
Fluorine (19F) MRS and MRI in biomedicine

Jesús Ruiz-Cabelloa,b,c, Brad P. Barnetta,b, Paul A. Bottomleya, and Jeff W.M.
Bultea,b,d,e,*

a Russell H. Morgan Department of Radiology, Division of MR Research, Johns Hopkins

University School of Medicine, Baltimore, MD, USA

b Vascular Biology Program and Cellular Imaging Section, Institute for Cell Engineering, Johns

Hopkins University School of Medicine, Baltimore, USA

c NMR Group, Institute of Functional Studies, Complutense University and CIBERES, Madrid,

Spain

d Department of Biomedical Engineering, Johns Hopkins University School of Medicine,

Baltimore, MD, USA

e Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of

Medicine, Baltimore, MD, USA

Abstract

Shortly after the introduction of 1H MRI, fluorinated molecules were tested as MR-detectable

tracers or contrast agents. Many fluorinated compounds, which are nontoxic and chemically inert,

are now being used in a broad range of biomedical applications, including anesthetics,

chemotherapeutic agents, and molecules with high oxygen solubility for respiration and blood

substitution. These compounds can be monitored by fluorine (19F) MRI and/or MRS, providing a

noninvasive means to interrogate associated functions in biological systems. As a result of the lack

of endogenous fluorine in living organisms, 19F MRI of ‘hotspots’ of targeted fluorinated contrast

agents has recently opened up new research avenues in molecular and cellular imaging. This

includes the specific targeting and imaging of cellular surface epitopes, as well as MRI cell

tracking of endogenous macrophages, injected immune cells and stem cell transplants.
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INTRODUCTION

The 19F nucleus has a 100% natural abundance and resonates at a resonant frequency that is

94% of that of 1H. Its NMR sensitivity is 83% of that of 1H (with constant noise), so that its

MRI signal-to-noise ratio (SNR) is about 89% of 1H per nucleus, assuming sample-

dominant noise (i.e. the noise increases linearly with frequency). There is negligible

endogenous 19F MRI signal from the body, as the physiological concentrations of detectable

mobile fluorine are below the detection limit (usually less than 10−3 μmol/g wet tissue

weight). Fluorine exists at higher concentrations in the bone matrix and teeth, but, being
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immobilized, exhibits a very short spin–spin relaxation time (T2) that is not visible to

conventional MRI methods. This lack of background signal provides 19F MRI with a

potentially extremely high contrast-to-noise ratio and specificity, if a fluorinated compound

can be introduced as a contrast agent.

However, for 19F MRI to produce an image quality similar to that of 1H MRI, whose signal

derives from nearly two-thirds of all nuclei present in the body, the agent requires a very

high density of 19F nuclei on the molecule in addition to a high tissue concentration. To

achieve the former, perfluorination offers the attraction of providing a comparable density

of 19F nuclei when all 1H nuclei on a hydrocarbon chain are replaced.

Perfluorocarbons (PFCs) are molecules of similar structure to common organic compounds

(e.g. alkanes), except that all of the hydrogen atoms are replaced by fluorine. These agents

have a number of interesting properties that are well suited for medical applications. In

addition, fluorine is the most electronegative element in the Periodic Table, and therefore the

synthetic introduction of fluorine into contrast agents can produce dramatic electronic

perturbations and modify sterical tertial structures.

HISTORICAL PERSPECTIVE

Some of the current potential applications of 19F imaging and spectroscopy for obtaining

functional information in living systems were suggested in the 1970s (1), around the time of

the first human 1H MRI applications. The first 19F images of NaF, and a PFC,

perfluorotributylamine (PFTA), in phantoms are shown in Fig. 1. 19F MRI of biocompatible

fluorinated compounds thus represents one of the earliest examples of MRI contrast agents

(2). Around the same time, fluorinated drugs appeared on the market and the properties of

PFCs were being investigated. Several PFCs were developed during World War II as part of

the Manhattan Project to isolate the isomers of uranium. One of their most important

biological properties, their high oxygen affinity, was recognized in the 1960s, when mice

and cats were shown to survive complete immersion in oxygenated PFCs, followed by long-

term survival without apparent ill-effects (3). However, it was not until the 1980s that the

chemical inertness of PFCs and, more specifically, their inability to be metabolized were

fully documented. One problem with regard to the biological use of many PFC species is

that they are insoluble in water. This is routinely addressed for a variety of medical

applications by preparing PFCs as water emulsions (4).

The 19F MRI properties of many fluorinated compounds in pharmaceutical,

anesthesiological and oncological applications have been discussed in other excellent

reviews and book chapters (5–13). In this review, special emphasis is placed on emerging

applications, including the use of PFCs for molecular imaging and cell tracking, as well as

for studying lung function.

GENERAL PROPERTIES OF PFCs

As noted above, liquid PFCs have a low water solubility [e.g. perfluoro-octyl bromide

(PFOB) has a maximal water solubility of 10−9 M], which leads to slow diffusion and a long

tenancy at the target site of the compound in its natural form. Although PFCs are lipophobic,

because the degree of lipophobicity is commonly less than the hydrophobicity, PFCs tend to

partition into the lipid component of cellular membranes and, in some cases, affect the

cellular response to certain stimulants and stressors. The depth of penetration and the

penetration rate can be modulated as a function of the particle size and the lipid solubility of

emulsions prepared with different PFCs. PFCs are also characterized by a very low surface

tension, which make them attractive for certain applications (e.g. intra-alveolar). An

effective fluidity (viscosity) and a positive coefficient of spreading allow these molecules to
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spread evenly over a surface. For example, they could spread homogeneously into the entire

lung, and potentially form a barrier around target cells to seal and prevent further growth of

a malignant disorder. The water–PFC interfacial tension is around 60 mN/m (14), which

explains the difficulty in preparing stable emulsions. The stability of the emulsion is directly

proportional to the water solubility. PFCs also have a high density and compressibility,

which provide a natural cushion between opposing surfaces to reduce the contact force, as

well as high volatility and low polarizability. The combination of these properties with their

low water solubility makes them ideally suited for use as injectable emulsions of PFC-

containing gas, for example, in contrast agents for ultrasound imaging, or for the intravenous

delivery of hyperpolarized gases in perfusion and functional MRI studies (15).

The main applications for PFCs as exogenous contrast agents for 19F NMR can be divided

into two categories. First, PFCs can be detected and quantified directly by 19F NMR.

Second, PFCs can be used for the indirect observation of molecular level changes in

biologically important molecules or environmental factors as a result of their influence on

fluorine nuclei. The first group of applications, based on the direct detection of fluorinated

molecules, includes functional lung imaging (using gases such as SF6, C2F6, CF4, C3F8 and

liquid PFCs), cell tracking using PFC emulsions and in vivo monitoring of fluorinated drugs

and their metabolites. An example is the use of 19F MRS techniques for the detection of 5-

fluorouracil (5-FU), a chemotherapeutic agent (16). As a result of the low tissue

concentration of 5-FU (in the μmol/g wet weight range) and fluorine-containing

pharmaceuticals used at clinical doses, the sensitivity of 19F MRS and MRI depends

primarily on the number of fluorine atoms present in the compound and the dose, in addition

to the conventional factors that determine SNR, such as the magnetic field strength, detector

design, etc.

The second group of applications includes examples in which the fluorine molecules

respond to a specific parameter, such as the presence of ligands. Fluorinated compounds are

capable of detecting changes in oxygen, H+ (pH), Na+, Ca2+ and Mg2+concentrations in

biological tissues, and may therefore provide proxy measurements of these (17). Of

particular interest are the paramagnetic relaxation effects imparted by oxygen on 19F nuclei,

which cause changes in the spin–lattice relaxation rates (1/T1), and can alter the chemical

shift of one or more of the fluorine moieties. Changes associated with temperature and blood

flow in the microenvironment may also affect the 19F signals. In addition to the limits

imposed by the low in vivo 19F concentration of the agent being used, the utility of the 19F

agent as a proxy largely depends on the magnitude and sensitivity of the changes that are

elicited.

Also included in this second group is the use of fluorinated emulsions in 1H MRI

applications. One type of PFC, PFOB, has been shown to be an effective negative contrast

agent for delineating the bowel and improving bowel wall visualization (18,19). The bowel

lumina appear homogeneously black on T1-and T2-weighted MR images because of the

insolubility of PFOB in water and intestinal secretions. Paramagnetic nanoparticles that

combine gadolinium diethylenetriaminepentaacetate (Gd-DTPA) and PFC have also been

developed for molecular imaging of fibrin (20), and as a platform for delivering a very large

number of Gd3+ ions to targeted binding sites (21).

PREPARATION AND CHEMICAL STABILITY OF PFCs

The PFCs used in biomedical applications are chemically inert. They are derived

synthetically, consist primarily of carbon and fluorine atoms, and are typically clear,

colorless liquids that are insoluble in water. They must therefore be emulsified for clinically

relevant applications involving intravenous injection, intraperitoneal injection, tissue
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intraparenchymal injection or administration in oxygen-permeable biodegradable and

biocompatible capsules. The process is analogous to the routine preparation of lipid

emulsions for parenteral nutrition. Despite the intrinsically low solubility, diffusivity,

density and interfacial surface tension of PFCs, it is possible to generate stable nanoparticles

of these compounds using a high-pressure micro-emulsifier. The latter deagglomerates and

disperses submicrometer PFC particles uniformly in the fluid. This results in a smaller

particle size compared with unpressurized emulsification, which, in turn, permits higher

PFC concentrations – 40% and higher – to be achieved. The nanoparticles obtained with this

procedure typically have a very small size (~ 200 nm). However, the stability of

commercially available PFC preparations varies greatly, and there is a direct relationship

between PFC stability and the clearance time from the body.

From a design standpoint, most clinical applications require stable preparations that are

rapidly cleared from the body. For this reason, PFCs are commonly combined in commercial

products to optimize the stability and clearance profile. For example, perfluorodecalin

(PFDC) is rapidly cleared from the body, but forms emulsions that have poor stability.

However, perfluorotripropylamine (PFTPA) forms stable emulsions that have a long

retention time. By combining these two agents, emulsions such as Fluosol® achieve both a

clinically acceptable stability and clearance profile. Nevertheless, Fluosol® remains stable

for only 6 h after PFDC and PFTPA are mixed. Consequently, PFDC and PFTPA emulsions

are stored frozen in separate solutions, and the solutions are thawed and mixed immediately

prior to use. For practicality and other reasons, this version of the product was replaced in

1994 by a new PFDC/PFTPA preparation, Oxygent®, that has proved to be much more

stable, and does not require frozen storage.

As noted above, the most useful and versatile formulations are a compromise between body

clearance, emulsion stability and, for MRI/MRS applications, the maximum number of

chemically equivalent fluorine atoms. Perfluoropolyethers (PFPEs) (e.g. containing 12, 15

or 18 crown ethers) are excellent 19F MRI contrast agents as they provide a single sharp

resonance, eliminating any chemical shift artifact, maximizing the SNR and allowing an

unambiguous identification of the PFC. Nanoparticle preparations of some of these agents

are thermodynamically stable (they do not coalesce) and can be prepared using several

different types of emulsifying agent that form a film around the dispersed globules of PFC.

Typical emulsifying agents are surface-active agents, adsorbing at oil–water interfaces to

form monomolecular films that reduce the interfacial surface tension. A large variety of

agents have been used to improve the stability (lecithin is one of the most commonly used)

and to increase the effective encapsulation of PFCs. In practice, combinations of emulsifiers

are commonly used, rather than a single agent (e.g. safflower oil and lecithin, cholesterol

and lecithin, etc.) (22,23). This enables the modification and optimization of the balance

between the hydrophilic and lipophilic parts of the emulsifier or mixture of emulsifiers.

The addition of other agents to a PFC emulsion can improve its performance from an MRI/

MRS standpoint, but can also affect the stability of the preparation. For example, adding a

paramagnetic element that reduces the 19F NMR T1 values improves the signal intensity and

SNR efficiency, by enabling the acquisition of a larger number of scans with a shorter pulse

sequence repetition period (TR) in the same scan time. Adding fluorescent lipids, cationic

transfection reagents (lipofectamine) or targeted ligands to PFCs provides a means to detect

the agents by fluorescence microscopy, to enhance cellular labeling or to perform molecular

imaging, respectively (21,23,24). A number of drugs, including antibacterial agents,

vasoactive bronchodilators, mucolytic agents, glucocorticoids, antineoplastic agents and

DNA, have also been incorporated into PFC emulsions without reducing their stability (25).

These drugs offer a lot of ‘bang for the buck’ as the PFC phase can contain a high payload

of hydrophobic drugs.
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GAS SOLUBILITY OF PFCs

As mentioned earlier, emulsions of these molecules can dissolve significant quantities of

relatively small molecules that have a low cohesivity, i.e. gases. Emulsified PFCs can

transport and deliver oxygen, CO2, N2, NO, etc., with a solubility in the PFC that is

independent of temperature. Unlike hemoglobin, which binds O2 through a covalent bond to

its iron atoms, oxygen is not bound but dissolved by the PFC carrier. The oxygen-carrying

capacity of an emulsified PFC, such as PFDC/PFTPA, is around three times that of blood at

25°C, and the CO2-carrying capacity is approximately four times greater than that for

oxygen.

The dissolved oxygen has paramagnetic properties that affect the relaxation rate, R1 = 1/T1,

of fluorine nuclei in linear proportion to the dissolved oxygen concentration, although the

temperature and magnetic field also play a role (17). This allows the MRI monitoring of

partial pressure of O2 (pO2) effects, including the possibility of using 19F as a proxy for

determining the tissue oxygenation state, or even for generating a proxy image of the oxygen

distribution in an organ. When perfluorinated compounds are used as contrast media in these

applications, their distribution reflects the region of blood flow and tissue perfusion,

providing selective imaging of influx or efflux analogous to that of a radiographic tracer.

The selective imaging of blood flow and perfusion has potential applications for the

identification of ischemic and/or nonperfused necrotic tissue. The high solubility of other

inert gases, such as xenon (129Xe), in PFC emulsions enables its use as a vehicle for the

intravenous delivery of hyperpolarized gas for high-SNR, high-resolution imaging of the

perfused tissue (15).

The high gas solubility in PFC emulsions has been used for other applications, such as an in

vivo nitrous oxide (NO) sink (26). Certain PFC formulations have been Food and Drug

Administration (FDA)-approved for human use in media that support microbubbles that

reflect sound waves and serve as contrast agents for ultrasound imaging. These are currently

in use for the diagnosis of cardiac wall motion abnormalities. The dissolved gas bubbles are

small enough to pass through the capillary beds, and are not destroyed when injected into

the circulation, as usually happens with nonemulsified air bubbles.

19F MRS OF PFCs

Most NMR applications in MRI and MRS use the 1H signal from endogenous tissue water

and mobile hydrocarbons, but other nuclei have also been employed for MRI. 19F MRI

enjoys the advantages of the nucleus’ high gyromagnetic ratio (γ = 40.05 MHz/T), spin 1/2,

100% natural isotopic abundance and the fact that it is not a particularly rare (or expensive)

element. The similarity of 19F’s γ to that of 1H is another advantage, to the extent that

measurements can often be performed with the same MRI scanner as used for

conventional 1H MRI, with the same receiver electronics but retuned radiofrequency coils.

Fluorine also has a similar van de Waals’ radius to hydrogen (1.2 vs 1.35 A °). When a

single hydrogen atom is replaced with fluorine, the change typically does not cause

significant conformational changes, although fluorination usually increases the lipophilicity

and thus enhances the bioavailability of new drugs. However, as noted above, the

substitution of a large number of fluorine atoms in a specifically designed molecule

influences the structure and function of this new molecule. Fortunately, for NMR, PFCs

have magnetic susceptibilities comparable with that of water.

For 19F MRS, the most challenging aspect is quantification, for both technical and biological

reasons (the concentrations of some drugs are prone to underestimation because some, such

as fluoxetine, are highly bound to plasma proteins, and thus have very short T2 values and

are ‘MRS-invisible’). Most of the in vivo MRS data have been generated with surface coils,
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which have associated with them the problems of a rapid loss in SNR with distance from the

surface coil, and nonuniform excitation fields, both of which hamper quantification. Some

common methods that facilitate quantification are the use of adiabatic excitation pulses, coil

sensitivity mapping techniques and the use of concentration references. Traditional

decoupling and nuclear Overhauser enhancements have been applied for quantitative carbon

(13C) and phosphorus (31P) MRS and can also be used to improve 19F SNR (27), although

the differences between the gyromagnetic ratios of 1H and 19F are small. All MRS methods

are sensitive to local magnetic field variations because of tissue magnetic susceptibility.

Magnetization transfer methods may also be applied to investigate the fraction of fluorinated

compounds that are bound. The detection limits depend on the particular application. For in

vivo studies, applications requiring high spatial localization of 19F signals from low-

concentration fluoro compounds may not be feasible in practical or tolerable scan times.

19F MRS OF DRUG METABOLISM

19F MRS provides a highly specific tool for the investigation of drugs and their metabolic

byproducts that contain fluorine atoms, which is also potentially suitable for quantification.

The most commonly used drugs in 19F NMR are listed in Table 1. Their relative 19F SNRs,

when present at a tissue concentration of 1 μmol/g wet weight, are also listed.

The study of such drugs by 19F MRI/MRS tends to focus on their chemical structure,

anabolism, catabolism, distribution and pharmacokinetics in vivo and in excised tissues. As

an example, 19F MRS has been used widely in pharmacokinetic studies of the anticancer

drug 5-FU. 5-FU was proposed as a prototypical antineoplastic agent (28), with the first

MRS work using this drug conducted in the late 1970s (29) and early 1980s (30). Since then,

numerous studies in both animal models and in humans, and in different tissues and

biological fluids, including plasma and urine, have been presented (31). These studies have

facilitated an understanding of the metabolic aspects and cytotoxic activity of this drug.

As an anticancer agent, 5-FU has been applied in concomitant radiotherapy and

chemotherapy of different neoplastic diseases, particularly for neoplasms of the colorectal

system, the head and neck, the trunk and some breast cancers (11,12,31–37). As a result of

the intrinsic toxicity of 5-FU, different pro-drugs (a drug in its nonactive form) of the

molecule have been designed to pass intact through the gastrointestinal tract, ultimately

localizing and selectively converting to 5-FU in the malignant tissue, based on the higher

activity of thymidine phosphorylase (38). Capecitabine is one such protodrug designed in an

oral formulation to provide higher accumulation of 5-FU in the tumor, whilst reducing the

exposure of healthy tissues to 5-FU.

19F MRS OF EXTRACELLULAR pH AND CATIONS IN CELLS AND TISSUES

19F MRS is also useful for observing biological processes in complex systems, such as the

maintenance of intracellular pH in different cell lines (39), and intracellular free calcium and

magnesium levels via fluorinated chelates. A good exogenous pH indicator must have

favorable pharmacokinetics, i.e. an ionizable group with a pK value in the physiological

range, good sensitivity and specificity, low toxicity, efficient cell penetration, fast exchange

between acid and base forms, but slow exchange across cell membranes, and a large

chemical shift range (10,40–43). The intracellular uptake and concentration must be high

enough to provide adequate SNR from just the intracellular space. A number of pH

indicators have now been investigated (42).

The intracellular concentration of different cations can also be obtained from the change in

the 19F NMR spectrum of an indicator cation to which it is bound (44). Ca2+ plays an

important role as a second messenger in living cells. 19F-based methods have been proposed
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for the determination of cytosolic calcium in cells and tissues. One of the more exciting

approaches for the detection of this cellular cation is the use of 1,2-bis(o-amino-

phenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) (45). Here, the 19F-NMR Ca2+

indicator is derived from its symmetrically 5,5-substituted difluoro-derivative (FBAPTA)

(46), which exhibits a chemical shift response on binding calcium. One of the critical issues

for intracellular interrogation of any reporter molecule is the loading of the reporter

molecule into cells. As tetracarboxylate does not penetrate the cell, a lipophilic agent, such

as acetoxymethyl, is used. Other 19F-bearing ligands have been proposed for ions such as

Na+, Mg2+, Zn2+. Pb2+, etc., as recently reviewed in ref. (17).

FUNCTIONAL LUNG 19F MRI USING GASES AND VOLATILE COMPOUNDS

19F MRI of the lungs was reported in the literature in the early 1980s (47). Recent interest

may have been rekindled by new applications involving hyperpolarized noble gases. The

possibility of imaging 19F gases directly, together with the unique properties of these

compounds, has enabled the measurement of several functional parameters, such as airspace

size (via the apparent diffusion coefficient), regional oxygen partial pressure, ventilation

distribution, ventilation/perfusion ratios and gas exchange, including oxygen uptake (48–

52).

Despite the fact that fluorinated gases offer much less SNR when compared with

hyperpolarized gases, fluorinated gases are easy to manage, can be mixed with oxygen, do

not involve a polarizing apparatus and are low in price, all of which are advantageous in the

context of functional lung MRI performed with inert gases. In particular, fluorinated gases at

thermal equilibrium polarization, such as sulfur hexafluoride (SF6), hexafluoroethane

(C2F6), tetrafluoromethane (CF4), and fluoropropane (C3F8), have recently been presented

as alternatives to hyper-polarized gases that can be mixed with 20% oxygen for continuous

breathing without requiring a hyperpolarization apparatus, resulting in a considerable

advantage in cost and effort (see Table 2).

SF6 is one of the more widely used fluorinated molecules in the clinical setting, in addition

to the anesthetic halothane [CF(3) CHBrCl]. It has been used in clinical trials as part of a

multiple inert gas elimination technique, and as a microbubble contrast agent in ultrasound

imaging (Sonovue®). It is a heavy molecule (146.06 g/mol) with six chemically equivalent

fluorine atoms. Its low solubility in water is similar to that of 3He (49). Although its higher

fluorine count per molecule compared with the MRI-active nuclei on other inhaled gases is

an advantage, its very short T2 and T1 relaxation times of around 2 ms, together with a much

lower diffusivity than that of 3He, make 19F MRI applications employing SF6 gas very

challenging, especially with respect to system gradient and bandwidth requirements. Despite

the short relaxation times, some dynamic (53) and diffusion-weighted (48,54) images have

been successfully recorded from animal studies.

The use of fluoroethane (C2F6, Fig. 2) and fluoropropane (C3F8) gases, with relatively

longer T1 and T2 values of 10 and 20 ms, respectively, seems more promising and more

suitable than SF6 for measurements of diffusion in human lungs with 19F MRI (50,55,56).

Indeed, fluoropropane (Optison®– an injectable liquid suspension) is currently used for

ultrasound imaging of the internal organs and other anatomical structures in humans.

USE OF PFCs AS BLOOD SUBSTITUTES AND AEROSOLS

As noted above, physiologically important gases, such as oxygen and carbon dioxide, are

highly soluble in many PFCs, and do not react with them. These physical properties,

together with the reduced need for allogeneic blood transfusion and the facilitation of
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oxygen transfer from red cells to the tissue, are central to the utility of PFC emulsions as

blood substitutes (see Table 3).

High oxygen levels can also limit the use of PFC blood substitutes to the extent that their

oxygen transport characteristics differ from those of blood (57,58). The 19F signals of a

number of biological PFCs exhibit R1 values that depend on oxygen content, thereby

potentially providing a measure of the percentage oxygenation. Thus, targeted cell-specific

PFC-bearing nanoparticles could potentially provide a means of assessing regional oxygen

content, to the extent that the PFC is in contact with the oxygen and the nanoparticle itself

does not interfere with the interaction.

PFCs, alone or in a mixture with surfactants, have been used for liquid ventilation (59,60)

and drug delivery during liquid ventilation (61). These kinds of applications have been

investigated for possible therapeutic use in the treatment of various respiratory diseases, and

were the subject of a recent symposium on PFC applications (62,63). As mammals use gas

rather than liquid ventilation, PFC vaporization has been developed for the respiratory

circuit. Aerosolization appears to be an efficient way to facilitate pulmonary gas exchange in

acute respiratory distress syndrome (64).

SENSITIVITY AND DETECTION LIMITS FOR 19F MRI OF PFCs

Organofluoro compounds are rare in nature, which makes the interpretation of studies on

how exogenous organofluorides behave in vivo less complicated. However, the

concentrations of PFCs normally introduced into biological systems are low, and thus

typical 19F MRI SNR is low when compared with 1H MRI (see Tables 1–3). Although the

use of large quantities of highly fluorinated fluoro compounds can yield high-quality 19F

images, high doses (more than 1–5 g/kg for PFCs) may be limited in humans by safety

concerns. To date, MRS studies in a whole-body scanner suggest a minimum detectable

limit of 19F at 1.5 T of about 30 μmol/g wet weight in a volume of about 33 mL in 6 min

(65), based on surface coil measurements following the infusion of 5-FU chemotherapy.

This concentration is difficult to achieve with systemic agents, or by passive accumulation

of in vivo agents. Other authors have reported a detection threshold for spectroscopic 5-FU

quantification of about 5 nmol/g in 0.5–1.2-g samples at 11.7 T, albeit with a 1-h data

acquisition (38). Our own MRI experience with perfluoro-crown ether (PFCE), which

contains 20 chemically equivalent 19F nuclei, indicates that the sensitivity of this compound

in vivo in a 9.4-T magnet is around 30 μmol/g wet weight in a 4-min acquisition time in a

volume of 60 μL (66). Partlow et al. (67) have made specific measurements of the detection

limit of PFC-labeled cells using 19F MRS and MRI at high (11.7 T) and low (1.5 T) fields.

The lower detection limit was found to be 2000 cells for PFCE- and 10,000 cells for PFOB-

labeled cells for in vitro 19F MRS, and around 6000 PFCE-labeled cells for in vitro 19F

MRI. Quantification of PFCs revealed intracellular concentrations of up to 3 pmol per cell

for a 12-h incubation, without the help of any transfection agent.

Given the linear relationship between signal intensity and PFC concentration (as well as

voxel size), it is possible to dramatically increase the final PFCE concentration using

targeted nanoparticles containing multiple PFCE molecules. The specific binding of such

targeted nanoparticles can increase the local concentration above the minimum detection

limit, potentially enabling their use as contrast agents on clinical systems with clinically

relevant scan times (23).

OPTIMAL 19F MRI PULSE SEQUENCES FOR PFCs

19F MRS and MRI have been demonstrated with compounds that exhibit several peaks in

their NMR chemical shift spectra (e.g. PFTA, PFOB). For fluoro compounds, the 19F
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chemical shift dispersion (in Hz) is typically larger than that of 1H. When the 19F signal is

divided among several peaks, the 19F MRI SNR may be reduced when compared with a

monochromatic spectrum. In addition, if the bandwidth per 19F image pixel is less than the

chemical shift dispersion, chemical shift artifacts can arise, wherein the signal from each

peak is shifted into a different voxel, creating a ‘ghost’ image, and/or the location of a

selected slice may be displaced in space to a different extent for each moiety (Fig. 1). This is

the case for PFOB and PFTA, thus complicating the use of these molecules. Chemically

selective imaging pulse sequences can be employed to circumvent the chemical shift artifact

problem by excluding the signals from the other peaks, but this does not compensate for the

SNR loss. In addition, the relatively short T2 and the further splitting of the resonances of

each moiety in some of these molecules as a result of J-modulation (68,69) can further

reduce SNR through signal decay and/or increased receiver bandwidth requirements, even at

short TE.

Another problem for 19F MRI acquisition is the relatively long T1 relaxation times of many

fluorinated molecules (1–4 s), which necessitates lengthy TR intervals for the recovery of

appreciable longitudinal magnetization (69,70). This makes time-efficient and clinically

relevant 19F MRI challenging. 19F MRI pulse sequences are typically performed using

ultrafast imaging methods, such as keyhole techniques or echo planar imaging (EPI).

Ultrafast, low-angle, rapid acquisition and relaxation enhancement is utilized where short

TEs are needed, including the use of linear PFPE molecules with small T2/T1 ratios (71), and

is even useful when the T2 relaxation time is not a problem (as is the case with PFCE or

hexafluorobenzene) (69,72). These sequences can easily be combined with an inversion

recovery pulse sequence for T1 measurements to increase their acquisition efficiency.

Although some investigators have proposed the use of paramagnetic contrast agents to

shorten the 19F T1 relaxation times of water-miscible 19F molecules (73,74), this approach is

problematic because most PFCs are immiscible in water. Thus, when 15% w/w Gd-DTPA is

incorporated into a 20% (w/v) PFCE nanoparticle emulsion (as the bisoleate acid Gd-DTPA-

BOA), a small (~ 15%) reduction in T1 is achievable, but is accompanied by a much larger

reduction in T2 (85%), such that the use of long-TE sequences is no longer an option. The

implementation of parallel imaging techniques for 19F MRI also offers scope for improving

the 19F acquisition efficiency in the coming years.

MOLECULAR AND CELLULAR 19F MRI

MRI is able to visualize cells in vivo in real time. When cells are imaged in living animals, it

can provide new insights into the biology of cell trafficking and migration. An example is

the homing of white blood and hematopoietic cells in cancer and immunological diseases.

Because MRI methods are noninvasive, they can be applied repeatedly to monitor targeted

cells and cellular processes. For cells to be visualized by MRI, they generally must be

labeled to enable their discrimination from surrounding tissue.

For 1H MRI, superparamagnetic iron oxides (SPIOs) offer one method of magnetic labeling

that disturbs the local magnetic field near excited spins (75). The proton signals from water

close to SPIO particles are seen as regions of hypointensity, acting as signal voids. However,

it is sometimes difficult to discriminate between targeted molecules or cells and image

artifacts arising from susceptibility and/or other effects associated with the MRI pulse

sequences. Superparamagnetic contrast agents that can provide a positive signal also exist

with some MRI techniques, such as on- (76) and off- (77,78) resonance saturation. However,

similar problems can arise as those occurring with hypointense contrast.

Another alternative that generates positive contrast is the use of paramagnetic contrast

agents, typically gadolinium chelates, that shorten the T1 relaxation times. Paramagnetic
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contrast agents suffer from a relatively high threshold for detection. Much effort has been

directed towards the development of intracellular labeling methods that allow sufficient

uptake without affecting cellular proliferation or function. Fluorine agents and 19F imaging

could present opportunities for labeling with minimal effects on cell proliferation, function

and maturation, whilst permitting 19F label-based quantification. A recent article provides a

comparative evaluation of the use of various fluorine-containing nanoemulsions for MRI

cell tracking (79).

One important article demonstrated the first cellular 19F MRI of passively fluorine-labeled

macrophages, which appeared as ‘hotspots’ in the central nervous system in experimental

allergic encephalomyelitis (80). This is an animal model for multiple sclerosis which is

characterized by infiltration of the macrophages into the inflamed brain. After induction of

the disease, cells were observed after intravenous injection of a PFCE emulsion at 3 g/kg.

PFCs have also been used to image macrophage infiltration in the infarcted myocardium

(see Fig. 3) (81). This work is similar in concept to 1H MRI studies of the uptake of ultra-

small SPIO particles by macrophages in inflammatory diseases. ‘Hotspot’ 19F MRI of cells

gained renewed interest after Ahrens and coworkers (22,71,82) presented an approach to

‘active’ cell labeling and MRI cell tracking of immune cells in vivo (Fig. 4).

Recently, this approach has been extended further to the tracking of stem cells (66,67).

Using different PFC preparations with different 19F spectral frequencies (as ‘signatures’), it

was suggested that multiple cell populations, labeled differently, could be detected

simultaneously (Fig. 5) (67). Hotspot imaging is analogous to the approaches of other

imaging techniques that employ radionuclides, such as positron emission tomography or

single-photon emission tomography, albeit without the associated hazards of ionizing

radiation. Although hotspot 19F MRI images the labeled cells, anatomical 1H MRI

performed with the same scanner during the same MRI examination is superimposed

without any image registration problems to precisely determine the biodistribution of the

labeled cells. In this respect, MRI has clear advantages over conventional optical and

nuclear imaging techniques.

PFCE has been used recently in different mixtures of lipids to formulate emulsified cationic

and anionic nanoparticles, with and without the lipophilic gadolinium derivative Gd-DTPA-

BOA, and including fluorescent rhodamine to tag different cells (66). Cationic nanoparticles

showed, in all cases, a greater and more rapid uptake than anionic PFCE preparations (Fig.

6) (66). Different amounts of PFCE-labeled cells were injected into each hemisphere of a

mouse brain, and then imaged with 19F and 1H MRI (Fig. 7). It was observed that the

injected PFCE-labeled cells remained viable and were still rhodamine-positive, with no

appreciable reduction in the fluorine signal, at least up to 2 weeks post-injection (66).

A different research area within molecular and cellular MRI is the use of transfected

enzymes (reporter genes) that can convert a pro- (precursor) drug. In this technique, a gene

with specific enzymatic activity is first introduced into tumor or other cells of interest. Then,

a pro-drug is administered and, on internalization of the pro-drug into cells, it is converted

by the transgene into an active drug. This method ensures that the drug will be active only in

the target cells and will not affect other tissues. A similar example involves 5-FU, wherein

yeast cytosine deaminase is introduced into an HT29 colon carcinoma cell line (83) to

convert the precursor 5-fluorocytosine (5-FC) into 5-FU, and elicit a chemotherapeutic

response. The formation of 5-FU, measured in xenografted tumors using 19F MRS, provides

an indication of the efficacy of drug delivery. By this means, 19F MRS might provide a

means of monitoring and optimizing the administration of such pro-drugs to patients for

chemotherapy.
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With regard to the use of 19F probes as ‘smart tracers’ or ‘molecular beacons’, 19F MRS has

been employed to probe the enzymatic activity of a prototype reporter enzyme, β-

galactosidase. This enzyme has been shown to liberate a glycone from the substrate 4-

fluoro-2-nitrophenyl-β-D-galactopyranoside, resulting in a pH-dependent 19F chemical shift

of 5–10 ppm that can be used to measure intracellular pH (84). Other enzymes can be

probed as well. For example, certain proteases (caspase-3), which are overexpressed in

tumors, are able to cleave paramagnetic chelates from fluorinated molecules, thereby

modulating 19F relaxation times and signal intensity (85). Finally, temperature-sensitive

liposomes containing 19F tracers have been developed as beacons for image-guided drug

delivery (86).

In addition to enzymes, fluorinated metabolic substrates are also potential targets of study

that are accessible to 19F MRI or MRS, when present in sufficient concentration. For

example, the distribution of 2-fluoro-[18F]-2-deoxy-glucose, a widely used positron

emission tomography probe for the measurement of abnormal glucose consumption in

tumors and ischemia, has been monitored with 19F MRS after replacing the unstable 18F

atom with 19F (87).

INCORPORATION OF PFCs INTO CELLULAR THERAPEUTIC

BIOMATERIALS

The incorporation of PFCs into biomaterials is attractive for a number of reasons. By

exploiting the various features of PFCs, fluorinated biomaterials can be used to create smart

scaffolds that are capable of producing an oxygen-rich environment whilst permitting the

noninvasive assessment of biological parameters, such as O2 tension, pH and metabolite

concentrations, with 19F MRI. Fluorinated biomaterials, in conjunction with 19F MRI, could

thus provide important information on the delivery and long-term survival of cellular

therapeutics. For these reasons, fluorinated biomaterials show promise for both the

assessment and enhancement of the long-term viability of cellular therapeutics after

transplantation.

To date, the use of fluorinated biomaterials has been limited to PFC-containing

microcapsules. The use of microcapsules to provide the immuno-isolation of cellular

therapeutics has clinical potential for a wide range of diseases that require enzyme or

endocrine replacement therapy. A number of groups have explored the use of PFC-

containing microcapsules. Barnett et al. (88) incorporated PFPE emulsions in alginate/poly-

L-lysine (PLL) microcapsules to enable the assessment of the biodistribution and integrity of

microcapsules with MRI. As PFCs are rapidly cleared from the body when they are no

longer encapsulated, MRI could provide a means of assessing capsule rupture and loss of

immunoprotection.

Other groups have used PFC-containing microcapsules for the determination of the local

oxygen saturation in vivo. The paramagnetic properties of a polar oxygen affect the T1 and

chemical shift of 19F nuclei in proportion to pO2, as noted earlier, potentially enabling the

use of microcapsular PFCs for the serial assessment of pO2 in vivo. The first study of this

type, by Nöth et al. (89), utilized PFC-loaded alginate capsules in conjunction with

quantitative 19F MRI to determine pO2 inside capsules implanted in the peritoneal cavity

and elsewhere in a rat (Fig. 8). Fraker et al. (90) later reported a related method using PFTA.

In addition to providing a means of assessing pO2, PFCs can also increase local oxygen

tension. The ability to increase oxygen availability provides added value for encapsulation

therapy, where many studies have suggested that graft failure occurs because of the lack of

vascular access for the encapsulated cells. This results in the gradual necrosis of implanted
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cells. For this reason, the work of Khattak et al. (91) is particularly relevant. They found that

the incorporation of a PFC emulsion in alginate micro-capsules increased significantly the

viability of an immortalized hepatocyte cell line. They attributed this enhanced viability to

the ability of the PFC reservoir to ‘reload’ itself with O2 from plasma perfusing through the

matrix – analagous to the O2 transfer in emulsified PFCs that are currently being used for

surgical applications (25). By acting as oxygen sinks, PFC-containing micro-capsules may

have broad applications for increasing the viability of many encapsulated cell types.

In addition to increasing local oxygen concentrations, PFCs may enhance the immuno-

isolation properties of alginate micro-capsules by modulating the immune response. In vitro

studies have suggested that PFOB reduces cytokine release by human alveolar macrophages

and attenuates oxidative injury in rat pulmonary artery endothelial cells. Furthermore,

neutrophil adhesion to lung epithelial cells and subsequent cytolysis are inhibited by PFOB

during activation with a pro-inflammatory stimulus (92), and PFOB attenuates neutrophil

adhesion to activated endothelial cells (93). For these reasons, PFC-loaded alginate capsules

could attenuate the rejection of cellular therapeutics in immunocompetent hosts.

As the incorporation of PFCs is not limited to alginate micro-capsules, further exploration of

fluorinated biomaterials may prove to be attractive in tissue engineering. The unique

behavior of PFCs, including their hydrophobic and lipophobic character and extreme

inertness, nevertheless presents some significant design obstacles for direct incorporation

into polymers. For this reason, only emulsified PFCs have been incorporated into

biomaterials so far. Nevertheless, the many potential advantages of directly fluorinated

biomaterials warrant future research in this area.

PHARMACOKINETICS AND TOXICITY OF PFCs

PFCs are chemically inert and stable compounds that are not metabolized and are excreted

by normal clearance mechanisms, such as phagocytosis by the reticuloendothelial system,

with eventual elimination by exhalation and bowel excretion (94). Most fluorocarbons

within the molecular weight range of 460–520 Da are biologically inactive, and exhibit no

significant toxicological risks, carcinogenicity or mutagenicity (23,25,95,96). The inertness

of most of these compounds is an attractive property in many applications. However,

environmental monitoring suggests that some degradation of PFCs into other persistent

fluorinated chemicals can occur, and may demand recovery procedures, particularly for

applications such as partial liquid ventilation (97).

PFCs for medical applications must be consistently prepared with high purity on a cost-

effective basis that is typically large scale (25). Ideally, they should be excreted rapidly,

which depends on their lipid solubility – the higher the better. This property is important for

PFCs intended for intravascular use. Fluorocarbons containing other chemical elements,

such as a terminal bromine atom, tend to be excreted more rapidly than predicted solely on

the basis of their molecular weight (14). PFOB has been the subject of much of the research

into PFC emulsions to date. Another factor to consider is the ease with which stable

emulsions can be formed and sustained, as preparations must be able to withstand heat

sterilization when required by regulatory agencies, such as the FDA (25), although

irradiation or sterile filtration may be suitable alternatives.

The toxicity of organofluorinated compounds follows the same general principles with

regard to the toxicity of drugs: it depends on the mechanism of action of the drug and the

molecules generated by its metabolism, if any. Although not providing evidence of

nontoxicity, when PFTA, PFOB or PFCE is injected into an animal, there is no significant

difference between the in vivo and in vitro 19F spectra of these molecules, consistent with

their being resistant to metabolism, at least in the short term. However, another feature that
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is often attributed to organofluorine compounds is their activity on the P450 enzyme system,

which is important, as it relates to the elimination of many other drugs (98).

Organofluorinated compounds seem to be associated with greater liver damage and interfere

with thyroid hormones, when compared with their corresponding nonfluorinated analogs.

Highly fluorinated (carbon) compounds are not miscible with either aqueous or organic

solvents. The smaller molecules tend to be cleared rapidly from the circulation, with brief

retention in the mononuclear phagocyte system, mainly in the liver, spleen and bone

marrow. PFTPA forms stable emulsions, but has a long retention time. Emulsions have been

prepared with PFDC, which is rapidly cleared from the body, to take advantage of both

effects.

PFCE and PFOB have been emulsified with pure lecithin, forming stable emulsions with

small particle sizes (0.1–0.2 μm in diameter). Lecithin-based (and pluronic-based) emulsions

show moderate inhibition of endotoxin-induced cytokine production, although they also

cause substantial cytotoxicity in phagocytic cells after 24 h of incubation. After intravenous

administration, PFC particles are taken up by the reticuloendothelial system, and evaporate

through the lung, an elimination process that does not involve the breakdown of its chemical

structure. Reports from a phase I clinical safety trial in healthy volunteers receiving PFOB

(Table 2) indicated that the PFC emulsion does not affect coagulation (99,100).

The degradation products of some widely used fluorine-containing household chemicals

(wetting agents, lubricants, corrosion inhibitors, insecticides, cosmetics, fire retardants and

surfactants), such as perfluoro-octanoic acid, are known to induce peroxisome proliferation

in hepatocytes, as well as considerable changes in enzymatic activity (101). The C–F bond is

essentially xenobiotic and has an extremely high stability, making it resistant to degradation,

even in volatile forms such as Freon. Fluorocarbons can accumulate in human tissues when

inhaled, ingested or given intravenously. The length of time they remain in the body

depends on their molecular weight and vapor pressure (volatility): the more volatile they are,

the shorter their half-life, which can range from minutes to years. Indeed, evidence exists

that there is long-term retention of some PFCs by the reticuloendothelial system (102). The

major predictors for the diffusion of small molecules across cellular membranes are

lipophilicity and molecular weight. The incorporation of fluorine into a drug can increase its

lipophilicity and enhance its absorption into biological membranes. The small covalent

radius of fluorine can facilitate the docking of drugs with their receptors. When the

molecular weight of the fluorinated version of one drug is not significantly altered, passive

diffusion should be comparable with that of the nonfluorinated form.

One fluorinated drug, fluoxetine hydrochloride (Prozac®), is a widely prescribed

antidepressant in the world today. Fluoxetine is a potent inhibitor of serotonin. The brain

tends to accumulate these agents at levels that are an order of magnitude higher than serum

levels because of their lipophilicity and pH trapping in acidic vesicles. Based on data from

22 patients treated with fluoxetine, the brain concentration of the drug continues to increase

long after its clinical effects are manifest, leveling off some 6–8 months after therapy

commences (103). The drug accumulated to about 20 times the plasma level in these

patients, although the brain concentration was not correlated with the clinical response. The

study showed that, even 3.5 weeks after the end of drug therapy, a significant 19F fluoxetine

signal could be observed in the brain, suggesting a very long washout time. In another study,

a weak correlation of fluoxetine level with positive clinical response was found in patients

with social phobia (104).

Fluoxetine metabolizes to the therapeutically active compound norfluoxetine in the brain.

Because the 19F chemical shift of norfluoxetine is very close to that of fluoxetine, the two
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compounds are not resolved in vivo. In vitro 19F NMR studies of the extracts of both human

and rat brain confirm that the in vivo signal arises roughly equally from fluoxetine and

norfluoxetine.

CONCLUSIONS

As a result of their unique physicochemical properties, there is increasing interest in the use

of fluorinated compounds in 19F MRI and MRS to serve as biomedical contrast agents,

biomarkers for monitoring the local physiological environment and indicators of therapy

delivery vehicles, ranging from chemotherapeutic agents to cells to nanoparticles, in both

experimental animal models and human studies. Some of these applications are already

being used in patients, whereas others are on the verge of introduction to the clinic. Most of

the recent studies have been performed at higher magnetic fields (1.5 T and above), as the

low SNR remains a challenge because of the intrinsically low 19F concentrations in vivo.

The recent development of targeted and improved nanoparticle formulations with high

payloads offers new promises for 19F MRS and MRI applications in molecular and cellular

imaging.
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Figure 1.

The first 19F images from 1977 (1). (a) 19F MRI of three tubes of 1.4 M NaF with resolution

of about 0.13 T0.13 T3 mm3. (b, c) 19F MRI of a perfluorocarbon (PFC),

perfluorotributylamine, in a star-shaped ‘Union Jack’ phantom made from 2-mm (diagonal)

and 6-mm tubes. The resolution is halved to about 0.6 T0.6 mm2. All images were acquired

in about 400 s at 0.7 T using a steady-state free-precession (SSFP) MRI sequence (TR of

several milliseconds). In (c), the image bandwidth per point is reduced, resulting in signal-

to-noise ratio (SNR) loss and a ‘ghost’ image or ‘chemical shift artifact’ from the two

chemically shifted moieties of this PFC, which are about 6 ppm apart. The two peaks are

seen directly when the gradient in the vertical direction is switched off in the inset (d).

Adapted, with permission, from Holland et al. (1).
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Figure 2.

Post-mortem 19F MRI of lung gas density using C2F6. Axial images (a) were acquired

within 2 min and coronal images (b) were acquired within 3 min using a 4.7-T magnet.

These images show excellent quality similar to that obtained with hyperpolarized gases,

although with much more accumulation.
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Figure 3.

Infiltration of perfluorocarbons (PFCs) after myocardial infarction as detected by in vivo 19F

MRI. (a) Anatomically corresponding 1H and 19F images from the mouse thorax recorded 4

days after ligation of the left anterior descending coronary artery, showing accumulation

of 19F signal near the infarcted region (I) and at the location of surgery where the thorax was

opened (T). PFCs were injected at day 0 (2 h after infarction) via the tail vein. (b) Sections

of 1H images superimposed with the matching 19F images (red) acquired 1, 3 and 6 days

after surgery (post OP) indicate a time-dependent infiltration of PFCs into injured areas of

the heart and the adjacent region of the chest affected by thoracotomy. At day 4, an

additional bolus of PFCs was injected to compensate for clearance of the particles from the

bloodstream after 3 days. Subsequent histology demonstrated that the uptake of PFCs had

occurred in cells of the monocyte/macrophage lineage. Reproduced, with permission, from

Flogel et al. (81).
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Figure 4.

In vivo 19F MRI of perfluoro-crown ether (PFCE)-labeled dendritic cells in a mouse. (a)

Mouse quadriceps after intramuscular injection of PFCE-labeled cells. From left to right

are 19F, 1H and a composite 19F/1H image. (b) Composite image of dendritic cell migration

into the popliteal lymph node following a hind foot pad injection. (c) Composite image

through the torso following intravenous inoculation with perfluoropolyether (PFPE)-labeled

cells. Cells are apparent in the liver (L), spleen (S) and, sporadically, lungs (Lu). Electron

micrograph of a labeled fetal skin-derived dendritic cell line at a low magnification (d) and a

higher magnification (e). Particles (100–200 nm) appear as smooth spheroids. Arrows show

a typical multiple-membrane compartment enclosing these particles. Adapted, with

permission, from Ahrens et al. (22).
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Figure 5.

Localization of labeled cells after in situ injection. (a) To determine the utility for cell

tracking stem/progenitor cells labeled with either perfluoro-octyl bromide (PFOB) (green) or

perfluoro-crown ether (PFCE) (red), nanoparticles were locally injected into mouse thigh

skeletal muscle. (b–d) At 11.7 T, spectral discrimination permits the imaging of the fluorine

signal attributable to ~ 1 × 106 PFOB-loaded (b) or PFCE-loaded (c) cells individually

which, when overlaid onto a conventional 1H image of the site (d), reveals PFOB- and

PFCE-labeled cells localized to the left and right leg, respectively (broken line indicates 3 ×

3-cm2 field of view for 19F images). (e, f) Similarly, at 1.5 T, 19F image of ~ 4 × 106 PFCE-

loaded cells (e) locates to the mouse thigh in a 1H image of the mouse cross-section (f). The

absence of background signal in 19F images (b, c, e) enables unambiguous localization of

PFCE-containing cells at both 11.7 and 1.5 T. Reproduced, with permission, from Partlow et

al. (67). PFC, perfluorocarbon.
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Figure 6.

Fluorescence microscopy of cationic (a, c) and anionic (b, d) perfluoro-crown ether (PFCE)-

labeled C17.2 mouse neural stem cells after 4 h of incubation with 2.4 mM PFCE. (a, b)

Rhodamine fluorescent (red) and phase contrast overlay image of cells immediately after 4 h

of incubation. (c,d) Rhodamine fluorescent images of cells cultured for an additional 18 h

after removal of PFCE at 4 h of incubation. Note the transport and intracellular

redistribution of label between the two time points. Scale bars: 100 μm in (a, b) and 50 μm

in (c, d). Reproduced, with permission, from Ruiz-Cabello et al. (66).
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Figure 7.

In vivo MRI of transplanted C17.2 neural stem cells, with the 19F signal superimposed on

the 1H MR images. (a–c) MR images at 1 h (a), 3 days (b) and 7 days after injection of 4 ×

104 (left hemisphere, arrowhead in a) or 3 × 105 (right hemisphere, arrow in a) cationic

perfluoro-crown ether (PFCE)-labeled cells. (e, f) Corresponding histopathology at day 7

with phase contrast (e) and anti-β-gal immunohistochemistry (f) demonstrates that implanted

cells remain viable and continue to produce the marker enzyme. In (f), the right arrow

indicates cells migrating from the injection site into the brain parenchyma. (d) MR image of

a different animal at 14 days after injection of equal amounts of 4 × 105 C17.2 cells in both

hemispheres, demonstrating the persistence of the 19F signal for 2 weeks. (g) Corresponding

histopathology showing rhodamine fluorescence from PFCE-labeled cells co-localizing with

the 19F signal. Scale bar, 500 μm. Reproduced, with permission, from Ruiz-Cabello et al.

(66).
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Figure 8.
19F (a) and 1H (b) images of a 2-mm transaxial slice through the peritoneal cavity of a rat

showing two alginate capsules loaded with pure trans-1,2-bis(perfluorobutyl)-ethylene

(F-44E), and the calculated 19F pO2 maps of the same slice whilst the animal is breathing

oxygen (c) and air (d). The average pO2 values in the alginate capsules are 9.0 ± 1.4% (left

capsule) and 12.8 ± 2.0% (right capsule) in (c) and 3.2 ± 1.0% (left capsule) and 5.0 ± 1.4%

(right capsule) in (d). Images were acquired on day 1 after implantation. The scale on the

right of (a) and (b) gives the signal intensity in arbitrary units; the scale in (c) and (d) gives

the pO2 values in per cent. 100% corresponds to 760 mmHg. Reproduced, with permission,

from Nöth et al. (89).
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