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Depression is a risk factor for the development of Alzheimer’s disease (AD), and the 

presence of depressive symptoms significantly increases the conversion of mild cognitive 

impairment (MCI) into AD. A long-term treatment with antidepressants reduces the risk to 

develop AD, and different second-generation antidepressants such as selective serotonin 

reuptake inhibitors (SSRIs) are currently being studied for their neuroprotective properties 

in AD. In the present work, the SSRI fluoxetine and the new multimodal antidepressant 

vortioxetine were tested for their ability to prevent memory deficits and depressive-

like phenotype induced by intracerebroventricular injection of amyloid-β (1-42) (Aβ1-42)  

oligomers in 2-month-old C57BL/6 mice. Starting from 7 days before Aβ injection, 

fluoxetine (10 mg/kg) and vortioxetine (5 and 10 mg/kg) were intraperitoneally injected 

daily for 24 days. Chronic treatment with fluoxetine and vortioxetine (both at the dose of 

10 mg/kg) was able to rescue the loss of memory assessed 14 days after Aβ injection 

by the passive avoidance task and the object recognition test. Both antidepressants 

reversed the increase in immobility time detected 19 days after Aβ injection by forced 

swim test. Vortioxetine exerted significant antidepressant effects also at the dose of  

5 mg/kg. A significant deficit of transforming growth factor-β1 (TGF-β1), paralleling memory 

deficits and depressive-like phenotype, was found in the hippocampus of Aβ-injected mice 

in combination with a significant reduction of the synaptic proteins synaptophysin and 

PSD-95. Fluoxetine and vortioxetine completely rescued hippocampal TGF-β1 levels in 

Aβ-injected mice as well as synaptophysin and PSD-95 levels. This is the first evidence that 

a chronic treatment with fluoxetine or vortioxetine can prevent both cognitive deficits and 

depressive-like phenotype in a non-transgenic animal model of AD with a key contribution 

of TGF-β1.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by memory loss, cognitive decline, and 
neuropsychiatric symptoms, such as depression and psychotic 
signs, which strongly interfere with normal daily activities 
(Lanctôt et al., 2017). Di�erent neurobiological and clinical 
links have been found between depression and AD (Caraci et al., 
2018). Depression is a risk factor for the development of AD, 
and the presence of depressive symptoms signi�cantly increases 
the conversion of mild cognitive impairment (MCI) into AD 
(Modrego and Ferrández, 2004). Common pathophysiological 
events have been identi�ed in depression and AD, including 
activation of the hypothalamic–pituitary–adrenal (HPA) axis 
with increased glucocorticoid levels, neuroin�ammation with 
an aberrant tumor necrosis factor-α (TNF-α) signaling, and 
an impairment of transforming growth factor-β1 (TGF-β1) 
signaling (Caraci et al., 2018).

Intracerebroventricular (i.c.v.) injection of oligomers of 
amyloid-β (1-42) (Aβ1-42), the most toxic form of amyloid 
aggregates in AD brain, can induce both memory de�cits 
and depressive-like phenotype in rats (Colaianna et al., 2010; 
Schiavone et al., 2017) and mice (Ledo et al., 2013; Ledo et al., 
2016), while an acute treatment with the selective reuptake 
inhibitor (SSRI) �uoxetine can revert this phenotype (Ledo et al., 
2013; Ledo et al., 2016; Schiavone et al., 2017). Evidence also exists 
that �uoxetine prevents amyloid pathology and reverses memory 
impairment in di�erent AD animal models (Wang et al., 2014; 
Jin et al., 2016). Interestingly, a continued long-term treatment 
with antidepressants is known to reduce the risk to develop AD 
(Kessing et al., 2009; Kessing, 2012). It has been hypothesized that 
a chronic treatment with second-generation antidepressants can 
exert relevant neuroprotective e�ects in depressed MCI patients 
with a high risk to develop AD, but the molecular mechanisms 
underlying the neuroprotective e�ects of antidepressants are not 
yet completely understood (Caraci et al., 2018).

De�cit of TGF-β1 signaling is a common pathophysiological 
event in both depression and AD (Caraci et al., 2018). Among 
SSRIs, �uoxetine increases circulating TGF-β1 levels in depressed 
patients (Lee and Kim, 2006; Sutcigil et al., 2007) and prevents 
Aβ-induced toxicity in neuronal cultures by increasing the 
release of TGF-β1 (Caraci et al., 2016). However, it is presently 
unknown whether a chronic treatment with �uoxetine or other 
second-generation antidepressant drugs can prevent memory 
de�cits and depressive-like phenotype in animal models of AD.

Vortioxetine is a third-generation antidepressant with a novel, 
multimodal, mechanism of action, directly acting on several 
serotonin (5-hydroxytryptamine, 5-HT) receptors (as an agonist 
on 5-HT1A receptor, a partial agonist on 5-HT1B, and an antagonist 
on 5-HT1D, 5-HT3, and 5-HT7) besides inhibiting the serotonin 
transporter (SERT; MØrk et al., 2012). Several preclinical studies 
have clearly demonstrated robust pro-cognitive e�ects of 
vortioxetine in di�erent animal models of depression (Pehrson 
et al., 2015). In particular, vortioxetine displays a superior e�cacy 
on visuospatial memory and depressive-like behavior, than does 
�uoxetine, in aged mice (Li et al., 2015; Li et al., 2017). Recent 
clinical studies also suggest an improved e�cacy of vortioxetine 

on speci�c clinical domains, where SSRIs are less e�ective, such 
as cognitive de�cits associated with major depressive disorder 
(MDD; �ase et al., 2016), in particular in elderly patients 
(McIntyre et al., 2016).

No studies have been conducted so far to examine the 
preclinical e�cacy of vortioxetine compared with �uoxetine 
in treating depressive-like behavior and memory impairment 
induced by the i.c.v. injection of Aβ1-42 oligomers.

�e aim of the present study is to assess whether a chronic 
treatment with �uoxetine or vortioxetine can prevent memory 
de�cits and depressive-like phenotype in a non-Tg model of AD 
obtained by i.c.v. injection of Aβ1-42 oligomers.

We show that a chronic (24 days) treatment with �uoxetine 
or vortioxetine in young (2-month-old) C57BL/6 mice can 
revert both Aβ-induced depressive-like behavior and memory 
impairment with a key contribute played by TGF-β1.

MATERIALS AND METHODS

Animals
Eight-week-old male C57BL/6 mice, from Envigo RMS s.r.l. 
laboratories (San Pietro al Natisone, Italy), were individually 
housed, with free access to chow and water, in an air-conditioned 
room, with a 12-h light–dark cycle and with constant 
temperature (23 ± 1°C) and humidity (57 ± 3%) conditions. 
Animals were le� undisturbed for 1 week before beginning any 
behavioral procedure. All animal experiments were carried out 
in accordance with Italian (D.M. 116192) and EEC (O.J. of E.C.L 
358/1 12/18/1986) regulations on protection of animals. Every 
e�ort has been made to minimize animal su�ering and to reduce 
the number of animals used.

Preparation of Human Aβ1-42 Oligomers 
and i.c.v. Injection in Mice
Synthetic human Aβ1-42 oligomers were prepared according to the 
original protocol of Klein’s group (Gong et al., 2003). Brie�y, the Aβ1-

42 lyophilized peptide, purchased from Bachem Distribution Services 
GmbH (Weil am Rhein, Germany), was dissolved in tri�uoroacetic 
acid (TFA) (1 mg/ml) and sonicated in a water bath sonicator for 10 
min. �en, TFA was evaporated under a gentle stream of argon, and 
1 ml of 1,1,1,3,3,3-hexa�uoro-2-propanol (HFIP) was added to the 
peptide. A�er 1-h incubation at 37°C, the peptide solution was dried 
under a stream of argon and then solubilized again by adding 2 ml 
of HFIP. Finally, HFIP was removed by argon streaming followed by 
further drying in a lyophilizer for 1 h, and then Aβ1-42 was suspended 
in 5 mM of anhydrous dimethyl sulfoxide (DMSO), before dilution 
to 100  μM in ice-cold cell culture medium Dulbecco's Modi�ed 
Eagle Medium/Nutrient Mixture F-12 (DMEM/F12). Samples of 
Aβ1-42 at the concentration of 100 μM were incubated for 72 h at 4°C 
and then stored at −20°C until use.

To obtain a non-transgenic (non-Tg) AD model, animals were 
anesthetized for 7 min with 2.5% iso�urane using a vaporizer 
system and gently restrained only during the injection procedure. 
Aβ1-42 oligomers were administered i.c.v. into the brain. Synthetic 
human Aβ1-42 oligomers were diluted from the stock in DMEM 
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solution (100 μM) in sterile 0.1 M phosphate bu�ered saline 
(PBS) (pH 7.4) at a �nal concentration of 10 µM and then injected 
i.c.v. Sterile 0.1 M PBS was injected i.c.v. into control animals 
(vehicle). Intracerebroventricular injection was used because of 
its simplicity with respect to stereotaxis in mice and to ensure 
di�usion of Aβ1-42 in the whole brain (Maurice et al., 1996; Leggio 
et al., 2016). Two microliters was injected using a microsyringe 
with a 28-gauge 3.0-mm-long stainless steel needle (Hamilton); 
2 µL of the 10 µM Aβ solution corresponds to 20 pmol of Aβ 
monomer equivalent, e.g., 0.09 µg Aβ per mouse brain (weighing 
around 500 mg). Assuming that soluble Aβ oligomers are freely 
di�using in cerebrospinal �uid and then in the brain, their �nal 
concentration would be approximately 0.18 µg/g of tissue.

Drugs and Treatment
Vortioxetine hydrobromide [purity > 98.0% (HPLC)] was 
provided by H. Lundbeck A/S (Denmark) according to the 
MTA N.417394 signed by University of Catania (Department of 
Drug Sciences) and H. Lundbeck A/S and Lundbeck Italia S.p.A. 
Fluoxetine hydrochloride [product number: F132; purity > 98.0% 
(TLC)] was purchased from Sigma-Aldrich (St Louis, MO). Both 
compounds were dissolved in DMSO and further diluted with a 
�nal concentration of 1% of DMSO. Fluoxetine was administered 
intraperitoneally (i.p.) at the dose of 10 mg/kg (100 µL/10 g body 
weight), while vortioxetine was administered i.p. at two di�erent 
doses (5 and 10 mg/kg; 100 µL/10 g body weight). Control 
animals received the vehicle i.p. (100 µL/10 g, DMSO 1%). �e 
�uoxetine dose and the two vortioxetine doses were selected on 
the basis of previous studies where these antidepressant drugs were 
administered in animal models of depression (Pehrson et al., 2015).

Experimental Design
In order to assess the e�ects of �uoxetine and vortioxetine on 
depressive-like behavior and memory impairment induced 
by Aβ oligomers, three di�erent cohorts of animals were used, 
according to the following experimental design.

Experiment 1 (�rst cohort): No i.c.v. injection of Aβ1-42 oligomers 
was performed in this cohort. Mice were randomly divided 
into four experimental groups (n = 7–10 mice per treatment 
group): vehicle, �uoxetine (FLX) 10 mg/kg, vortioxetine (VTX) 
5 mg/kg, and VTX 10 mg/kg. All drugs were administered i.p. 
for 21 days. To assess the antidepressant activity of �uoxetine and 
vortioxetine, mice were tested in the forced swim test (FST) on 
day 22.

Experiment 2 (second cohort): Aβ1-42 oligomers or PBS i.c.v. 
injection was performed in this cohort of mice 7 days a�er the 
beginning of antidepressant treatment (day 7). �e treatment with 
antidepressants lasted until day 26, when all behavioral tests were 
completed. Mice were randomly allocated to �ve experimental 
groups (n = 7–8 animals/group): PBS i.c.v. + vehicle i.p., Aβ 
i.c.v. + vehicle i.p., Aβ i.c.v. + FLX 10 mg/kg i.p., Aβ i.c.v. + VTX 
5 mg/kg i.p., and Aβ i.c.v. + VTX 10 mg/kg i.p. Memory de�cits 
were evaluated a�er 24 days of chronic treatment with FLX or 
VTX in the passive avoidance test (PAT), 15–17 days a�er Aβ 
injection, whereas depressive-like behavior was evaluated with 
FST a�er 26 days of treatment with antidepressant drugs.

Experiment 3 (third cohort): Animals received 3 weeks of 
treatment with antidepressants and Aβ1-42 oligomers or PBS. 
Intracerebroventricular injection was performed 7 days a�er 
the beginning of antidepressant treatment (day 7). Experimental 
groups were not only those described in Experiment 2 but also 
those included the following four experimental groups: vehicle, 
FLX 10 mg/kg, VTX 5 mg/kg, and VTX 10 mg/kg. �is third 
cohort of animals was tested in the object recognition test (ORT), 
a�er 21 days of chronic treatment with FLX or VTX.

Forced Swim Test
�e FST protocol employed here was adapted from Porsolt 
et al., (1978). Mice were placed for 6 min in a 4-L Pyrex glass 
beaker containing 3 L of water at 24 ± 1°C. Water was changed 
between animals. A�er a habituation period of 2 min, mobility 
and immobility were recorded during the last 4 min of the 6-min 
testing period. A trained researcher blinded to group assignment 
recorded immobility time using a stopwatch. An increase in 
immobility time indicates depressive-like behavior. A mouse 
was judged immobile when it �oated in an upright position and 
displayed only small movements to keep its head above water.

Passive Avoidance Test
PAT was performed as previously described (Leggio et al., 2016). 
�e apparatus for the step-through PAT was an automated 
shuttle box divided into an illuminated compartment and a 
dark compartment of the same size by a wall with a guillotine 
door. In the experimental session, each mouse was trained to 
adapt to the step-through passive avoidance apparatus. In the 
adaptation trial, the animal was placed into the illuminated 
compartment. A�er 10 s, the door between these two boxes was 
opened, and the mouse was allowed to freely move into the dark 
compartment. �e learning trial was similar to the adaptation 
trial except that the door was closed automatically as soon as the 
mouse stepped into the dark compartment and an inescapable 
foot shock (0.2 mA, 2 s) was delivered through the grid �oor. 
Following the shock, the mouse was removed and returned to its 
home cage. �e retention of the step-through passive avoidance 
response was measured the day a�er the learning trial, and the 
latency to re-enter into the dark compartment was recorded. In 
the retention test, no foot shock was delivered. Adaptation trial, 
learning trial, and retention test were performed 15, 16, and 
17 days, respectively, a�er PBS or Aβ i.c.v. injections (see above 
for details regarding the experimental design).

Object Recognition Test
ORT was performed as previously described (Gulisano et al., 2018). 
�e apparatus consisted in the arena (a plastic white box 50 × 35 × 
45 cm) being placed on a lab bench with a webcam connected to 
the computer and was �xed on the wall, with objects of di�erent 
colors and shapes (e.g., pyramid, cube, truncated sphere, cylinder, 
prism, and star) designed by SolidWorks so�ware and 3D printed 
in polylactic acid by a Prusa-inspired 3D printer of our design. 
�ree days before training (from day 21 to day 23), mice were 
habituated to the new context (empty arena and arena containing 
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one or two objects) and allowed to freely explore it for 10 min. 
On day 24, mice, previously treated for 24 days with i.p. injections 
of antidepressants or vehicle, 45  min a�er the last injection of 
FLX or VTX, underwent the �rst trial (T1) of ORT consisting 
in exploring two identical objects (randomly chosen among our 
collection) placed in the central part of the box, equally distant 
from the perimeter. T1 lasted 10 min, a time su�cient to learn the 
task. �e second trial (T2) was performed 24 h a�er T1 (day 25) 
to test memory retention for 10 min. Mice were presented with 
two objects, a “familiar” (i.e., the one used for T1) and a “novel” 
object. �e latter was placed on the le� or the right side of the 
box in a randomly but balanced manner, to minimize potential 
biases due to a preference for particular locations. To avoid 
olfactory cues, the objects and the apparatus were cleaned with 
70% ethanol a�er each trial. Exploration, de�ned as the mouse 
pointing its nose toward the object from a distance not >2  cm 
(as marked by a reference circle), was manually evaluated by an 
investigator blind with respect to treatment. In particular, the 
following parameters were studied: i) discrimination index (D), 
calculated as “exploration of novel object minus exploration  of 
familiar object/total exploration time,” and ii) total exploration 
time. We excluded from the analyses mice with a total exploration 
time < 5 s.

Western Blot
Western blot analysis was performed as previously described 
(Caraci et al., 2015) on hippocampi of mice from the di�erent 
experimental groups (n = 4 per group). Tissues were harvested 
at 4°C in radioimmunoprecipitation assay (RIPA) bu�er, in the 
presence of a cocktail of protease inhibitors (Sigma-Aldrich, 
P2714), serine/threonine phosphatase inhibitors (Sigma-Aldrich, 
P0044), and tyrosine protein phosphatase inhibitors (Sigma-
Aldrich, P5726), followed by sonication. Protein concentrations 
were determined by Bradford’s method using bovine serum 
albumin as a standard. A�er being blocked, membranes were 
incubated with the following primary antibodies, overnight at 
4°C: rabbit anti-TGF-β1 (Abcam 92486, Cambridge, UK; 1:1,000), 
mouse anti-GAPDH (Millipore MAB374, Burlington, MA, USA; 

1:1,000), rabbit anti-PSD-95 (3450S Cell Signaling Technology 
Inc., Danvers, MA, USA; 1:1,000), mouse anti-synaptophysin 
(SC-17750 Sunta Cruz Biotechnology Inc., CA, USA; 1:40.000), 
and rabbit anti-actin (A2066, Sigma-Aldrich, St Louis, MO; 
1:5.000). Secondary goat anti-rabbit labeled with IRDye 680 
(Li-COR Biosciences; 1:20.000) and goat anti-mouse labeled with 
IRDye 800 (Li-COR Biosciences; 1:20.000) were used at room 
temperature for 45 min. Hybridization signals were detected with 
the Odyssey Infrared Imaging System (LI-COR Biosciences). 
Western blot data were quanti�ed by densitometry analysis of the 
hybridization signals in four di�erent blots per experiment.

Gene Expression Analysis by Real-Time 
RT-PCR
Gene expression analysis by quantitative qRT-PCR was performed 
as previously described (Caruso et al., 2019b) with slight 
modi�cations. In brief, the concentration of total RNA recovered 
by using RNeasy Mini Kit from 10 mg of hippocampus tissue was 
determined by measuring the absorbance at 260 nm with a Nano 
Drop® ND-1000 (�ermo Fisher Scienti�c, Waltham, MA, USA). 
SuperScript III First-Strand Synthesis SuperMix (�ermo Fisher 
Scienti�c) was used to carry out the reverse transcription (100 ng 
of total RNA for each sample), by random priming. All samples 
were then quanti�ed with a NanoDrop® ND-1000, diluted to 
a �nal concentration of 25 ng/µL, and the gene expression was 
simultaneously measured for all the samples by using a 384-
well plates and a LightCycler® 480 System (Roche Molecular 
Systems, Inc., Pleasanton, CA, USA). �e QuantiTect Primer 
Assays (Qiagen, Hilden, Germany) employed for gene expression 
analysis along with o�cial name, o�cial symbol, alternative 
titles/symbols, detected transcript, amplicon length, and primers 
catalogue number are shown in Table 1.

For each sample ampli�cation, performed in quadruplicate, a 
total reaction volume of 10 μL, consisting of 6 μL of ampli�cation 
mixture (5 μL PCR Master Mix + 1 μL speci�c primers) plus 
4  μL of cDNA (100 ng), was used. Ampli�cation conditions 
and �uorescence data collection included a �rst cycle at 95°C 
(15 min) followed by 50 cycles at 94°C (15 s), an annealing step at 

TABLE 1 | List of primers used for quantitative real-time PCR (qRT-PCR).

Official name# Official symbol Alternative titles/symbols Detected transcript Amplicon length Cat. no.§

Interleukin 1 beta Il1b Il-1b; IL-1beta; IL-1β NM_008361 

XM_006498795

150

682

QT01048355

Tumor necrosis factor Tnf DIF; Tnfa; TNF-a; TNFSF2; 

Tnlg1f; Tnfsf1a; TNFalpha; 

TNF-alpha; TNF-α

NM_013693 

NM_001278601

112 bp

112 bp

QT00104006

Interleukin 4 IL4 Il-4; BSF-1 NM_021283 132 bp QT02418311

Transforming growth factor, 

beta 1

Tgfb1 Tgfb; Tgfb-1; TGFbeta1; 

TGF-beta1

NM_011577 145 bp QT00145250

Glyceraldehyde-3-phosphate 

dehydrogenase

Gapdh Gapd NM_008084

XM_001003314

XM_990238

NM_001289726

144 bp QT01658692

#https://www.ncbi.nlm.nih.gov/gene/
§https://www.qiagen.com/it/shop/pcr/real-time-pcr-enzymes-and-kits/two-step-qrt-pcr/quantitect-primer-assays/
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56°C (30 s), and a �nal cycle at 72°C (30 s). As a negative control, 
a reaction in absence of cDNA (no template control, NTC) was 
performed. �e relative RNA expression level for each sample was 
calculated using the 2−ΔΔCT method by comparing the threshold 
cycle (CT) value of the gene of interest with the CT value of our 
selected internal control (GAPDH gene).

Statistics
All experiments were blind with respect to treatment. Data were 
expressed as mean ± standard error mean (SEM). Statistical 
analysis was performed using dedicated so�ware (GraphPad 
Prism, La Jolla, CA; Systat 9 So�ware, Chicago, IL). �e within-
group comparison was performed by a one-way analysis of 
variance (ANOVA). �e post hoc Bonferroni test was used for 
multiple comparisons. One-sample t-test was used to compare D 
index with zero in ORT.

Study Approval
�e study was authorized by the Institutional Animal Care 
and Use Committee (IACUC) of the University of Catania and 
by the Italian Ministry of Health (DDL 26/2014 and previous 
legislation; OPBA Project #266/2016). Animal care followed 
Italian (D.M. 116192) and EEC (O.J. of E.C.L 358/1 12/18/1986) 
regulations on protection of animals used for experimental and 
scienti�c purposes.

RESULTS

Fluoxetine and Vortioxetine Showed 
Similar Antidepressant Efficacy 
in Young Mice
We �rst examined the e�ects of FLX and VTX on depressive-like 
behavior in the �rst cohort of mice (Experiment 1) in the FST, 
a well-established behavioral test used to evaluate the preclinical 
e�cacy of antidepressant drugs (Castagné et al., 2011; Li et  al., 
2017). Depressive-like behavior was assessed at day 22 by 
scoring immobility time (expressed in seconds) for each animal 
(Figure  1A). As depicted in Figure 1B, both FLX and VTX, 
at the dose of 10 mg/kg, gave comparable results, reducing the 
immobility time [p < 0.001 and p < 0.01 for FLX and VTX vs. 
vehicle (VEH), respectively]. VTX was able to signi�cantly reduce 
the immobility time also at the dose of 5 mg/kg (p < 0.01 vs. VEH).

Fluoxetine and Vortioxetine Prevented 
Memory Retention Loss and Depressive-
Like Behavior Induced by Aβ Oligomers
We then investigated the e�ects of FLX and VTX on the memory 
retention loss in mice treated with Aβ oligomers (second cohort 
of mice, Experiment 2). �e treatment with antidepressants 
started 7 days before Aβ1-42 oligomers or PBS i.c.v. injection, 
and memory de�cits were evaluated in the PAT with memory 
retention test a�er 24 days of chronic treatment with FLX or 
VTX (i.e., 17 days a�er Aβ injection, Figure 2A). As observed 
in our previous studies (Leggio et al., 2016), mice treated with 

Aβ1-42 showed a lower latency time in PAT than did vehicle-
treated controls (p < 0.01 vs. VEH; Figure 2B). Interestingly, a 
chronic treatment with FLX (10 mg/kg) and VTX (10 mg/kg) 
was able to rescue Aβ-induced memory loss (p < 0.01 vs. Aβ + 
VEH and p < 0.05 vs. Aβ + VEH, respectively) (Figure 2B).

Depressive-like behavior was then evaluated in FST, in the 
same cohort of mice, 26 days a�er treatment with antidepressant 
drugs (19 days a�er Aβ injection; Figure 2C). We show, for the 
�rst time, that Aβ injection was able to induce a long-lasting 
signi�cant increase in immobility time 19 days a�er i.c.v. Aβ 
injection (p < 0.05 vs. VEH). Chronic i.p. treatment with VTX 
or FLX, administered at the same dose of 10 mg/kg for 26 days, 
was able to revert Aβ1-42-induced depressive-like behavior (p < 
0.001 and p < 0.01 for FLX and VTX vs. Aβ + VEH, respectively). 
Interestingly, VTX at the low dose of 5 mg/kg was also e�ective 
in preventing depressive-like behavior in Aβ-injected mice (p < 
0.01 vs. Aβ + VEH).

Fluoxetine and Vortioxetine Improved 
Object Recognition Memory 
in Aβ-Treated Mice
We then evaluated recognition memory by ORT, a task based on 
the natural tendency of rodents to explore unfamiliar objects, 
which depends upon integrity of the perirhinal cortex, the 
hippocampus, and the medial temporal lobe (Barker et al., 2007; 
Broadbent et al., 2009). We measured the exploration time of 
both the familiar and novel objects at T2, i.e., 24 h a�er training, 
in Aβ-injected mice; and we calculated the discrimination index 
(D = exploration of novel object minus exploration of familiar 
object/total exploration time) (Figure 3A). Aβ-injected mice, 
compared with vehicle-injected mice, showed an impairment of 
recognition memory, as they did not discriminate between the 
familiar and novel objects (p < 0.05; Figure 3B). Comparison of 
D with zero con�rmed that Aβ-injected mice were not able to 
learn (p > 0.05). �e chronic treatment with FLX (10 mg/kg) or 
VTX (10 mg/kg) was e�ective in rescuing Aβ-induced memory 
impairment (p < 0.01 vs. Aβ + VEH for both treatments). Results 
were not a�ected by di�erences in total exploration time between 
the animal groups (Figure 3C). Treatment with FLX or VTX 
per se did not modify discrimination index (Figure 3D) nor 
(Figure 3E) total exploration index.

Molecular Mechanisms Underlying the 
Antidepressant and Procognitive Effects 
of Fluoxetine and Vortioxetine: A Key Role 
of TGF-β1
Neuroin�ammation plays a central role in the pathogenesis of 
depression (Bhattacharya et al., 2016) and AD (Businaro et al., 
2018; Knezevic and Mizrahi, 2018). Previous studies have 
demonstrated that Aβ oligomers promote neuroin�ammation 
and neurodegeneration in AD brain and in animal models 
of AD by eliciting the release of pro-in�ammatory cytokines 
from microglia (Ledo et al., 2016; Businaro et al., 2018) and 
also by interfering with the synthesis of TGF-β1 (Diniz et al., 
2017). We therefore examined the e�ects of Aβ1-42 oligomers 
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i.c.v. injection on the mRNA levels of pro-in�ammatory 
cytokines (IL-1β and TNF-α) and anti-in�ammatory cytokines 
(IL-4 and TGF-β1) in the hippocampus (Figure 4), a brain 
area of primary relevance in the pathogenesis of depression 
(Villa et al., 2016). Aβ injection did not a�ect the expression 
level of IL-1β and TNF-α mRNA (Figure 4A and B), and 
the expression level of IL-4 (Figure 4C), whereas it induced 
a statistically signi�cant decrease in the expression level of 
TGF-β1 mRNA in the hippocampus of Aβ-injected mice 
compared with vehicle-treated controls (p < 0.05 vs. VEH; 
Figure 4D). Interestingly, VTX at the low dose (5 mg/kg) was 
able to completely rescue hippocampal TGF-β1 mRNA levels 

compared with those in Aβ-injected mice (p < 0.01 vs. Aβ + 
VEH), and it further increased TGF-β1 mRNA levels at the 
dose of 10 mg/kg (p < 0.001 vs. Aβ + VEH). FLX at the dose 
of 10 mg/kg rescued hippocampal TGF-β1 mRNA levels with 
an e�cacy comparable with that of VTX 5 mg/kg (p < 0.05 vs. 
Aβ + VEH). �ese antidepressant drugs per se did not increase 
hippocampal TGF-β1 mRNA (Figure 4E).

TGF-β1 is an anti-in�ammatory cytokine whose �nal 
activity is regulated not only at a transcriptional level but also 
at a post-transcriptional level and primarily regulated through 
the conversion of latent TGF-β1 to active TGF-β1 by a variety of 
proteases (Annes et al., 2003). Interestingly, western blot analysis 

FIGURE 1 | Vortioxetine decreases depressive-like behavior in a concentration-dependent manner. Forced swim test (FST), carried out to evaluate the depressive-

like behavior, was performed the day after the last injection. VEH = vehicle (i.p.), FLX10 = fluoxetine 10 mg/kg, (i.p.), VTX5 = vortioxetine 5 mg/kg (i.p.), and VTX10 = 

vortioxetine 10 mg/kg (i.p.) were administered chronically for 21 days. i.p. = intraperitoneal injection. (A) Schematic representation of the experimental design. 

(B) Immobility time displayed by groups treated with FLX10 (n = 9), VTX5 (n = 10), and VTX10 (n = 7) was significantly reduced if compared with that of vehicle-treated 

group (n = 9) over a 4-min test period. Immobility time measures are expressed in seconds. Data are shown as mean ± SEM. **p < 0.01, ***p < 0.001 vs. VEH; 

ANOVA among all: F(3,31) = 10.04.
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carried out in the hippocampus of these mice con�rmed that 
i.c.v. Aβ injection was able to induce a signi�cant decrease 
of active TGF-β1 levels (p < 0.05 vs. PBS + VEH) and, most 
importantly, that both FLX and VTX (at both doses) were 
able to completely rescue hippocampal TGF-β1 levels when 
compared with those in Aβ-injected mice treated with vehicle 
(p < 0.01 vs. Aβ + VEH for FLX and VTX at 5 mg/kg; p < 0.001 
vs. Aβ + VEH for VTX at 10 mg/kg; Figure 5A and B). Since it 
is known that TGF-β1 protects synapses against Aβ oligomers 
toxicity (Diniz et al., 2017), we examined the expression levels 
of two established synaptic protein markers, synaptophysin and 
PSD-95, in the hippocampus of Aβ-injected mice. Aβ injection 
signi�cantly decreased both synaptophysin (Figure 5C and D) 
and PSD-95 levels (Figure 5E and F) (p < 0.05 vs. PBS + VEH); 
and, interestingly, both FLX and VTX (at 10 mg/kg) rescued 
hippocampal synaptophysin (p < 0.01 vs. Aβ + VEH for FLX and 
VTX at 10 mg/kg) and PSD-95 (p < 0.05 vs. Aβ + VEH for FLX 
and p < 0.01 vs. Aβ + VEH for VTX at 10 mg/kg) levels when 
compared with those in Aβ-injected mice treated with vehicle.

DISCUSSION

In this paper, we have demonstrated for the �rst time that a 
long-term treatment with �uoxetine (10 mg/kg/day) or with the 
multimodal antidepressant vortioxetine (5 and 10 mg/kg/day) 
was able to prevent the loss of memory and the Aβ1-42 oligomer-
induced depressive-like phenotype with a key contribute played 
by TGF-β1 in the mouse hippocampus.

We have used a non-Tg model of AD obtained by i.c.v. 
injection of Aβ1-42 oligomers, known to play a primary role in 
synaptic loss and progressive cognitive decline in AD (Ferretti 
et al., 2012; Klein, 2013). Synthetic human Aβ1-42 oligomers 
were prepared according to the original protocol of Klein’s 
group as modi�ed and characterized in Giu�rida et al. (2009). 
An open question in the �eld remains to establish whether 
Aβ1-42 oligomers can induce transient or long-term memory 
de�cits in mice (Balducci and Forloni, 2014; Epelbaum et al., 
2015). Di�erent groups have demonstrated that, in the �eld 
of translational neuropharmacology, this model represents 

FIGURE 2 | Vortioxetine decreases depressive-like behavior and memory impairment Aβ1-42-induced. Forced swim test (FST) and passive avoidance test (PAT) were 

used to evaluate depressive-like behavior and memory impairment, respectively. VEH, FLX10, VTX5, and VTX10 were administered chronically for 26 days. Sterile 

PBS or Aβ1-42 was administered i.c.v. 7 days after the first i.p. injection. i.c.v. = intracerebroventricular injection. (A) Schematic representation of the experimental 

design. (B) Latency time to re-enter the dark box during the retention test is expressed in seconds. (C) Immobility time measures are expressed in seconds. PBS + 

VEH (n = 8), Aβ1-42 + VEH (n = 5), Aβ1-42 + FLX10 (n = 7), Aβ1-42 + VTX5 (n = 7), and Aβ1-42 + VTX10 (n = 6). FST and PAT were performed on the same experimental 

animal groups. Data are shown as mean ± SEM. *p < 0.05, **p < 0.01 vs. PBS + VEH; #p < 0.05, ##p < 0.01, ###p < 0.001 vs. Aβ1-42 + VEH; F(4,28) = 10.44 for (B) 

and F(4,28) = 5.59 for (C).
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a simple and reliable paradigm, useful to investigate the 
molecular mechanisms through which Aβ oligomers interfere 
with cognitive processes and �nally to test the e�cacy of new 
therapeutic approaches (Balducci and Forloni, 2014). We have 
adopted this non-Tg AD model because we know from our 
previous work that i) the amount of injected oligomers reaches 
a cerebral concentration comparable with the concentration of 

soluble Aβ observed in AD brains, e.g., close to 1 µg/g (Leggio 
et al., 2016); and ii) i.c.v. injection of Aβ induces a memory 
de�cit that persists for 14–21 days, as assessed by using two 
well-validated tasks in AD �eld, the passive avoidance task 
and the object recognition test (Leggio et al., 2016). We used 
this non-Tg model of AD to study the neurobiological links 
between depression and AD and the role of Aβ oligomers in 

FIGURE 3 | Vortioxetine reduces the Aβ1-42-induced impairment of recognition memory. Object recognition test (ORT) was used to evaluate recognition memory 

by assessing the discrimination index (D). (A) Schematic representation of the experimental design. (B) The impairment of recognition memory induced by i.c.v. 

administration of Aβ1-42 (t(9) = 0.221, p > 0.05 for Aβ1-42 group vs. zero) is completely rescued by FLX10 and VTX10 treatments (ANOVA among all: F(5,54) = 4.4; 

Bonferroni’s p < 0.05 between PBS + VEH and Aβ1-42 + VEH; p < 0.01 between Aβ1-42 + VEH and VTX10 and FLX10). (C) Total exploration time is similar among the 

different conditions (ANOVA among all: F(5,54) = 2.274). PBS + VEH (n = 14), Aβ1-42 + VEH (n = 10), Aβ1-42 + FLX10 (n = 7), Aβ1-42 + VTX5 (n = 11), and Aβ1-42 + VTX10 

(n = 11). (D) FLX10, VTX5, or VTX10 treatments per se do not modify discrimination index (F(3,28) = 1.409) nor (E) total exploration time (F(3,28) = 0.467). *p < 0.05 vs. 

PBS + VEH, ##p < 0.01 vs. Aβ1-42 + VEH.
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FIGURE 4 | Fluoxetine and vortioxetine increase the expression of TGF-β1 mRNA. Effects induced by i.c.v. administration of Aβ1-42 (Aβ1-42 + VEH) in absence or 

presence of FLX10, VTX5, or VTX10 on IL-1β (A), TNF-α (B), IL-4 (C), and (D) TGF-β1 mRNAs expression examined by qRT-PCR (Experiment 2). (E) Effects 

of drugs on TGF-β1 mRNA expression in absence of Aβ1-42 treatment (Experiment 3). The abundance of each mRNA of interest was expressed relative to the 

abundance of GAPDH-mRNA, as an internal control. As a negative control, a reaction in absence of cDNA (no template control, NTC) was performed. qRT-PCR 

amplifications were performed in quadruplicate. Data are shown as mean ± SEM. *p < 0.05 vs. PBS + VEH, #p < 0.05 vs. Aβ1-42 + VEH, ##p < 0.01 vs. Aβ1-42 + VEH, 
###p < 0.001 vs. Aβ1-42 + VEH; F(4,14) = 0.86 for (A), F(4,10) = 0.35 for (B), F(4,10) = 0.06 for (C), F(4,15) = 10.23 for (D), and F(3,19) = 0.35 for (E).
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the pathophysiology of amyloid-related depression, a recently 
identi�ed clinical phenotype characterized by a low response 
to “monoaminergic antidepressants in depressed patients with 
an high risk to develop AD” (Li et al., 2017). Mimicking this 
clinical phenotype in rodents is a di�cult challenge (Nyarko 
et al., 2019) but also an essential step to improve drug discovery 
processes in AD and explore the disease-modifying potential of 
antidepressant drugs in AD (Caraci et al., 2018).

Previous studies have been conducted in rodents where a 
depressive-like phenotype was detected by FST only 7 days a�er 
a single Aβ injection in rats (Colaianna et al., 2010; Schiavone 
et al., 2017) or 24 h a�er Aβ infusion in mice (Ledo et al., 2016). 
In the present work, we demonstrate for the �rst time that Aβ 
injection can induce a long-lasting depressive-like phenotype, 
with a signi�cant reduction in immobility time detectable with 
FST until 19 days a�er Aβ injection (Figure 2C). Interestingly, 
this depressive-like phenotype co-exists in our Aβ-injected 
mice with a severe impairment of reference memory (assessed 
by PAT) (Figure 2B) and object recognition memory (assessed 
by ORT) (Figure 3A and B). In the present work, only one 
memory test was conducted in each cohort of mice (second 
and third) to minimize potential e�ect of behavioral testing on 
FST. Future studies should be conducted in the same model to 
assess whether depressive-like phenotype precedes the onset 
of cognitive de�cits as recently observed in late-life depressed 
patients with an increased risk to develop AD (Chung et al., 
2015; Yasuno et al., 2016).

In the present work, we measured the antidepressant-like 
e�cacy of �uoxetine and vortioxetine in FST, in the second 
cohort of Aβ-injected mice, a�er a 26-day treatment. Drug 
doses for both �uoxetine and vortioxetine were chosen to 

reach a reliable occupancy of SERT in brain, as reported in 
previous studies (Pehrson et al., 2015). For the present study, 
we selected these speci�c antidepressants because �uoxetine is 
a SSRI known to revert cognitive de�cits in di�erent transgenic 
animal models of AD (Wang et al., 2014; Jin et al., 2016; Ma 
et al., 2017; Sun et al., 2017), and it is also able to rescue 
memory de�cits in MCI patients (Mowla et al., 2007), while 
vortioxetine is a novel multimodal antidepressant endowed 
with strong pro-cognitive e�ects in preclinical models of 
depression (Pehrson et al., 2015) with a high clinical e�cacy 
in the treatment of elderly patients with late-life depression 
and cognitive symptoms, a clinical subgroup that shows an 
increased risk to develop AD (Lauriola et al., 2018).

Interestingly, when comparing the e�ects of a chronic 
treatment (26 days) of �uoxetine and vortioxetine in our 
non-Tg AD model, we found for the �rst time that these two 
drugs have a similar preclinical e�cacy at a dose of 10 mg/kg/
day in preventing memory de�cits, as assessed by PAT and ORT. 
Other studies have shown that �uoxetine can impair recognition 
memory in rats (Valluzzi and Chan, 2007) and in middle-aged 
mice (Castañé et al., 2015; Li et al., 2017), whereas vortioxetine 
does not a�ect object recognition memory in middle-aged mice 
(Li et al., 2017) but signi�cantly improves the performance in 
this task in di�erent animal models of cognitive dysfunction 
(Westrich et al., 2015; Pehrson et al., 2018). Surprisingly, 
5  mg/kg vortioxetine exerted a signi�cant antidepressant 
e�ect as detected in FST (without a further increase at a dose 
of 10  mg/kg), which was comparable with that of �uoxetine 
10 mg/kg. Considering that vortioxetine at the dose of 5 mg/kg 
nearly saturates all 5-HT3 receptors, but only partially occupies 
the SERT (Sanchez et al., 2015), these data seem to suggest an 

FIGURE 5 | Fluoxetine and vortioxetine rescue TGF-β1, synaptophysin, and PSD-95 levels in Aβ1-42-treated mice. Effects induced by i.c.v. administration of Aβ1-42 

(Aβ1-42 + VEH) in absence or presence of FLX10, VTX5, or VTX10 on TGF-β1, synaptophysin and PSD-95 levels examined by western blot. (A) Representative 

immunoblots of active TGF-β1 (about 25 kDa) in total protein extracts from hippocampus tissues. (B) Histograms refer to the means ± SEM of the densitometric 

values of active TGF-β1 bands normalized against GAPDH. Each experiment was repeated four times. *p < 0.05 vs. PBS + VEH, #p < 0.05 vs. Aβ1-42 + VEH,  
##p < 0.01 vs. Aβ1-42 + VEH; F(4,15) = 5.91 for (B). (C) Representative immunoblots of synaptophysin (about 38 kDa) in total protein extracts from hippocampus 

tissues. (D) Histograms refer to the means ± SEM of the densitometric values of synaptophysin bands normalized against actin. Each experiment was repeated four 

times. *p < 0.05 vs. PBS + VEH, ##p < 0.01 vs. Aβ1-42 + VEH; F(4,17) = 7.91 for (D). (E) Representative immunoblots of PSD-95 (about 95 kDa) in total protein extracts 

from hippocampus tissues. (D) Histograms refer to the means ± SEM of the densitometric values of PSD-95 bands normalized against actin. Each experiment was 

repeated four times. *p < 0.05 vs. PBS + VEH, #p < 0.05 vs. Aβ1-42 + VEH, ##p < 0.01 vs. Aβ1-42 + VEH; F(4,17) = 8.21 for (F).
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increased, and probably SERT-independent, antidepressant 
e�cacy of vortioxetine compared with �uoxetine in our 
model of amyloid-related depression. We cannot exclude that 
the young age of our cohorts of mice can a�ect our results in 
behavioral tests, but we should also consider that in this study 
we have adopted a secondary prevention strategy to prevent 
the onset of amyloid-related depression, starting the treatment 
with antidepressants 7 days before Aβ injection. �is approach 
was also settled moving from the evidence that second-
generation antidepressants, such as �uoxetine, exert relevant 
neuroprotective e�ects in vitro in experimental models of 
Aβ-induced neurodegeneration (Caraci et al., 2016; Caraci et al., 
2018). We also believe that this approach might be helpful in the 
future to assess the disease-modifying e�cacy of antidepressants 
in animal models of AD, independently from their symptomatic 
e�cacy against the depressive-like phenotype.

To understand the molecular mechanisms underlying the 
precognitive and antidepressant e�ects of vortioxetine and 
�uoxetine, we focused on neuroin�ammatory phenomena 
in the hippocampus of Aβ-injected mice, because previous 
studies in the same model found aberrant TNF-α signaling with 
increases in hippocampal levels of TNF-α 24 h a�er Aβ infusion 
(Ledo et al., 2016). In order to correlate the preclinical e�cacy 
of antidepressants with the e�ects on neuroin�ammatory 
phenomena, we examined the mRNA levels of di�erent pro-
in�ammatory (IL-1β and TNF-α) and anti-in�ammatory (IL-4 
and TGF-β1) cytokines in the hippocampus of the second 
cohort mice only a�er completing behavioral tests (26 days). 
We did not detect a signi�cant increase in hippocampal levels of 
TNF-α and IL-1β (Figure 4A and B), but we found a signi�cant 
decrease in hippocampal levels of TGF-β1 (Figure 4D), further 
con�rmed by western blot analysis (Figure 5A and B). Our data 
are in accordance with a previous study conducted in 3-month-
old male Swiss mice, where reduced TGF-β1 levels were found 
in the hippocampus 24 h a�er Aβ injection (Diniz et al., 2017). 
Interestingly, we found that the de�cit of hippocampal TGF-β1 
is a long-lasting molecular marker associated with depressive-
like phenotype and memory de�cits in our non-Tg model of 
AD. TGF-β1 is an anti-in�ammatory cytokine that exerts 
neuroprotective e�ects in di�erent models of amyloid-induced 
neurodegeneration (Caraci et al., 2008; Caruso et al., 2019a; 
reviewed by Caraci et al., 2011). We have recently identi�ed 
a key role for TGF-β1 in recognition memory formation, 
demonstrating that it is essential for the transition from early 
to late long-term potentiation (Caraci et al., 2015). De�cit of 
TGF-β1 signaling is a primary event in AD pathogenesis, and 
a reduced expression of type 2 TGF-β1 receptor speci�cally 
correlates with cognitive decline in early AD patients (Tesseur 
et al., 2006). TGF-β1 plays a key role in synaptic plasticity 
(Caraci et al., 2015), and it also protects synapses against Aβ 
oligomers toxicity (Diniz et al., 2017). Interestingly, we found, 
in our non-Tg model of AD, a signi�cant reduction of the 
synaptic proteins synaptophysin and PSD-95 paralleling the 
de�cit of TGF-β1 detected in the hippocampus of Aβ-injected 
mice. Aβ oligomers are known to exert synaptotoxic e�ects 

(Musardo and Marcello, 2017), and our data are in accordance 
with previous studies where i.c.v. Aβ injection in mice caused 
both memory de�cits and a signi�cant decrease of PSD-95 and 
synaptophysin levels in the hippocampus (Morroni et al., 2016; 
Wu et al., 2018). In the present work, for the �rst time, we found 
a correlation between the synaptotoxic e�ects of Aβ oligomers 
and the de�cit of TGF-β1 in the hippocampus of Aβ-injected 
mice.

�e de�cit of TGF-β1 signaling has been hypothesized 
to contribute to in�ammaging and cognitive decline in both 
depression and AD (Caraci et al., 2018). �e +10 CC genotype 
of TGF-β1 gene, which a�ects the levels of expression of TGF-
β1, is associated with depressive symptoms in AD (>5-fold risk) 
(Caraci et al., 2012), and an impairment of TGF-β1 signaling 
can promote the onset of a depressive-like phenotype in mice 
(Depino et al., 2011). TGF-β1 plasma levels are reduced in MDD 
patients, correlate with depression severity, and signi�cantly 
contribute to treatment resistance in MDD patients (Musil et al., 
2011; Caraci et al., 2018), a clinical subgroup with an increased 
risk to develop AD (Chung et al., 2015; Li et al., 2017).

Our work identi�ed for the �rst time a selective de�cit 
of TGF-β1 in a non-Tg model of AD that mimics what was 
observed in AD brain and, most importantly, showed that 
vortioxetine (5 mg/kg) and �uoxetine (10 mg/kg) completely 
rescue hippocampal TGF-β1 levels. Interestingly, �uoxetine and 
vortioxetine completely rescued hippocampal synaptophysin 
and PSD-95 levels in Aβ-injected mice only at the dose of 
10 mg/kg, suggesting a protective e�ect of these drugs against 
the synaptotoxic e�ects of Aβ oligomers. Fluoxetine was known 
to induce TGF-β1 release from cortical astrocytes (Caraci 
et al., 2016), but this is the �rst demonstration that a chronic 
treatment with the multimodal antidepressant vortioxetine 
promotes TGF-β1 synthesis at hippocampal level in an animal 
model of amyloid-related depression. Future studies should 
be conducted in transgenic animal models of AD to assess 
whether �uoxetine or vortioxetine can prevent amyloid-
induced depression and cognitive de�cits by rescue of TGF-β1 
signaling.

Overall, our data, obtained in a non-Tg model of AD, indicate 
that a de�cit in TGF-β1 might represent one of the neurobiological 
links between depression and AD and also that rescue of TGF-
β1 signaling with second-generation antidepressants might 
represent a new pharmacological strategy to prevent both 
amyloid-induced depression and cognitive decline in AD.
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