1511.04594v1 [cs.CR] 14 Nov 2015

arxXiv

Flush+Flush: A Stealthier Last-Level Cache Attack

Daniel Gruss
Graz University of Technology, Austria
daniel.gruss @iaik.tugraz.at

Clémentine Maurice
Technicolor, Rennes, France
Eurecom, Sophia-Antipolis, France

Klaus Wagner
Graz University of Technology, Austria
k.wagner @student.tugraz.at

clementine @cmaurice.fr

Abstract—Research on cache attacks has shown that CPU
caches leak significant information. Recent attacks either use
the Flush+Reload technique on read-only shared memory or
the Prime+Probe technique without shared memory, to derive
encryption keys or eavesdrop on user input. Efficient counter-
measures against these powerful attacks that do not cause a loss
of performance are a challenge. In this paper, we use hardware
performance counters as a means to detect access-based cache
attacks. Indeed, existing attacks cause numerous cache references
and cache misses and can subsequently be detected. We propose
a new criteria that uses these events for ad-hoc detection.

These findings motivate the development of a novel attack
technique: the Flush+Flush attack. The Flush+Flush attack only
relies on the execution time of the flush instruction, that depends
on whether the data is cached or not. Like Flush+Reload, it
monitors when a process loads read-only shared memory into the
CPU cache. However, Flush+Flush does not have a reload step,
thus causing no cache misses compared to typical Flush+Reload
and Prime+Probe attacks. We show that the significantly lower
impact on the hardware performance counters therefore evades
detection mechanisms. The Flush+Flush attack has a perfor-
mance close to state-of-the-art side channels in existing cache
attack scenarios, while reducing cache misses significantly below
the border of detectability. Our Flush+Flush covert channel
achieves a transmission rate of 496 KB/s which is 6.7 times
faster than any previously published cache covert channel. To
the best of our knowledge, this is the first work discussing the
stealthiness of cache attacks both from the attacker and the
defender perspective.

I. INTRODUCTION

The CPU cache is a microarchitectural element that reduces
the memory access time of recently-used data. It is shared
across cores in modern processors, and is thus a piece of hard-
ware that has been extensively studied in terms of information
leakage. Cache attacks include covert and cryptographic side
channels, but caches have also been exploited in other types
of attacks, such as bypassing kernel ASLR [16]], detecting
cryptographic libraries [22]], or keystroke logging [12]. The
most recent attacks leverage the multiple cores in CPUs, as
well as the inclusiveness of the last-level cache to mount cross-
cores attacks, that also work in virtualized environments. These
two features are core features of the performance of the current
processors, and also the core causes of the interferences that
lead to cache attacks. Efficient countermeasures that do not
cause a loss of performance are thus a challenge.

Rowhammer is a DRAM vulnerability that causes random
bit flips by repeatedly accessing a DRAM row [27]]. Attacks
exploiting this vulnerability have already been demonstrated
to gain root privileges and to evade a sandbox [45], showing

the severity of faulting single bits for security. Hardware coun-
termeasures have been presented and some of them are now
implemented in DDR4 modules, but these countermeasures are
hard and slow to deploy, as they either rely on new hardware
or on BIOS updates that users are not likely to do.

Hardware performance counters have been proposed re-
cently as an OS-level detection mechanism for cache attacks
and Rowhammer [7]], [15]. Indeed, existing cache attacks
cause numerous cache references and cache misses, that can
be monitored via special events. As an OS-level detection
mechanism, the key idea is that it detects attacks in order to
later stop them without causing a loss of performance to the
whole system. The evaluation of this mechanism has however
not been published yet.

In this paper, we evaluate the use of hardware performance
counters as a means of detecting cache attacks. We show
that monitoring performance counters, especially cache ref-
erences and cache misses of the last-level cache, provides an
efficient way to detect of the existing attacks Flush+Reload
and Prime+Probe. Additionally, we propose a new criteria
for detection, that uses cache references, cache misses, and
instruction TLB performance counters.

We subsequently present the Flush+Flush attack that seeks
to evade detection. Flush+Flush exploits the fact that the
execution time of the cl1flush instruction is shorter if the
data is not cached and higher if the data is cached. At the
same time, the c1flush instruction evicts the corresponding
data from all cache levels. Thus, as in the Flush+Reload
attack, an attacker monitors when another process loads read-
only shared memory into the CPU cache. Like Flush+Reload,
the attack is a cross-core attack and can even be applied in
virtualized environments across virtual machine borders. In
contrast to existing cache attacks, Flush+Flush does not trigger
the prefetcher. Thus, it is possible to measure cache misses
in some situations where existing cache attacks fail. As there
is no reload-step, the Flush+Flush attack cannot be detected
using known mechanisms, as it only causes no additional
cache misses in the attacker process, but only in the benign
victim process. Thus, the attack renders proposed detection
mechanisms non-effective. We found that in the case of low-
frequency events like keystrokes, the Flush+Flush attack can
be barely distinguished from a process doing nothing. Thus,
in contrast to other attacks it is completely stealthy.

Our key contributions are:

e We evaluate the use of a wide range of hardware per-
formance counters and propose new detection criteria
that detects existing covert and side channels as well as

daniel.gruss@iaik.tugraz.at
clementine@cmaurice.fr
k.wagner@student.tugraz.at

Rowhammer.

e We detail a new cache attack technique that we call
Flush+Flush. 1t relies only on the difference in timing
of the c1flush instruction between cached and non-
cached memory accesses. It provides an improvement
over Flush+Reload in terms of stealthiness.

e We evaluate the performance of Flush+Flush against
already known state-of-the-art attacks. We build a covert
channel that exceeds state-of-the-art performance, build
side-channel attacks such as eavesdropping on user input,
and a first-round attack on the OpenSSL T-table-based
AES implementation. We show that although existing
attacks are more accurate, Flush+Flush attacks are more
stealthy.

Outline: The remainder of this paper is organized as
follows. Section [[I] provides background information on CPU
caches, shared memory, and cache attacks. Section [[1I| investi-
gates how to leverage hardware performance counters to detect
cache attacks. Section [[V] describes the Flush+Flush attack.
We compare the performance and detectability of Flush+Flush
attacks compared to state-of-the-art attacks in three scenarios: a
covert channel in Section [V] a side-channel attack on keystroke
timings in Section and on cryptographic algorithms in
Section Section discusses required modifications to
detection mechanisms and countermeasures to stop our attack.
Section [[LX] discusses related work. Section |X| describes future
work. Finally, we conclude in Section

II. BACKGROUND
A. CPU Caches

CPU caches hide the memory accesses latency to the slow
physical memory by buffering frequently used data in a small
and fast memory. Modern CPU architectures implement n-way
set-associative caches, where the cache is divided into cache
sets, and each cache set comprises several cache lines. A line
is loaded in a set depending on its address, and each line can
occupy any of the n ways.

On modern Intel processors, there are three cache levels.
The L3 cache, also called last-level cache, is shared between
all CPU cores. In this level, a part of the physical address is
used as a set index. Thus, a physical address is always mapped
to the same cache set. The L3 cache is also inclusive of the
lower cache levels, which means that all data within the L1 and
L2 caches is also present in the L3 cache. To guarantee this
property, all data evicted from the L3 must also be evicted from
L1 and L2. Due to these two properties of the last-level cache,
executing code or accessing data on one core has immediate
consequences even for the private caches of the other cores.
This is exploited in cache attacks described in Section

The last-level cache is divided into as many slices as cores,
interconnected by a ring bus. Since the Sandy Bridge microar-
chitecture, each physical address is mapped to a slice by a so-
called complex-addressing function. This function distributes
the traffic evenly among the slices and reduces congestion. It
is undocumented, but has been reversed-engineered [|17], [35],
[56]. All address bits are used to determine the slice, excluding
the lowest bits that determine the offset in a line. Contrary to
slices, sets are directly addressed.

A cache replacement policy decides which cache line to
replace when loading new data in a set. Typical replacement
policies are least-recently used (LRU), variants of LRU and
bimodal insertion policy where the CPU can switch between
the two strategies to achieve optimal cache usage [41]. The
unprivileged c1flush instruction evicts a cache line from all
the cache hierarchy. However, any program can evict a cache
line by accessing a set of addresses (at least as large as the
number of ways) in a way to defeat the replacement policy.

B. Shared Memory

Operating systems and hypervisors instrument shared
memory to reduce the overall physical memory utilization.
Shared libraries, which are typically used by several programs,
are loaded into physical memory only once and shared by all
programs using them. Thus, multiple programs access the same
physical pages mapped within their own virtual address space.

The operating system performs similar optimizations when-
ever the same file is mapped into memory more than once. This
is the case when forking a process, when starting a process
twice, when using mmap or dlopen. All cases result in a
memory region shared with all other processes mapping the
same file.

On personal computers, smartphones and private cloud
systems, another form of shared memory can be found, namely
content-based page deduplication. The hypervisor or operating
system scans the physical memory for bytewise identical
pages. Identical pages are remapped to the same physical page,
while the other page is marked as free. This technique can
lower the physical memory utilization of as system signifi-
cantly. However, memory might be shared between completely
unrelated and possibly sandboxed processes, and even between
processes running in different virtual machines.

C. Cache Attacks and Rowhammer

Cache attacks exploit timing differences caused by the
lower latency of CPU caches compared to physical memory.
The possibility of exploiting these timing differences was first
discovered by Kocher [28]] and Kelsey et al. [25]. Practical
attacks have focused on side channels on cryptographic algo-
rithms and covert channels. Access-driven cache attacks can
be devised in two types: Prime+Probe [39], [40], [48] and
Flush+Reload [13], [55].

In Prime+Probe attacks, the attacker fills the cache, then
waits for the victim to evict some cache sets. The attacker
reads data again and determines which sets were evicted. The
time taken by the accesses to the cache set is proportional
to the number of cache ways that have been occupied by
other processes. The challenge for this type of attack is the
granularity, i.e., the ability to target a specific set without
any shared memory. Indeed, modern processors have a phys-
ically indexed last-level cache, use complex addressing, and
undocumented replacement policies. Cross-VM side-channel
attacks [19]], [32] and covert channels [36] that tackle these
challenges have been presented in the last year. Oren et al. [38]]
showed that a Prime+Probe cache attack can be launched from
within sandboxed JavaScript in a browser, allowing a remote
attacker can eavesdrop on network traffic statistics or mouse
movements through a website.

Flush+Reload attacks work on a single cache line gran-
ularity. It works by frequently flushing a cache line using
the clflush instruction. By measuring the time it takes
to reload the data, the attacker determines whether a tar-
geted address has been reloaded by another process in the
meantime. Flush+Reload exploits the availability of shared
memory and especially shared libraries between the attacker
and the victim program. Gruss et al. [I2] have shown that a
variant of Flush+Reload without the c1f1lush instruction is
possible without a significant loss in accuracy. Applications of
Flush+Reload have been shown to be reliable and powerful,
mainly to attack cryptographic algorithms [[14]], [22]], [23], [S9].

Recent cross-core Prime+Probe and Flush+Reload attacks
exploit two properties of modern CPU caches and the operating
system. First, the last-level cache is shared among all cores
and thus several processes work simultaneously on the same
cache. Second, the last-level cache is inclusive to the lower
cache levels. Thus an attacker can evict data not only from
the last-level cache but also from the local lower levels of the
other CPU cores.

Rowhammer is not a typical cache attack but a DRAM vul-
nerability that causes random bit flips by repeatedly accessing
a DRAM row [27]]. It however shares some similarities with
caches attacks since the accesses must bypass all levels of
caches to reach DRAM and trigger bit flips. Attacks exploiting
this vulnerability have already been demonstrated to gain
root privileges and to evade a sandbox [45]]. The original
attack used the c1flush instruction to flush data from the
cache, but it has been showed that it is possible to trigger
bit flips without this instruction, by performing cache eviction
through memory access patterns [11]]. Both techniques cause
a significant number of accesses to the cache, that resemble to
a cache attack.

III. DETECTING CACHE ATTACKS WITH HARDWARE
PERFORMANCE COUNTERS

Hardware performance counters are special-purpose regis-
ters that are used to monitor special hardware-related events.
Events that can be monitored include cache references and
cache misses on the last-level cache. They are mostly used
for performance analysis and fine tuning, but have been
recently proposed to detect Rowhammer and the Flush+Reload
attack [7], [15].

We analyze the feasibility of such detection mecha-
nisms using the Linux perf_event_open syscall inter-
face that provides userspace access to a subset of all avail-
able performance counters [1]. The actual accesses to the
model specific registers are performed in the kernel. The
perf_event_open syscall interface can be used without
root privileges by any process to monitor its own influence on
the performance counters or the influence of child processes.
A system service could run on a higher privilege level and
thus use performance counters without restrictions. During our
tests we ran the performance monitoring on root privileges
to avoid any restrictions. Some performance events allow
monitoring software-based events, kernel events or interrupts.
We analyzed all 23 performance events available on our system
of type PERF_TYPE_HARDWARE for generic hardware events
and PERF_TYPE_HW_CACHE for specific cache events. We

TABLE 1. LIST OF HARDWARE PERFORMANCE EVENTS WE USE.

Name Description

BPU_RA

BPU_RM
BRANCH_INSTRUCTIONS
BRANCH_MISSES
BUS_CYCLES
CACHE_MISSES
CACHE_REFERENCES
UNC_CBO_CACHE_LOOKUP

Branch prediction unit read accesses
Branch prediction unit read misses
Retired branch instructions

Brach mispredictions

Bus cycles

Last-level cache misses

Last-level cache accesses

System-wide C-Box last-level events in-
cluding c1flush (total over all slices)

CPU_CYCLES CPU cycles

DTLB_RA Data TLB read accesses
DTLB_RM Data TLB read misses
DTLB_WA Data TLB write accesses
DTLB_WM Data TLB read misses
INSTRUCTIONS Retired instructions

ITLB_RA Instruction TLB read accesses
ITLB_RM Instruction TLB write accesses
LID_RA L1 data cache read accesses
L1ID_RM L1 data cache read misses
L1D_WA L1 data cache write accesses
L1ID_WM L1 data cache write misses
L1I_RM L1 instruction cache read misses
LL_RA Last-level cache read accesses
LL_WA Last-level cache write accesses

REF_CPU_CYCLES CPU cycles without scaling

observe that apart from a few hardware performance coun-
ters, most do not allow distinguishing between cache attack
processes and benign processes. We additionally analyzed
the uncore performance monitoring units called C-Box, with
one C-Box per cache slice. They allow monitoring an event
called UNC_CBO_CACHE_LOOKUP, that counts lookups to a
cache slice, including by the c1f1ush instruction. The C-Box
monitoring units are not available through a generic interface
but only through model specific registers. A list of all events
we use in our evaluation can be found in Table [

We evaluated the 24 performance counters for the following
scenarios:

1) Idle: an idle system,

2) Firefox: a normal and benign activity with a user
scrolling down the Twitter search feed for the hashtag
#rowhammer in Firefox,

3) OpenTTD: a user playing a game

4) stress -m 1: a benign but memory intensive activity by
executing stress -m 1,

5) stress -c 1: a benign but CPU intensive activity by
executing stress -c 1,

6) stress -i 1: a benign but I/O intensive activity by executing
stress -i 1,

7) Flush+Reload: a Flush+Reload side-channel attack on
the GTK library to spy on keystroke events,

8) Rowhammer: a Rowhammer attack.

A good detection mechanism classifies as benign the scenarios
1 to 6 and as attacks the scenarios 7 and 8.

The main loop that is used in the Flush+Reload and
Rowhammer attacks causes a high number of last-level cache
misses while executing only a small piece of code. Executing
only a small piece of code causes only a low pressure on
the instruction TLB. Benign software will rather cause a high
pressure on the instruction TLB as well. Therefore, we use the
instruction TLB performance counters a normalization factor
for the other performance counters.

TABLE II.

COMPARISON OF PERFORMANCE COUNTERS NORMALIZED TO THE NUMBER OF INSTRUCTION TLB EVENTS IN DIFFERENT CACHE ATTACKS

AND NORMAL SCENARIOS.

Test sleep 135 Firefox ~ OpenTTD stress -m 1 stress -c 1 stress -i 1 Flush+Reload =~ Rowhammer

BPU_RA 4.35 14.73 67.21 92.28 6109276.79 3.23 127443.28 23778.66

BPU_RM 0.36 0.32 1.87 0.00 12320.23 0.36 694.21 25.53

BRANCH_INSTRUCTIONS 4.35 14.62 74.73 92.62 6094264.03 3.23 127 605.71 23834.59

BRANCH_MISSES 0.36 0.31 2.06 0.00 12289.93 0.35 693.97 25.85

BUS_CYCLES 441 1.94 12.39 52.09 263816.26 6.20 30420.54 98406.44

CACHE_MISSES 0.09 0.15 2.35 58.53 0.06 1.92 693.67 13766.65

CACHE_REFERENCES 0.40 0.98 6.84 61.05 0.31 2.28 693.92 13800.01

UNC_CBO_CACHE_LOOKUP 432.99 3.88 18.66 4166.71 0.31 343224.44 2149.72 50094.17

CPU_CYCLES 38.23 67.45 449.23 2651.60 9497363.56 237.62 1216701.51 3936969.93

DTLB_RA 5.11 19.19 123.68 31.78 6076031.42 3.04 47123.44 25459.36

DTLB_RM 0.07 0.09 1.67 0.05 0.05 0.04 0.05 0.03

DTLB_WA 1.70 11.18 54.88 30.97 3417764.10 1.13 22868.02 25163.03

DTLB_WM 0.01 0.01 0.03 2.50 0.01 0.01 0.01 0.16

INSTRUCTIONS 20.24 66.04 470.89 428.15 20224639.96 11.77 206014.72 132896.65

ITLB_RA 0.95 0.97 0.98 1.00 0.96 0.97 0.96 0.97

ITLB_RM 0.05 0.03 0.02 0.00 0.04 0.03 0.04 0.03

LID_RA 5.11 18.30 128.75 31.53 6109271.97 3.01 47230.08 26173.65

LID_RM 0.37 0.82 8.47 61.63 0.51 0.62 695.22 15630.85

LID_WA 1.70 10.69 57.66 30.72 3436461.82 1.13 22919.77 25838.20

LID_WM 0.12 0.19 1.50 30.57 0.16 0.44 0.23 10.01

L1I_RM 0.12 0.65 0.21 0.03 0.65 1.05 1.17 1.14

LL_RA 0.14 0.39 5.61 30.73 0.12 0.47 695.35 9067.77

LL_WA 0.01 0.02 0.74 30.30 0.01 0.01 0.02 472697

REF_CPU_CYCLES 157.70 69.69 445.89 1872.05 405922.02 223.08 109853432 3542570.00
Table shows a comparison of performance counters the rate

for the 8 different scenarios normalized to the number of
instruction TLB events. Not all cache events are suitable
for detection. Indeed, the UNC_CBO_CACHE_LOOKUP event
that counts cache slice events including c1flush operations
shows very high values in case of stress -i. It would
thus lead to false positives. Similarly, the INSTRUCTIONS
event used in previous work by Chiappetta et al. [7] has a
significantly higher value in case of stress -c than in the
attack scenarios and would cause false positives in the case
of benign CPU intensive activities. The REF_CPU_CYCLES
is the unscaled total number of CPU cycles consumed by the
process. Divided by the TLB events, it shows how small the
executed loop is. It is higher in case of a high CPU core
utilization and a low number of instruction TLB and L1 misses.
It has a high count in the case of cache attacks, but also for
the stress —c tool. Due to the possibility of false positives,
we will not consider REF_CPU_CYCLES in our evaluation.

4 out of 24 events allow detecting both Flush+Reload
and Rowhammer without causing false positives for benign
applications. The rationale behind these events is as follows:

1) CACHE_MISSES occur after data has been flushed from
the last-level cache,

2) CACHE_REFERENCES occur when reaccessing memory,

3) L1D_RM occur because flushing from last-level cache also
flushes from the lower cache levels,

4) LL_RA are a subset of the CACHE_REFERENCES
counter, they occur when reaccessing memory,

Two of the events are redundant: L1D_RM is redundant with
CACHE_MISSES, and LL_RA with CACHE_REFERENCES.
We will thus focus only on the CACHE_MISSES and
CACHE_REFERENCES events.

We define that a process is considered as malicious if more
than 1 cache miss or 1 cache reference per instruction TLB
event per second is observed. That is, the attack is detected if

C
CACHE_MISSES

- 9
Clnsz‘mction TLB event

with C' the value of the corresponding performance counter,

or the rate

CCACHE REFERENCES
= > 1.

CInszruction TLB event

The threshold for the cache reference and cache hit rate
of 1 per second is more than double the highest value of
any benign process we tested and only a fifth of the lowest
value we measured for Flush+Reload in both cases. Based
on these thresholds, we perform a classification of processes
into malicious and benign processes. We tested this detection
mechanism against various cache attacks and found that it is
suitable to detect different Flush+Reload, Prime+Probe and
Rowhammer attacks as malicious.

1V. THE Flush+Flush ATTACK

In this section, we present an attack we called Flush+Flush
that is a more stealthy alternative to existing cache attacks,
and that defeats detection with hardware performance counters.
The Flush+Flush attack is a variant of the Flush+Reload at-
tack. It is applicable in multi-core and virtualized environments
if read-only shared memory with the victim process can be
acquired.

Our attack builds upon the observation that the c1flush
instruction leaks information on the state of the cache. Indeed,
the c1flush instruction can abort early in case of a cache
miss. In case of a cache hit, it has to trigger eviction on all local
caches. Furthermore, if the eviction is on a remote core it has
a higher minimum execution time in case of a cache hit. Thus,
an attacker can derive whether a memory access is served from
the CPU cache and a process can derive information on which
core it runs on.

Listing [T] shows an implementation of the Flush+Flush
attack. The attack consists of only one phase, that is executed

while (1)
{

1

2

3 mfence () ;

4 size_t time = rdtsc();

5 mfence () ;

6 clflush (target_addr);

7 mfence () ;

8 size_t delta = rdtsc() — time;
9 mfence () ;

10 /!l report cache hit/miss

11 report(delta);

12 size_t count = YIELD_COUNT;

13 while (count——) sched_yield ();
14 }

Listing 1. Flush+Flush implementation in C.
TABLE III. EXPERIMENTAL SETUPS.
CPU Microarchitecture ~ Cores LLC associativity
i5-2540M Sandy Bridge 2 12
i5-3320M Ivy Bridge 2 12
i7-4790 Haswell 4 16

in an endless loop. It is the execution of the clflush
instruction on a targeted shared memory line. The attacker
measures the execution time of the clflush instruction.
Based on the execution time, the attacker decides whether the
memory line has been cached or not. As the attacker does
not load the memory line into the cache, this reveals whether
some other process has loaded it. At the same time, c1flush
evicts the memory line from the cache for the next loop round
of the attack. At the end of an attack round, the program
optionally yields YIELD_COUNT times in order to lower the
system utilization and waits for the second process to perform
some memory accesses.

The measurement is done using the rdtsc instruction
that provides a sub-nanosecond resolution timestamp. Modern
processors support out-of-order execution, which does not
guarantee that the instructions are executed in the order in
which they are written. It is thus essential to surround rdtsc
with mfence instructions for the measurement, as c1flush
is only ordered by mfence, but not by any other means.

Figure [I] shows the execution time histogram of the
clflush instruction for cached and non-cached memory
lines, run on the three setups with different recent microar-
chitectures described in Table The timing difference of the
peaks is 12 cycles on Sandy Bridge, 9 cycles on Ivy Bridge,
and 12 cycles on Haswell. If the address maps to a remote
core, another penalty of 3 cycles is added to the minimum
access time for cache hits. The difference is enough to be
observed by an attacker. We discuss this timing difference and

its implications in Section

The Flush+Flush attack inherently has a lower accuracy
than the Flush+Reload technique due to the lower timing
difference between a hit and a miss. New cache attacks on
implementations of cryptographic algorithms will thus yield
a better performance with Flush+Reload. On the other hand,
the Flush+Flush attack also has some clear advantages com-
pared to the Flush+Reload technique. First, the reload-step of
the Flush+Reload attack can trigger the prefetcher and thus
destroy measurements by fetching data into the cache. This

—— Sandy Hit --- Sandy Miss

—— Ivy Hit --- Ivy Miss
Haswell Hit Haswell Miss
100% T T T T
@ 5% .
wn
<
O
S 50%| 2
[
m
o)
Z 25%| .
Z
0% - 2
| | | | | |
100 120 140 160 180 200
EXECUTION TIME (IN CYCLES)
Fig. 1. Comparison of memory access and c1flush instruction on cached

and uncached memory on different CPU architectures

is the case especially when monitoring more than one address
within a physical page [[12]. Second, the c1flush instruction
typically takes between 100 and 200 cycles. The reload-step of
the Flush+Reload attack adds at least 250 cycles when causing
a cache miss. Thus, one round of the Flush+Flush attack is
significantly faster than one round of the Flush+Reload attack.
Third, recently proposed detection mechanisms measure cache
references and cache misses. The detection mechanism we
described in Section also uses the CACHE_REFERENCES
and CACHE_MISSES performance counters. However, the
Flush+Flush attack does not influence these performance
counters significantly.

In the following sections, we evaluate the performance and
the detectability of Flush+Flush compared to the state-of-the-
art cache attacks Flush+Reload and Prime+Probe in three
scenarios: a covert channel, a side channel on user input and
a side channel on AES with T-tables.

V. COVERT CHANNEL COMPARISON

In this section, we describe a generic low-error cache covert
channel framework. In a covert channel, an attacker runs two
unprivileged applications on the system under attack. The
processes are cooperating to communicate with each other,
even though they are not allowed to by the security policy.
The cache covert channel is established on an address in a
shared library that is used by both programs. We show how the
two processes can communicate through this read-only shared
memory by means of a cache covert channel and how it can
be implemented using the Flush+Flush, Flush+Reload, and
Prime+Probe technique. Finally, we compare the performance
and the detectability of the three implementations. In the
remainder of the paper, all the experiments are performed using
the Haswell CPU described in Table

1 Byte
Sequence
Number

2 Byte

(N-3) Byte Payload CRC-16

Fig. 2. Format of a data packet in our covert channel framework.

Read Data Frame

Data
Frame Valid
(CRC)?

Send Data Frame
Read ACKN

Send ACKN

ACKN
Received?

Sequence
Number Valid?

Next Data Frame

Save Frame

Sender Receiver

Fig. 3. Sender and receiver process control flow chart as implemented in our
covert channel framework.

A. A Low-error Cache Covert Channel Framework

In order to perform meaningful experiments and obtain
comparable and fair results, the experiments must be repro-
ducible and tested in the same conditions. This includes the
same hardware setup, and the same protocols. Indeed, we can-
not compare covert channels from published work [32], [36]
that have different capacities and error rates. Therefore, we
build a framework to evaluate covert channels in a reproducible
way. This framework is generic and can be implemented over
any covert channel that allows bidirectional communication,
by implementing the send () and receive () functions.

The central component of the framework is a simple
transmission protocol. Data is transmitted in packets of N
bytes, consisting of N — 3 bytes payload, a 1 byte sequence
number and a CRC-16 checksum over the packet. The se-
quence number is used to distinguish consecutive packets. The
CRC-16 checksum is used to detect corruption. If a received
packet is valid, a byte is used to acknowledge the sequence
number. Otherwise the packet is retransmitted. The format of
a packet is shown in Figure [2] The transmission algorithms are
shown in Figure 3]

Although errors are still possible in case of a false positive
CRC-16 checksum match, the probability is low. We choose
the parameters such that the effective error rate is below
5%. The channel capacity measured with this protocol is
comparable and reproducible. Furthermore, it is close to the
effective capacity in a real-world scenario, because error-

Sender Receiver Sender Receiver
Ll | ™ . T
L2 J
/s 2 !
L3 < =
(a) Transmitting a ’1’ (b) Transmitting a ’0’
Fig. 4. Tllustration of the Flush+Flush covert channel.

correction cannot be omitted.

B. Covert Channel Implementations

We first implemented the Flush+Reload covert channel.
In this implementation, the sender and the receiver access
the same shared library and run Flush+Reload attacks on a
fixed set of offsets in the library to communicate. The sender
accesses the memory location to transmit a 1, and stays idle
to transmit a 0. The receiver monitors the shared cache line to
receive the bits. It measures the time taken to reload the line
in order to infer the bit. If the access is fast, it means the line
is cached, and a 1 is received. If the access is slow, it means
the line is served from the DRAM, and a O is received. The
receiver then flushes the line for the transmission of the next
bit. The bits retrieved are then parsed as a data frame according
to the transmission protocol. The sender monitors cache hits
on some memory locations using Flush+Reload too, to receive
packet acknowledgments.

The second implementation is the Flush+Flush covert
channel, illustrated by Figure It works similarly to the
Flush+Reload covert channel. As in Flush+Reload, the sender
and the receiver access the same shared library. To transmit a
1 (Figure f}a), the sender accesses the memory location, that
is cached (step 1). This time, the receiver only flushes the
shared line. As the line is present in the last-level cache by
inclusivity, it is flushed from this level (step 2). A bit also
indicates that the line is present in the L1 cache, and thus
must also be flushed from this level (step 3). To transmit a
0 (Figure [}b), the sender stays idle. The receiver flushes the
line (step 1). As the line is not present in the last-level cache,
it means that it is also not present in the lower levels, which
results in a faster execution of the c1f1lush instruction. Thus
only the sender process performs memory accesses, while the
receiver only flushes cache lines. To send acknowledgment
bytes the receiver performs memory accesses and the sender
runs a Flush+Flush attack.

The third implementation is the Prime+Probe covert chan-
nel. It uses the same attack technique as Liu et al. [32],
Oren et al. [|38]], and Maurice et al. [36]]. The sender transmits
a 1 bit by priming a cache set. The receiver probes the same
cache set. On our Haswell CPU this requires 16 memory
accesses. By observing the access time, the receiver derives

what the other process did: a long access means a 1, whereas
a short access means a 0. We make two adjustments for
convenience and to focus solely on the transmission part.
First, we compute a static eviction set by using the complex
addressing function [35]] on physical addresses. This avoids the
possibility of errors introduced by the timing-based eviction
set computation. Second, we map the shared library into our
address space to determine the physical address to attack.
Yet, it is never accessed and unmapped even before the
Prime+Probe attack is started. This adjustment is not required
to perform the attack and does not influence it in any way. We
assume that sender and receiver have agreed on the cache sets
in a preprocessing step. This is practical even for a timing-
based approach.

C. Performance Evaluation

Table compares the capacity and the detectability of
the three covert channels in different configurations. The
Flush+Flush covert channel is the fastest of the three covert
channels. With a packet size of 28 bytes we achieve a
transmission rate of 496 KB/s. This is significantly faster than
previously published cache-based covert channels. At the same
time the effective error rate is only 0.84%. The Flush+Reload
covert channel also achieved the best performance at a packet
size of 28 bytes. The transmission rate then is 298 KB/s and
the error rate < 0.005%. With a packet size of 4 bytes, the
covert channel performance is lower in all three cases.

A Prime+Probe covert channel with a 28-byte packet
size is not realistic. First, to avoid triggering the hardware
prefetcher we do not access more than one address per physical
page. Second, for each eviction set we need 16 addresses. Thus
we would require 32 - 8 - 4096 - 16 = 16 GB of memory only
for the eviction sets. For Prime+Probe we achieved the best
results with a packet size of 5 bytes. With this configuration
we achieve a transmission rate of 68 KB/s at an error rate
of 0.14%, compared to 132KB/s using Flush+Reload and
95 KB/s using Flush+Flush.

The Flush+Flush and Flush+Reload covert channels at
28 bytes packet size achieve a transmission rate significantly
higher than the other state-of-the-art covert channels. Espe-
cially, the Flush+Flush covert channel is 6.7 times as fast
as the fastest covert channel to date by Liu et al. [32] at a
comparable error rate. However, we perform our attack on a
recent Haswell CPU that has a cache replacement policy that
is different to the one of older CPUs, such as Sandy Bridge.
While the additional instructions executed add a small per-
formance penalty, the faster CPU increases the performances
slightly. However, compared our own Prime+Probe covert
channel, Flush+Flush is 7.3 times faster.

D. Detectability

To be stealthy, both the sender and the receiver processes
must be classified as benign. As shown in Table IV] the
Flush+Flush attack with a packet size of 4 bytes is the only
one to be classified benign for both sender and receiver process
by our detection mechanism described in Section [[TI] The
Flush+Flush receiver with a 28-byte packet size is close to the
detection threshold, but still classified as malicious. However,
at a S5-byte packet size it is slightly below the detection
threshold and thus classified as benign.

TABLE V. COMPARISON OF THE ACCURACY OF CACHE ATTACKS ON

USER INPUT.

Attack Technique Correct Detections False Positives

Flush+Reload 961 3
Flush+Flush 747 73
Prime+Probe — —

Flush+Reload and Flush+Flush use the same sender pro-
cess, the reference and miss count is mainly influenced by
the number of retransmissions and executed program logic.
Flush+Reload is detected in all cases either because of its
sender or its receiver, although its sender process with a 4-
byte packet size stays below the detection threshold. The
Prime+Probe attack is always well above the detection thresh-
old and therefore always detected as malicious.

For all covert channels, an adversary can choose to re-
duce the transmission rate in order to be stealthier. This is
achieved best with the Flush+Flush attack that is stealthier
than Flush+Reload for a similar capacity, in the case of 4-
byte packets. There is thus no advantage in reducing further
the transmission rate of Flush+Reload compared to using
Flush+Flush.

VI. SIDE-CHANNEL ATTACK ON USER INPUT

In this section, we consider an attack scenario where
an unprivileged attacker eavesdrops on keystroke timings by
performing a cache attack on a shared library.

A. Attack Implementation Using Flush+Flush

We attack an address in the GTK library
libgtk-3.50.0.1400.14 found by a Cache Template
Attack [12]]. The GTK library is the default user-interface
framework on many Linux systems. The address we attack
reacts on every keystroke using the Flush+Reload attack.

The Flush+Flush implementation is similar to the
Flush+Reload implementation. The spy program loads the
shared library. The spy constantly flushes the address, and
derives when a keystroke occurred, based on the execution
time of the c1flush instruction.

B. Performance Evaluation

We compare the three attack techniques Flush+Flush,
Flush+Reload, and Prime+Probe, based on their performance
in this side-channel attack scenario. During each test we
simulate a user typing a 1000-character text into an editor.
Each test takes 135 seconds. Table [V] shows the results of the
attack.

We see that Flush+Reload performs best, with 96.1%
correctly detected keystrokes. At the same time, we measured
only 3 false positives. This allows direct logging of keystroke
timings.

Flush+Flush performs notably well, with 74.7% correctly
detected keystrokes. However, we also find 73 false positives.
That is more than one false positive in 2 seconds. This makes
a practical attack much harder, but not completely impossible.

While Prime+Probe performs worse than Flush+Flush in
the covert channel scenario, it works even worse for low

TABLE IV. COMPARISON OF CAPACITY AND DETECTABILITY OF THE THREE CACHE COVERT CHANNELS WITH DIFFERENT PARAMETERS. Flush+Flush
AND Flush+Reload USE THE SAME SENDER PROCESS.

Attack Packet Size Capacity Error Rate Sender Sender Sender Receiver Receiver Receiver
Technique References Misses Classification References Misses Classification
Flush+Flush 28 496 KB/s 0.84% 1809.26 96.66 Malicious 1.75 1.25 Malicious
Flush+Reload 28 298 KB/s 0.00% 526.14 56.09 Malicious 110.52 59.16 Malicious
Flush+Reload 5 132KB/s 0.01% 6.19 3.20 Malicious 45.88 44.77 Malicious
Flush+Flush 5 95 KB/s 0.56% 425.99 418.27 Malicious 0.98 0.95 Benign
Prime+Probe 5 67 KB/s 0.36% 48.96 31.81 Malicious 4.64 445 Malicious
Flush+Reload 4 54 KB/s 0.00% 0.86 0.84 Benign 2.74 1.25 Malicious
Flush+Flush 4 52 KB/s 1.00% 0.06 0.05 Benign 0.59 0.59 Benign
Prime+Probe 4 34KB/s 0.04% 55.57 32.66 Malicious 5.23 5.01 Malicious

TABLE VI COMPARISON OF PERFORMANCE COUNTERS NORMALIZED
TO THE NUMBER OF INSTRUCTION TLB EVENTS FOR CACHE ATTACKS ON
USER INPUT.

Test Cache References Cache Misses Classification

Malicious
Benign

Flush+Reload
Flush+Flush

5.140
0.002

5.138
0.000

frequency cache side-channel attacks. We could not distinguish
whether a cache hit was a correctly detected keystroke or one
of many false positive cache hits. The results of this attack
are thus not exploitable. Indeed, if the attacker is eavesdrop-
ping on non-repeatable low frequency events, a single false
positive cache hit during the measurement destroys the whole
measurement. In case of low frequency events, this is in the
range of milliseconds to seconds. Moreover, as the keystroke is
a user input, the attack is non-repeatable in contrast to attacker-
controlled measurements such as encryptions.

The reason for the huge gap in performance between
Flush+Flush and Prime+Probe in this scenario lies in a fun-
damental difference between these two attacks. Flush+Flush
operates at the granularity of a single line, while Prime+Probe
focuses on a cache set. By accessing the whole cache set,
we do not measure the timing difference caused by a single
cache hit and miss respectively, but instead the timing differ-
ence caused by several cache hits and several cache misses
respectively. Thus it is a form of amplification of the timing
difference used to transmit a bit. Without this amplification
Flush+Flush performs better, which is the case in the side-
channel scenario. This is true for all side-channel scenarios,
as normal programs will rarely access several addresses in the
same cache set dependent on the same secret event.

C. Detectability

To evaluate the detectability we again monitored the cache
references and cache misses events, and compared the three
cache attacks with each other and with an idle system. Table[V]]
shows that Flush+Reload generates a high number of cache
references, whereas Flush+Flush causes a negligible number
of cache references. We omitted Prime+Probe in this table
as it was not sufficiently accurate to perform the attack and
thus a comparison of cache references or cache misses is
not meaningful. Flush+Reload generates many cache misses,
whereas Flush+Flush causes almost no cache misses at all.

Flush+Reload yields the highest accuracy in this side-
channel attack, but it is easily detected. On the other hand,
Flush+Flush is a viable and stealthy alternative to the

Flush+Reload attack as it is not classified as malicious by
our mechanism presented in Section

VII. SIDE-CHANNEL ATTACK ON AES WITH T-TABLES

To round up our comparison with other cache attacks, we
compare Flush+Flush, Flush+Reload, and Prime+Probe in
a high frequency side-channel attack scenario. Finding new
cache attacks is out of scope of our work. Instead, we try
to perform a fair comparison between the different attack
techniques by implementing a well known cache attack using
the three techniques on a vulnerable implementation of a
cryptographic algorithm. Cryptographic algorithms have been
the main focus of cache side-channel attacks in the past. Al-
though appropriate countermeasures are already implemented
in the case of AES [18], [24], [30], [43], we attack the
OpenSSL T-Table-based AES implementation that is known
to be susceptible to cache attacks [2], [3], [S], [13], [20],
[21], [39], [52]. We compare the three attack techniques in a
first round attack on AES, that can be implemented similarly
using the different attack techniques. We use the AES T-table
implementation from the OpenSSL library version 1.0.2 [37].
This AES implementation is disabled by default for security
reason, but it is still contained in the source code for the
purpose of comparing new and existing cache attacks.

The AES algorithm uses the T-tables to compute the
ciphertext based on the secret key & and the plaintext p. During
the first round, table accesses are made to entries T [p; & k;]
with ¢ = 7 mod 4 and 0 < ¢ < 16. These accesses are cached
and an attacker is able to detect which accesses were made.
Thus an attacker can derive possible values for p; ® k; and
derive possible key-byte values k; in case p; is known.

A. Attack Implementation Using Flush+Flush

As we have seen in the other scenarios, the implementation
of Flush+Flush is very similar to Flush+Reload. This is also
the case here. We perform a chosen-plaintext attack. Thus,
the attacker triggers an encryption, choosing p; while all p;
with ¢ # j are random. Not every value for p; and p; has
to be tested in the first round attack. One cache line holds
16 T-Table entries. Thus, we can set the last bits of every p;
and p; to zero, reducing the search space even further. The
cache attack is now performed on the first line of each T-
Table. The attacker repeats the encryptions with new random
plaintext bytes p; until only one p; remains to always cause
a cache hit. The attacker learns that p; ® k; =47 0 and thus
k; =47 pi. After performing the attack for all 16 key bytes,
the attacker has derived 64 bits of the secret key k.

Fig. 5. Comparison of Cache Templates (address range of the first T-table)
generated using Flush+Reload (left), Flush+Flush (middle), and Prime+Probe
(right). In all cases kg = 0x00.

TABLE VIIL. NUMBER OF ENCRYPTIONS NECESSARY TO RELIABLY
GUESS THE UPPER 4 BITS OF A KEY BYTE CORRECTLY.

Attack Technique ~ Number of Encryptions

Flush+Reload 250
Flush+Flush 400
Prime+Probe 4800

B. Performance Evaluation

Figure [5] shows a comparison of cache templates gener-
ated using Flush+Reload, Flush+Flush, and Prime+Probe.
The traces were generated using 1000000 encryptions to
create a visible pattern in all three cases. It is comparable
to similar cache templates in published literature [12], [39],
[46]]. Table [VII] shows how many encryptions are necessary to
determine the upper 4 bits correctly. Therefore, we performed
encryptions until the correct guess for the upper 4 bits of
key byte ko had a 5% margin over all other key candidates.
Flush+Flush requires around 1.6 times as many encryptions as
Flush+Reload, but 12 times less than Prime+Probe to achieve
the same accuracy.

C. Detectability

To evaluate the detectability, we again monitored the
cache reference and cache miss events of the spy process,
and compared the three cache attacks with each other, per-
forming the same number of encryptions. Table [VIII] shows
that Prime+Probe causes significantly more cache refer-
ences and cache misses than the other attacks. Flush+Reload
causes around 30% more cache references than Flush+Flush.
Flush+Flush causes almost no cache misses at all.

Applying the detection mechanism from Section [MI]
Prime+Probe and Flush+Reload can clearly be detected.
Flush+Flush can only be detected based on the number
of cache references, but not the number of cache misses.
However, even for the cache references it is close to the
detection threshold and an attacker could easily avoid detection
by stretching the attack over a slightly longer period of time.
Furthermore, the Flush+Flush attack took only 163 seconds
whereas Flush+Reload took 215 seconds and Prime+Probe
234 seconds for the identical attack. As the detection measures
cache references and cache misses per instruction TLB event
per second, this clearly helps the detection of Flush+Flush
here. However, if an attacker would slow Flush+Flush down
to the same speed as Prime+Probe, Flush+Flush would remain
undetected. Thus our measurements show that Flush+Flush is
indeed a stealthy and fast alternative to Flush+Reload in this
side-channel attack scenario.

-10°

NUMBER OF CASES

| | | | |
140 145 150 155 160
EXECUTION TIME (IN CYCLES)

Fig. 6. Excerpt of the histogram when flushing an address that maps to core
slice 1 from different cores. The lower execution time on core 1 shows the
address maps to slice 1.

VIII. DISCUSSION

In this section, we detail some other findings following our
study of how the c1flush instruction behaves. We also detail
how to evade detection by performance counters and possible
countermeasures to Flush+Flush attacks.

A. Using clflush to Detect the Core on which a Process
Runs

Apart from building cache covert channels and cache side-
channel attacks we can also use the Flush+Flush attack to
determine on which CPU core a process is running. Indeed,
physical addresses statically map to cache slices using a
complex addressing function. Each slice is interconnected by
a ring bus, so that each core can access every slice. However,
each core has a direct access to its local slice. We can thus
measure a difference in timing with the c1f1lush instruction
when accessing the local slice rather than a remote slice.
Figure [6] shows an excerpt of the execution time histogram
when the process runs on one of the CPU cores. The access
to an address that maps to slice 1 takes less cycles when the
program runs on core 1 (for which slice 1 is the local slice),
than when the program runs on any other core. If we determine
the physical address of a memory access on a local slice, we
can use the complex addressing function [35] to determine on
which core the process runs.

This can be exploited to optimize cache covert channels.
While the attack first runs on the last-level cache, the two
processes can communicate to each other which core they
are running on. If both processes run on the same system-
assigned physical CPU core they either run on different virtual
hyperthreading cores or time-share a single physical core. In
either case they can then switch to a covert channel on the
L1 or L2 cache instead of the last-level cache. Such a covert
channel would have a higher performance as long as both
processes remain on the same physical CPU core.

The same information can also be exploited to improve
the Rowhammer attack [[11]. The Rowhammer attack induces

TABLE VIIL

COMPARISON OF THE PERFORMANCE COUNTERS WHEN PERFORMING 256 MILLION ENCRYPTIONS WITH DIFFERENT CACHE ATTACKS

AND WITHOUT AN ATTACK.

Attack Technique Cache References Cache Misses

Execution Time in s

References (Normalized) Misses (Normalized) Classification

Flush+Reload 1024035376 19284 602
Prime+Probe 4221994794 294897 508
Flush+Flush 768077159 1741

215 2513.43 47.33 Malicious
234 1099.63 76.81 Malicious
163 1.40 0.00 Malicious

random bit flips in DRAM modules by performing accesses to
the same memory location with a high frequency. However, as
modern CPUs have large caches, frequent accesses to the same
memory location will typically be served from the cache. The
clflush instruction is used to force the memory accesses
to be served from DRAM on each access. We observed that
running c1flush on alocal slice lowers the execution time of
each Rowhammer loop round by a few cycles. As Gruss et al.
[11] noted, the probability of bit flips increases as the execution
time lowers, thus we can leverage the information about which
core the program is executed on to improve the attack.

A similar timing difference also occurs upon memory
accesses that are served from the local or a remote slice
respectively. The reason for this timing difference is that
the local cache slice has a direct connection to the CPU
core while remote cache slices are connected via a ring bus.
Thus the data has to travel through the ring bus before it
arrives at the CPU core we are running on. However, as
memory accesses will also be cached in lower level caches,
it is more difficult to observe the timing difference without
clflush. The c1flush instruction directly manipulates the
last-level cache, thus lower level caches cannot hide the timing
difference in this case.

While the operating system can restrict access on infor-
mation such as the CPU core the process is running on and
the physical address mapping to make efficient cache attacks
harder, it cannot restrict access to the c1flush instruction.
Hence, the effect of such countermeasures is lower than
expected.

B. Evading Detection by Performance Counters

In addition to Flush+Flush, existing attacks can be modi-
fied to evade detection by performance counters. The goal is
to change the patterns of cache references and cache misses
to make them look like benign applications. This can be done
in two ways.

First, it is possible to reduce the number of cache references
and cache misses over time. For covert channels, this reduces
the transmission rate. Our experiments show that Prime+Probe
is always detected as malicious, even with a severely low-
ered transmission rate. For a similarly low transmission rate,
Flush+Flush is already stealthier than Flush+Reload. More-
over, reducing cache references and misses makes side-channel
attacks more difficult or impossible, since they need fine-
grained measurements. In contrast, Flush+Flush attack on
user input data can already be performed in a high frequency
without detection.

Second, it is possible to increase the number of perfor-
mance events that are used for normalization, in our case
the instruction TLB events. Cache attacks like Flush+Reload
can thus be modified to induce the same behavior, by using

additional memory accesses to shape the instruction TLB and
cache behavior to a more ambiguous pattern.

However, these techniques cannot be applied to Rowham-
mer. Both, additional memory accesses and introducing delays
reduce the memory access frequency too much to trigger bit
flips.

C. Countermeasures to Flush+Flush Attacks

Given the stealthiness of the Flush+Flush attack, the
possibility to improve covert channels by detecting on which
CPU core a process runs on and the possibility to improve the
Rowhammer attack using clflush, we suggest modifying
the c1flush instruction to counter these attacks. As shown
in Figure [T} the difference in the execution time of c1flush
is 3 cycles on average on our test system. This is negligible in
terms of performance. Furthermore, the c1f1ush instruction
is used only in rare situations. Most software does not use the
clflush instruction at all. We propose making clflush
a constant-time instruction. That is, if the CPU executes the
clflush instruction and the address is found in the local
last-level cache slice, it should add a cycle penalty to remove
any observable timing difference. This would prevent the
Flush+Flush attack completely, as well as information leakage
on cache slices and CPU cores.

The stealthiness of Flush+Flush, compared to
Flush+Reload, is due to the absence of a reload phase
which causes less cache misses and cache references. With
Flush+Flush a process transmits a bit with value 1 with a
single memory access and a bit with value 0 without any
memory access. Prime+Probe requires comparably many
memory accesses to prime the cache set and to probe the
cache set. This causes numerous cache references and cache
misses. Yet, Flush+Flush still relies on an eviction phase,
and thus still causes the other process to trigger cache misses.
However, these cache misses are not trivial to detect at an
application-level. A way to detect our attack would be to
monitor each load, e.g., by timing, and to stop when detecting
too many misses. However, this solution is currently not
practical, as a software-based solution that monitors each
load would cause a significant performance degradation. A
similar solution called informing loads has been proposed
by Kong et al. [29]], however it is hardware-based and
needs a change in the instruction set. This could also be
implemented without hardware modifications by enabling the
rdtsc instruction only in privileged mode as can be done
by seccomp on Linux systems [33] since Linux 2.6.26 in
2008. Fogh [9] recently proposed to subsequently simulate
the rdtsc in an interrupt handler, degrading the accuracy of
measurements far enough to make cache attacks significantly
harder.

Finally, making the c1f1lush instruction privileged would
prevent the attack as well. However, this would require changes

in hardware and could not be implemented in commodity
systems.

IX. RELATED WORK
A. Detecting and Preventing Cache Attacks

While most of the contributions in terms of countermea-
sures focus on the prevention of attacks, a few of them aim at
detection.

1) Detection: Zhang et al. [58|] proposed HomeAlone, a
system-level solution that uses a Prime+Probe covert channel
to detect the presence of a foe co-resident virtual machine. The
system monitors random cache sets so that friendly virtual ma-
chines can continue to operate if they change their workload,
and that foe virtual machines are either detected or forced to
be silent. The goal of HomeAlone is different from ours, as
it does not explicitly seek to detect cache attacks but rather
co-resident virtual machines. In contrast with HomeAlone,
using performance counters to monitor cache attacks is less
fine-grained, i.e., we do not monitor individual cache sets.
However, as HomeAlone uses a cache attack in a defensive
way, the monitoring itself has a footprint on the cache usage,
whereas the use of performance counters has not. Thus using
performance counters does not cause a performance penalty
to legitimate applications, and is not detectable by an attacker.
Cache Template Attacks [[12]] can also be used to detect attacks
on shared libraries and binaries as a user. By performing a
systematic Flush+Reload attack on a specified address range
attacks are detected reliably. However, such a permanent scan
increases the system load and can only detect attacks in a small
address range within a reasonable response time.

Using hardware performance counters has been proposed
recently as a detection mechanism by Herath and Fogh [15]
and Chiappetta et al. [[7]. Herath and Fogh [15]] proposed
to monitor cache misses to detect Flush+Reload attacks
and Rowhammer. An operating system service monitors the
number of cache misses, and if it measures a peak, it will
interrupt the process causing the cache activity. The operating
system can then take further action to stop the attack, such as
terminating the program causing the excessive cache activity.
Simultaneously to our work, Chiappetta et al. [7] proposed
to build a trace of cache references and cache misses over
the number of executed instructions to detect Flush+Reload
attacks. They then proposed three methods to analyze this
trace: a correlation-based method, and two other ones based
on machine learning techniques. However, a learning phase
is needed to detect malicious programs that are either from a
set of known malicious programs or resemble a program from
this set. They are thus are less likely to detect new or unknown
cache attacks. Moreover, the correlation-based approach is not
suited to detect Rowhammer. In contrast, we build an ad-
hoc detection mechanism based on the ideas by Herath and
Fogh [[15]], searching for performance counter values that do
not occur in benign software. Additionally, we extend this
approach by proposing a new detection criteria less likely to
cause false positives.

Finally, Fogh [9]] proposed to make the rdtsc instruction
privileged to slow down malicious and benign software using
the rdtsc instruction. Likewise, it can be done to prevent

Rowhammer attacks and to detect cache attacks that use the
rdt sc instruction.

2) Prevention: Countermeasures against cache attacks can
be envisioned at three levels: at the hardware level, at the
system level, and finally, at the application level. At the
hardware level, several solutions have been proposed to prevent
cache attacks, either by removing cache interferences, or
randomizing them. The solutions include new secure cache
designs [31]], [50], [51]] or altering the prefetcher policy [10].
These solutions all necessitate changes in the hardware or
the instruction set and thus are not applicable in the near
future, in contrast to system or application level changes. At
the system level, page coloring provides cache isolation in
software [26], [42]. Other works proposed a more relaxed
isolation like Diippel [60] that repeatedly cleans caches that
are time-shared, e.g., the L1 cache. However, these solutions
cause performance issues, as they prevent an optimal use of
the cache. Application-level countermeasures like [[6] seek to
find the source of information leakage and patch it. Leaks
can be found with tools like Cache Template Attacks [12].
However, application-level countermeasures are bounded and
cannot prevent every cache attacks such as covert channels and
Rowhammer. In contrast with prevention solutions that incur
a loss of performance, using performance counters does not
prevent attacks but rather detect them without overhead, and
let the application or the system decide what action to take.

B. Usage of Hardware Performance Counters in Security

Hardware performance counters are traditionally used for
performance monitoring. They have also been used in a few
security scenarios. In defensive cases, they are used for the
detection of anomalous behaviors, with cases such as malware
detection [8], integrity checking of programs [34], control
flow integrity [54], and binary analysis [53]]. In offensive
scenarios, Uhsadel et al. [49] used performance counters to
profile the cache and derive a side-channel attack against
AES. Bhattacharya and Mukhopadhyay [4]] exploited the per-
formance counters to profile the branch misses to attack RSA.
Performance counters have also been used by Maurice et al.
[35] to reverse-engineer the complex addressing function of
the last-level cache of modern Intel CPUs.

C. Cache Covert Channels

Cache covert channels are a well-known problem, and
have been studied relatively to the recent evolutions in mi-
croarchitecture. The two main types of access-driven attacks
can be used to derive a covert channel. Covert channels
using Prime+Probe have already been demonstrated in [32],
[36]]. Flush+Reload has been used to derive side-channels
attacks [55], thus a covert channel can be derived easily.
However, to the best of our knowledge, there was no study
of the performance of such a covert channel.

In addition to building a covert channel with our new
attack Flush+Flush, we re-implemented Prime+Probe and
implemented Flush+Reload. We thus provide an evaluation
and a fair comparison between these different covert channels,
in the same hardware setup and with the same protocol.

D. Side-Channel Attacks on User Inputs

Section [VI| describes a side channel to eavesdrop on
keystrokes. If an attacker has root access to a system there
are simple ways to implement a keylogger. First, an attacker
could install the xinput tool and use it to build a keylogger.
The keylogger itself does not require root access in this case,
however, installing xinput does require root access. The
second option is to use the /dev/input/event« devices.
Here the attacker could manipulate the access rights so that
the keylogger again does not require root access. However,
manipulating the access rights requires root access.

Software-based side-channel attacks have already proven
to be a reliable way to eavesdrop on user input. Attacks either
exploit differences in the execution time [47], peaks in CPU
and cache activity graphs [44], or exploit system services
to guess user input in a targeted process [57]. Zhang et al.
[57] instrumented the procfs system on Linux to measure
inter-keystroke timings. Subsequently, they were able to derive
key sequences from inter-keystroke timings. Oren et al. [38]
demonstrated that an attacker can use the Prime+Probe attack
even from sandboxed JavaScript inside a browser to derive
user activities, such as mouse movements. Gruss et al. [12]
showed that auto-generated Flush+Reload attacks can be used
to measure keystroke timings as well as identifying keys to a
certain degree with high accuracy.

X. FUTURE WORK

We found that the performance of Prime+Probe attacks
on Haswell CPUs is worse than on Sandy Bridge or even
older CPUs. We think the reason for this lies in the new
cache replacement policy that has been introduced with the
Ivy Bridge architecture and is according to our measurements
very similar to the one used in Haswell CPUs. This new cache
replacement policy is a quad-age LRU algorithm combined
with bimodal insertion policy [41]. We assume that this is the
reason why LRU-like cache set priming that has worked on
older CPUs does not work on more recent CPUs anymore.
Gruss et al. [11] have presented different ways to find and
implement good eviction on more modern CPUs. Although we
have tried both their eviction strategy and the one by Liu et al.
[32], we were not able to implement successful side-channel
attacks on low frequency events using their LRU-like cache
eviction strategy. Thus, we consider implementing a successful
Prime+Probe attack on low frequency events on Ivy Bridge
and Haswell future work.

XI. CONCLUSION

In this paper, we investigated the use of hardware perfor-
mance counters to detect cache attacks. We found that existing
cache attacks can be detected by monitoring cache references
and cache misses, and we introduce a new criteria for detec-
tion. This motivates the introduction of the Flush+Flush attack,
a novel cache attack that evades known detection mechanisms.
We compared the Flush+Flush attack to other common cache
attack techniques. Our results show that Flush+Flush attack is
a viable alternative if detection mechanisms need to be evaded.
Our Flush+Flush covert channel is the fastest cache covert
channel published to date with a transmission rate of 496 KB/s
which is 6.7 times faster than any previously published cache

covert channel. In all scenarios we found Flush+Flush to
be stealthier than other cache attacks. To the best of our
knowledge, this is the first work to draw the attention on
the detectability of cache attacks. Indeed, this aspect has not
been treated from the attacker perspective. Similarly, existing
countermeasures focus predominantly on the prevention of
cache attacks rather than on their detection. We expect our
work to pave the way of future research in this new direction.

Moreover, while Flush+Flush attack is harder to detect
than existing cache attacks, it can be prevented with small
hardware modifications. Making the clflush instruction
constant-time has no measurable impact on today’s software
and does not introduce any interface changes. Thus, it is an
effective countermeasure that should be implemented. Com-
modity hardware can make the rdtsc instruction privileged
to prevent nanosecond-accurate measurements.

Finally, the experiments led in this paper broaden the
understanding of the internals of modern CPU caches. Beyond
the adoption of detection mechanisms, the field of cache
attacks benefits from these findings, both to discover new
attacks and to be able to prevent them.

ACKNOWLEDGMENT

We would like to thank Mathias Payer, Anders Fogh and
our anonymous reviewers for their valuable comments and
suggestions.

REFERENCES

[1] “Linux man page for perf_event_open(2),” http://man7.org/linux/man-
pages/man2/perf_event_open.2.html,

[2] O. Aciigmez and c. K. Kog¢, “Trace-Driven Cache Attacks on AES
(Short Paper),” in Proceedings of the 8th international conference on
Information and Communications Security, 2006, pp. 112—121.

[3] D.J. Bernstein, “Cache-timing attacks on AES,” Department of Math-
ematics, Statistics, and Computer Science, University of Illinois at
Chicago, Tech. Rep., 2005.

[4] S. Bhattacharya and D. Mukhopadhyay, “Who watches the watchmen?:
Utilizing Performance Monitors for Compromising keys of RSA on
Intel Platforms,” Cryptology ePrint Archive, Report 2015/621, 2015.

[5] A. Bogdanov, T. Eisenbarth, C. Paar, and M. Wienecke, “Differential
cache-collision timing attacks on AES with applications to embedded
cpus,” in CT-RSA, 2010, pp. 235-251.

[6] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert, “Software mit-
igations to hedge AES against cache-based software side channel
vulnerabilities,” Cryptology ePrint Archive, Report 2006/052, 2006.

[71 M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-
based side-channel attacks using hardware performance counters,”
Cryptology ePrint Archive, Report 2015/1034, 2015, http://eprint.iacr.
org/.

[8] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” ACM SIGARCH Computer Architecture
News, vol. 41, no. 3, pp. 559-570, 2013.

[91 A. Fogh, “Cache side channel attacks,” online, 2015,
http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-
attacks.html.

[10] A. Fuchs and R. B. Lee, “Disruptive Prefetching: Impact on Side-
Channel Attacks and Cache Designs,” in Proceedings of the 8th ACM
International Systems and Storage Conference (SYSTOR’15), 2015.

[11] D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” arXiv:1507.06955v1, July
2015.

http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://man7.org/linux/man-pages/man2/perf_event_open.2.html
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html
http://dreamsofastone.blogspot.co.at/2015/09/cache-side-channel-attacks.html

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches,” in USENIX Security
Symposium, 2015.

D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games — Bringing
Access-Based Cache Attacks on AES to Practice,” in S&P’11, 2011.

B. Giilmezoglu, M. S. Inci, T. Eisenbarth, and B. Sunar, “A Faster and
More Realistic Flush+Reload Attack on AES,” in Constructive Side-
Channel Analysis and Secure Design (COSADE), 2015.

N. Herath and A. Fogh, “These are Not Your Grand Daddys CPU
Performance Counters - CPU Hardware Performance Counters for
Security,” Black Hat 2015 Briefings, Aug. 2015. [Online]. Available:
https://www.blackhat.com/docs/us- 15/materials/us- 15-Herath- These-
Are-Not- Your-Grand- Daddys- CPU-Performance-Counters- CPU-
Hardware-Performance-Counters-For-Security.pdf

R. Hund, C. Willems, and T. Holz, “Practical Timing Side Channel
Attacks against Kernel Space ASLR,” in 2013 IEEE Symposium on
Security and Privacy, 2013, pp. 191-205.

M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public
Cloud,” Cryptology ePrint Archive, Report 2015/898, pp. 1-15, 2015.

Intel, “Advanced Encryption Standard (AES) Instructions Set: White
Paper,” 2008.

G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack that Works Across Cores and Defies VM Sandboxing — and
its Application to AES,” in S&P’15, 2015.

G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Fine grain Cross-
VM Attacks on Xen and VMware are possible!” Cryptology ePrint
Archive, Report 2014/248, 2014.

——, “Wait a minute! A fast, Cross-VM attack on AES,” in RAID’14,
2014.

——, “Know thy neighbor: Crypto library detection in cloud,” Pro-
ceedings on Privacy Enhancing Technologies, vol. 1, no. 1, pp. 25-40,
2015.

——, “Lucky 13 strikes back,” in AsiaCCS’15, 2015.

E. Kisper and P. Schwabe, “Faster and timing-attack resistant AES-
GCM,” in Cryptographic Hardware and Embedded Systems (CHES),
2009, pp. 1-17.

J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Channel Crypt-
analysis of Product Ciphers,” Journal of Computer Security, vol. 8, no.
2/3, pp. 141-158, 2000.

T. Kim, M. Peinado, and G. Mainar-Ruiz, “StealthMem: system-level
protection against cache-based side channel attacks in the cloud,” in
Proceedings of the 21st USENIX Security Symposium, 2012.

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors,” in Proceeding of
the 41st annual International Symposium on Computer Architecuture
(ISCA’14), 2014.

P. C. Kocher, “Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems,” in Proceedings of the 16th Annual
International Cryptology Conference (Crypto’96), 1996, pp. 104—113.

J. Kong, O. Aciigmez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side
channel attacks,” in Proceedings of the 15th International Symposium on
High Performance Computer Architecture (HPCA’09), 2009, pp. 393—
404.

R. Konighofer, “A fast and cache-timing resistant implementation of
the AES,” in CT-RSA, 2008, pp. 187-202.

F. Liu and R. B. Lee, “Random Fill Cache Architecture,” in [EEE/ACM
International Symposium on Microarchitecture (MICRO’14), 2014, pp.
203-215.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P’15, 2015.

Iwn.net, “2.6.26-rcl short-form changelog,” https://lwn.net/Articles/
280913/, May 2008.

C. Malone, M. Zahran, and R. Karri, “Are hardware performance
counters a cost effective way for integrity checking of programs,” in
Proceedings of the sixth ACM workshop on Scalable trusted computing,
2011.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse Engineering Intel Complex Addressing Using Performance
Counters,” in RAID, 2015.

C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: Cross-Cores
Cache Covert Channel,” in DIMVA, 2015.

OpenSSL, “Openssl: The open source toolkit for ssl/tls,” http:/www.
openssl.org,

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis, “The
Spy in the Sandbox — Practical Cache Attacks in Javascript,” arXiv:
1502.07373v2, 2015.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Counter-
measures: the Case of AES,” in CT-RSA 2006, 2006.

C. Percival, “Cache missing for fun and profit,” in Proceedings of
BSDCan, 2005.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer, “Adaptive
insertion policies for high performance caching,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, p. 381, 2007.

H. Raj, R. Nathuji, A. Singh, and P. England, “Resource Management
for Isolation Enhanced Cloud Services,” in Proceedings of the 1st ACM
Cloud Computing Security Workshop (CCSW’09), 2009, pp. 77-84.

C. Rebeiro, A. D. Selvakumar, and A. S. L. Devi, “Bitslice Implemen-
tation of AES,” in Cryptology and Network Security (CANS), 2006, pp.
203-212.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You,
Get Off of My Cloud: Exploring Information Leakage in Third-Party
Compute Clouds,” in CCS’09, 2009.

M. Seaborn, “Exploiting the DRAM rowhammer bug to gain kernel
privileges,” http://googleprojectzero.blogspot.com/2015/03/exploiting-
dram-rowhammer-bug-to- gain.html, March 2015, retrieved on Novem-
ber 10, 2015.

R. Spreitzer and T. Plos, “Cache-Access Pattern Attack on Disaligned
AES T-Tables,” in Constructive Side-Channel Analysis and Secure
Design (COSADE), 2013, pp. 200-214.

A. Tannous, J. T. Trostle, M. Hassan, S. E. McLaughlin, and T. Jaeger,
“New Side Channels Targeted at Passwords,” in ACSAC, 2008, pp. 45—
54.

E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on
AES, and Countermeasures,” Journal of Cryptology, vol. 23, no. 1, pp.
37-71, Jul. 2010.

L. Uhsadel, A. Georges, and 1. Verbauwhede, “Exploiting hardware per-
formance counters,” in 5th Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC’08)., 2008.

Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” ACM SIGARCH Computer Architec-
ture News, vol. 35, no. 2, p. 494, Jun. 2007.

——, “A Novel Cache Architecture with Enhanced Performance and
Security,” in IEEE/ACM International Symposium on Microarchitecture
(MICRO’08), 2008, pp. 83-93.

M. WeiB, B. Heinz, and F. Stumpf, “A Cache Timing Attack on AES in
Virtualization Environments,” in Proceedings of the 16th International
Conference on Financial Cryptography and Data Security (FC’12),
no. 1, 2012, pp. 314-328.

C. Willems, R. Hund, A. Fobian, D. Felsch, T. Holz, and A. Vasudevan,
“Down to the bare metal: Using processor features for binary analysis,”
in ACSAC’12, 2012.

Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation of
control flow integrity using performance counters,” in DSN’12, 2012.

Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sympo-
sium, 2014.

Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the Intel
Last-Level Cache,” Cryptology ePrint Archive, Report 2015/905, pp.
1-12, 2015.

K. Zhang and X. Wang, “Peeping Tom in the Neighborhood: Keystroke
Eavesdropping on Multi-User Systems,” in USENIX Security Sympo-
sium, 2009.

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-
residency Detection in the Cloud via Side-Channel Analysis,” in
S&P’11, 2011.

https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Herath-These-Are-Not-Your-Grand-Daddys-CPU-Performance-Counters-CPU-Hardware-Performance-Counters-For-Security.pdf
https://lwn.net/Articles/280913/
https://lwn.net/Articles/280913/
http://www.openssl.org
http://www.openssl.org
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

[59] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-Tenant Side- systems to mitigate cache side channels in the cloud,” in CCS’13, 2013.
Channel Attacks in PaaS Clouds,” in CCS’14, 2014.

[60] Y. Zhang and M. Reiter, “Diippel: retrofitting commodity operating

	I Introduction
	II Background
	II-A CPU Caches
	II-B Shared Memory
	II-C Cache Attacks and Rowhammer

	III Detecting Cache Attacks with Hardware Performance Counters
	IV The Flush+Flush Attack
	V Covert Channel Comparison
	V-A A Low-error Cache Covert Channel Framework
	V-B Covert Channel Implementations
	V-C Performance Evaluation
	V-D Detectability

	VI Side-Channel Attack on User Input
	VI-A Attack Implementation Using Flush+Flush
	VI-B Performance Evaluation
	VI-C Detectability

	VII Side-Channel Attack on AES with T-Tables
	VII-A Attack Implementation Using Flush+Flush
	VII-B Performance Evaluation
	VII-C Detectability

	VIII Discussion
	VIII-A Using clflush to Detect the Core on which a Process Runs
	VIII-B Evading Detection by Performance Counters
	VIII-C Countermeasures to Flush+Flush Attacks

	IX Related work
	IX-A Detecting and Preventing Cache Attacks
	IX-A1 Detection
	IX-A2 Prevention

	IX-B Usage of Hardware Performance Counters in Security
	IX-C Cache Covert Channels
	IX-D Side-Channel Attacks on User Inputs

	X Future work
	XI Conclusion
	References

