 2 FTOH-8 : 2 FTOH

and the final metabolites PFBA-PFHpA. The estrogenic activity

of 6 : 2 and 8 : 2 FTOH has been described in MCF-7 breast can-

cer cells (Maras et al., 2006). These substances also increased

plasma 17b-estradiol in zebrafish (Liu et al., 2009, 2010), which

we previously confirmed in vitro for 8 : 2 FTOH (Rosenmai et al.,

2013). Additionally, 6 : 2 FTOH increased testosterone levels in

zebrafish (Liu et al., 2009), although we did not observe elevated

testosterone in this study. Nevertheless, our new data

Table 2 Qualitative effects of PFAS and technical mixtures (TMs) on pro-

gesterone (P), testosterone (T) and 17b-estradiol levels in the steroidogene-

sis assay (H295R) and the ex vivo fetal rat model (FEGA)

H295R FEGA hER PPARa PPARc AR GR

P T E T

TM1f – – – – – – –
TM2f – – ↑ ↑ – – –
TM3g – – – ↑ – – –
8 : 2 triPAP ↓a ↓a ↑a,b – – – –a

10 : 2 diPAP ↓a –a ↑a,b – – – –a

8 : 2 diPAP ↓a ↓a ↑a,b – – – – –a

8 : 2 monoPAP ↓a ↓a ↑a,b – ↑ – – –a

8 : 2 FTOH ↓a ↓a ↑a,b – ↑ – – –a

6 : 2 FTOH – ↑ ↑ – – –
4 : 2 FTOH – – ↑ – – –
PFdoDAg – – ↑c – ↑ ↑ – –
PFunDA – – ↑c – ↑ ↑ – –
PFDA – – ↑c – ↑ ↑ – –
PFNA – – – (↑)e ↑ ↑ – –
PFOA –a –a ↓↑a,b,d (↑)e ↑ ↑ –a –
PFHpA – – – ↑ ↑ –
PFHxA – – – ↑ ↑ –
PFPeA – – – ↑ ↑ –
PFBA – – – ↑ – –

Results from reporter gene assays including the human estrogen receptor (hER),

androgen receptor (AR), glucocorticoid receptor (GR), and peroxisome prolifera-

tor-activated receptor a and c (PPARa and PPARc) are presented. Results are

based on statistically significant effects observed in the majority of independent

experiments. Increased responses are indicated as (↑, light grey), decreased
responses as (↓, dark grey), no effect with a dash (–), and an empty field means

not tested/measured. (a) results from Rosenmai et al. (2013), (b) effects reported

for 17b-estradiol and/or estrone, (c) response accompanied by increased MTT

response, but not in the fluorescamine assay, (d) an U-shaped concentration–
response curve was reported with a decrease in E2 levels at lower concentrations

and an increase at higher concentrations, (e) increased responses at high expo-

sure concentrations accompanied by increases in the resazurin cell viability assay,

(f) stock solution dissolved in water, (g) stock solution dissolved in ethanol. All

other stock solutions were made in dimethyl sulfoxide.
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corroborates previous findings with respect to estrogenic activ-

ity, now including 4 : 2 and 6 : 2 FTOH (Table 2).

PFCAs with chain lengths 4–7 could be less hazardous with

respect to estrogenic activity than those with long chains, as

none of these affected 17b-estradiol levels. In contrast, their

short chain precursors, 4 : 2 and 6 : 2 FTOH that ultimately can

be metabolized into short-chain PFCAs exhibited estrogenic

activity as described above. Short-chain PFCAs caused PPARa
and PPARc activation, except PFBA which had no effect on

PPARc. This is in line with previous reports (Buhrke et al., 2013;

Zhang et al., 2014). The potency and efficacy of short-chain

PFCAs was in the same range as long-chain PFCAs and equally

potent on both receptors under our experimental conditions.

PFOA can induce tumour development in testes, pancreas and

liver in rats and a triad of tumours associated with exposure to

some PPARa agonists (Lau, 2012). Furthermore, as PPARc is

involved in adipocyte differentiation (Ferr�e, 2004), PFAS affect-

ing this receptor may be involved in development of obesity.

Therefore, this and other studies points towards further studies

on short-chain PFAS to be conducted to ascertain that these are

safe to use.

The three tested TMs are all commercially available and

intended for coating of food packaging of paper and board.

Migration of PFAS in commercial TMs, their degradation prod-

ucts, and impurities to food has been measured (Begley et al.,

2005, 2008; Tittlemier et al., 2006; Trier, 2012; Gebbink et al.,

2013). The general type of fluorocarbon and percentage of fluoro-

carbon content are listed on the product datasheets. However,

information on specific fluorinated chemical structures and

impurities are not readily available. The PFAS monomer and

oligomer structures in TM1 have been characterized (Dimzon

et al., 2015), but not in TM2 and TM3, where only the general

chemical composition given in the technical data sheets are

known. This in itself limits our ability to conclude on active sub-

stances, but this also pose challenges with respect to choosing

suitable solvents for all components of the mixtures. Thus, inter-

pretation of results for TMs should be carried out with caution,

however, the results show that some component(s) of TM2 and

TM3 exhibit estrogenic activities. Whether these components are

fluorinated is unknown, although we are tempted to suggest this

as we found the same response for some pure PFAS. Further-

more, data are relevant as we used the solvents recommended by

the manufacturers of the TMs used for food packaging material,

meaning that the PFAS solutions applied for the cell studies and

for production of the food packaging material are likely the same.

PAPs can metabolize in vivo into the final metabolites PFCAs

through the intermediate metabolites FTOHs (D’eon & Mabury,

2007, 2011; Butt et al., 2014). Thus, our study allowed compar-

ison of effects across interconnected groups of substances and

assays. In a previous study, we showed that PAPs affect steroido-

genesis (Rosenmai et al., 2013) and we can now include effects

of short-chain FTOHs and long-chain PFCAs (Table 2). In

general, PAPs and 8 : 2 FTOH suppressed androgen and proges-

terone levels (Rosenmai et al., 2013), whereas neither the short-

chain FTOHs nor the PFCAs did in the present study. Also, PAPs,

8 : 2 FTOH, 6 : 2 FTOH and long-chain PFCAs elevated 17b-
estradiol levels, whereas neither 4 : 2 FTOH nor short-chain

PFCAs did. This strongly suggest that structural differences such

as the size of the molecule, presence of a hydrocarbon segment,

the functional head group and the chain length are central to the

(A)

(B)

Figure 4 Peroxisome proliferator-activated receptor a (A) and c (B) activity following exposure to PFBA-PFdoDA in the PPARa and PPARc reporter gene

assays. All tested PFCAs increased PPARa and PPARc activity, except PFBA which did not affect PPARc. Fold change (�SD) as a function of exposure concen-

tration (lM). Graphs depicts one representative experiment, except for PFDA in the PPARc reporter gene assay, which depicts pooled means of independent

experiments. The markings *, **, and *** correspond to p-values of <0.05, <0.01, and <0.001.
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effect on steroidogenesis. Additionally, all FTOHs and 8 : 2

monoPAP-activated hER (Table 2), whereas di- and tri-alkylated

PAP as well as most PFCAs did not. Finally, all PFCAs-activated

PPARa and PPARc with similar potencies, except PPARc activa-

tion by PFBA, whereas none of the other compounds elicited

activities in the PPAR assays, findings which are in line with pre-

vious reports (Buhrke et al., 2013; Zhang et al., 2014). Again this

suggests that structural characteristics such as fluorination,

hydrocarbon segment and functional head group, play a role for

the ER, PPARa and PPARc activity. If however, the test com-

pounds were metabolized in the cellular assay, for instance by

PAPs metabolizing to PFCAs, these deductions about structural

activities may not hold true. Nevertheless, the ER activity, and

effects on progesterone and testosterone levels were generally

observed for PAPs and/or FTOHs, but generally not for their

metabolites PFCAs, meaning that these had not been completely

metabolized into PFCAs. Furthermore, the lack of PPAR activities

following exposure to PAPs and FTOHs suggest that these were

not transformed into PFCAs, as these do exhibit activity.

In conclusion, we have shown that PFAS have estrogenic activ-

ity and that parent substances used in paper packaging for food

have different biomolecular effects than their metabolites. Some

TMs showed estrogenic activities, but the short-chain PFCAs did

not. Furthermore, we showed that the final metabolites (PFCA)

can activate PPARa and PPARc with a similar potency, whereas

their parent substances cannot. Notably, we observed little

effects on anti-/androgenic measurements, but this does not

exclude PFAS from affecting the male reproductive health, as

estrogens also play important roles for male reproductive devel-

opment and function (Rouiller-Fabre et al., 2015). Collectively,

our data suggests that the degree of fluorination, the degree of

alkylation, the length of the fluorinated chain, the size of the

molecule and the functional head group, all play central roles in

determining the effects elicited. Future studies should focus on

investigating the molecular mechanisms behind the different

activities as well as the effects of short-chain PFAS and other

FTOH-derived TMs to assure that these are safe to use for

widespread applications.
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