
FLUSH+RELOAD: a High Resolution, Low Noise,

L3 Cache Side-Channel Attack

Yuval Yarom Katrina Falkner

The University of Adelaide

Abstract

Sharing memory pages between non-trusting processes

is a common method of reducing the memory footprint

of multi-tenanted systems. In this paper we demon-

strate that, due to a weakness in the Intel X86 processors,

page sharing exposes processes to information leaks. We

present FLUSH+RELOAD, a cache side-channel attack

technique that exploits this weakness to monitor access

to memory lines in shared pages. Unlike previous cache

side-channel attacks, FLUSH+RELOAD targets the Last-

Level Cache (i.e. L3 on processors with three cache lev-

els). Consequently, the attack program and the victim do

not need to share the execution core.

We demonstrate the efficacy of the FLUSH+RELOAD

attack by using it to extract the private encryption keys

from a victim program running GnuPG 1.4.13. We tested

the attack both between two unrelated processes in a sin-

gle operating system and between processes running in

separate virtual machines. On average, the attack is able

to recover 96.7% of the bits of the secret key by observ-

ing a single signature or decryption round.

1 Introduction

To reduce the memory footprint of a system, the system

software shares identical memory pages between pro-

cesses running on the system. Such sharing can be based

on the source of the page, as is the case in shared li-

braries [13, 26, 42]. Alternatively, the sharing can be

based on actively searching and coalescing identical con-

tents [6, 55]. To maintain the isolation between non-

trusting processes, the system relies on hardware mecha-

nisms that enforce read only or copy-on-write [13, 40]

semantics for shared pages. While the processor en-

sures that processes cannot change the contents of shared

memory pages, it sometimes fails to block other forms of

inter-process interference.

One form of interference through shared pages results

from the shared use of the processor cache. When a pro-

cess accesses a shared page in memory, the contents of

the accessed memory location is cached. Gullasch et

al. [29] describes a side channel attack technique that

utilises this cache behaviour to extract information on

access to shared memory pages. The technique uses the

processor’s clflush instruction to evict the monitored

memory locations from the cache, and then tests whether

the data in these locations is back in the cache after al-

lowing the victim program to execute a small number of

instructions.

We observe that the clflush instruction evicts the

memory line from all the cache levels, including from

the shared Last-Level-Cache (LLC). Based on this ob-

servation we design the FLUSH+RELOAD attack—an ex-

tension of the Gullasch et al. attack. Unlike the original

attack, FLUSH+RELOAD is a cross-core attack, allowing

the spy and the victim to execute in parallel on differ-

ent execution cores. FLUSH+RELOAD further extends

the Gullasch et al. attack by adapting it to a virtualised

environment, allowing cross-VM attacks.

Two properties of the FLUSH+RELOAD attack make

it more powerful, and hence more dangerous, than prior

micro-architectural side-channel attacks. The first is that

the attack identifies access to specific memory lines,

whereas most prior attacks identify access to larger

classes of locations, such as specific cache sets. Con-

sequently, FLUSH+RELOAD has a high fidelity, does not

suffer from false positives and does not require additional

processing for detecting access. While the Gullasch et al.

attack also identifies access to specific memory lines, the

attack frequently interrupts the victim process and as a

result also suffers from false positives.

The second advantage of the FLUSH+RELOAD attack

is that it focuses on the LLC, which is the cache level

furthest from the processors cores (i.e., L2 in proces-

sors with two cache levels and L3 in processors with

three). The LLC is shared by multiple cores on the

same processor die. While some prior attacks do use the

LLC [47, 60], all of these attacks have a very low res-

olution and cannot, therefore, attain the fine granularity

required, for example, for cryptanalysis.

To demonstrate the power of FLUSH+RELOAD we use

it to mount an attack on the RSA [48] implementation of

GnuPG [27]. We test the attack in two different scenar-

ios. In the same-OS scenario both the spy and the victim

execute as processes in the same operating system. In

the cross-VM scenario, the spy and the victim execute

in separate, co-located virtual machines. Both scenarios

were tested in a local lab settings on otherwise idle ma-

chines.

By observing a single signing or decryption round, the

attack extracts 98.7% of the bits on average in the same-

OS scenario and 96.7% in the cross-VM scenario, with a

worst case of 95% and 90%, respectively.

The rest of this paper is organised as follows. The next

section presents background information on page shar-

ing, cache architecture and the RSA encryption. Sec-

tion 3 describes the FLUSH+RELOAD technique, fol-

lowed by a description of our attack on GnuPG in Sec-

tion 4. Mitigation techniques are presented in Section 5,

and the related work in Section 6.

2 Preliminaries

2.1 Page Sharing

Sharing memory between processes can serve two dif-

ferent aims. It can be used as an inter-process com-

munication mechanisms between two co-operating pro-

cesses and it can be used for reducing memory footprint

by avoiding replicated copies of identical contents. This

paper focuses on the latter use.

When using content-aware sharing, identical pages

are identified by the disk location the contents of the

page is loaded from. This is the traditional form of

sharing in an operating system, which is used for shar-

ing the text segment of executable files between pro-

cesses executing it and when using shared libraries [26].

Context-aware sharing has been suggested in early op-

erating systems, such as Multics [42] and TENEX [13],

and is implemented in all current major operating sys-

tems. This approach has also been suggested within the

context of virtualisation hypervisors, such as Disco [15]

and Satori [39].

Content-based page sharing, also called memory de-

duplication, is a more aggressive form of page sharing.

When using de-duplication, the system scans the active

memory, identifying and coalescing unrelated pages with

identical contents. De-duplication is implemented in the

VMware ESX [54, 55] and PowerVM [17] hypervisors,

and has also been implemented in Linux [6] and in Win-

dows [33].

As memory pages can be shared between non co-

operating processes, the system must protect the contents

of the pages to prevent malicious processes from modify-

ing the shared contents. To achieve this, the system maps

shared pages as copy-on-write [13, 40]. Read operations

on copy-on-write pages are permitted whereas write op-

erations cause a CPU trap. The system software, which

gains control of the CPU during the trap, copies the con-

tents of the shared page, maps the copied page into the

address space of the writing process and resumes the pro-

cess.

While copy-on-write protects shared pages from mod-

ifications, it is not fully transparent. The delay intro-

duced when modifying a shared page can be detected by

processes, leading to a potential information leak attack.

Such attacks have been implemented within virtualised

environments for creating covert channels [58], for OS

fingerprinting [44] and for detection of applications and

data in other guests [49].

2.2 Cache Architecture

In addition to sharing memory pages, processes run-

ning on the same processor share the processor caches.

Processor caches bridge the gap between the processing

speed of modern processors and the data retrieval speed

of the memory. Caches are small banks of fast memory

in which the processor stores values of recently accessed

memory cells. Due to locality of reference, recently used

values tend to be used again. Retrieving these values

from the cache saves time and reduces the pressure on

the main memory.

Modern processors employ a cache hierarchy consist-

ing of multiple caches. For example, the cache hierarchy

of the Core i5-3470 processor, shown in Fig. 1, consists

of three cache levels: L1, L2 and L3.

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 2

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 3

L3 Unified − 6MB

32 KB

L1 Inst

32 KB

L1 Data

Core 0

L2 256KB

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 1

Figure 1: Intel Ivy Bridge Cache Architecture

The Core i5-3470 processor has four processing units

called cores. Each core has a 64KB L1 cache, divided

into a 32KB data cache and a 32KB instruction cache.

Each core also has a 256KB L2 cache. The four cores

2

share a 6MB L3 cache, also known as the Last-Level

Cache, or LLC.

The unit of memory in a cache is a line which contains

a fixed number of bytes. A cache consists of multiple

cache sets each of which stores a fixed number of cache

lines. The number of cache lines in a set is the cache

associativity. Each memory line can be cached in any of

the cache lines of a single cache set. The size of cache

lines in the Core i5-3470 processor is 64 bytes. The L1

and L2 caches are 8-way associative and the L3 cache is

12-way associative.

An important feature of the LLC in modern Intel pro-

cessors is that it is an inclusive cache. That is, the LLC

contains copies of all of the data stored in the lower cache

levels. Consequently, flushing or evicting data from the

LLC also remove said data from all other cache levels of

the processor. Our attack exploits this cache behaviour.

Retrieving data from memory or from cache levels

closer to memory takes longer than retrieving it from

cache levels closer to the core. This difference in tim-

ing has been exploited for side-channel attacks. Side-

channel attacks target information that an implementa-

tion of an algorithm leaks through its interaction with

its environment. To exploit the timing difference, an at-

tacker sets the cache to a known state prior to a victim

operation. It can, then, use one of two methods to de-

duce information on the victim’s operation [43]. The

first method is measuring the time it takes for the vic-

tim to execute the operation. As this time depends on

the state of the cache when the victim starts the opera-

tion, the attacker can deduce the cache sets accessed by

the victim and, therefore, learn information on the vic-

tim [5, 9, 57]. The second approach is for the attacker to

measure the time it takes for the attacker to access data

after the victim’s operation. This time is dependent on

the cache state prior to the victim operation as well as

on the changes the victim operation caused in the cache

state [1, 2, 4, 14, 19, 47, 61].

Most prior work on cache side-channel attacks relies

on the victim and spy executing within the same process-

ing core. One reason for that is that many of the attacks

suggested require the victim to be stopped while the spy

performs the attack. To that aim, the attack is combined

with an attack on the scheduler that allows the spy pro-

cess to interrupt and block the victim.

Another reason for attacking within the same core is

that the attacks focus on the L1 cache level, which is not

shared between cores. The large size of the LLC hin-

ders attacks both because setting it to a known state takes

longer than with smaller caches and because the virtual

memory used by the operating system masks the map-

ping of memory addresses to cache sets. Furthermore,

as most of the memory activity occurs at the L1 cache

level, less information can be extracted from LLC activ-

ity. Some prior works do use the LLC as an information

leak channel [46,47,60]. However, due to the cache size,

these channels have a low bandwidth.

We now proceed to describe the RSA encryption.

2.3 RSA

RSA [48] is a public-key cryptographic system that sup-

ports encryption and signing. Generating an encryption

system requires the following steps:

• Randomly selecting two prime numbers p and q and

calculating n = pq.

• Choosing a public exponent e. GnuPG uses e =
65537.

• Calculating a private exponent d≡ e−1 (mod (p−
1)(q−1)).

The generated encryption system consists of:

• The public key is the pair (n,e).

• The private key is the triple (p,q,d).

• The encrypting function is E(m) = me mod n.

• The decrypting function is D(c) = cd mod n.

CRT-RSA is a common optimisation for the imple-

mentation of the decryption function. It splits the se-

cret key d into two parts dp = d mod (p− 1) and dq =
d mod (q−1), computes two parts of the message: mp =
cdp mod p and mq = cdq mod q. m is then computed

from mp and mq using Garner’s formula [25]:

h = (mp−mq)(q
−1 mod p) mod p

m = mq +hq

To compute the encryption and decryption func-

tions, GnuPG versions before 4.1.14 and the related

libgcrypt before version 1.5.3 use the square-and-

multiply exponentiation algorithm [28]. Square-and-

multiply computes x = be mod m by scanning the bits

of the binary representation of the exponent e. Given a

binary representation of e as 2n−1en−1 + · · ·2
0e0, square-

and-multiply calculates a sequence of intermediate val-

ues xn−1, . . . ,x0 such that xi = b⌊e/2i⌋ mod m using the

formula xi−1 = xi
2bei−1 . Figure 2 shows a pseudo-code

implementation of square-and-multiply.

As can be seen from the implementation, computing

the exponent consists of sequence of Square and Mul-

tiply operations, each followed by a Modulo Reduce.

This sequence corresponds directly with the bits of the

exponent. Each occurrence of Square-Reduce-Multiply-

Reduce within the sequence corresponds to a bit whose

value is 1. Occurrences of Square-Reduce that are not

3

1 function exponent(b, e, m)

2 begin

3 x← 1

4 for i← |e|−1 downto 0 do

5 x← x2

6 x← x mod m

7 if (ei = 1) then

8 x← xb

9 x← x mod m

10 endif

11 done

12 return x

13 end

Figure 2: Exponentiation by Square-and-Multiply

followed by a Multiply correspond to bits whose values

are 0. Consequently, a spy process that can trace the ex-

ecution of the square-and-multiply exponentiation algo-

rithm can recover the exponent.

As GnuPG uses the CRT-RSA optimisation, the spy

process can only hope to extract dp and dq. However, for

an arbitrary message m, (m−medp) is a multiple of p.

Hence, knowing dp (and, symmetrically, dq) is sufficient

for factoring n and breaking the encryption [16].

3 The FLUSH+RELOAD Technique

The FLUSH+RELOAD technique is a variant of

PRIME+PROBE [51] that relies on sharing pages between

the spy and the victim processes. With shared pages, the

spy can ensure that a specific memory line is evicted from

the whole cache hierarchy. The spy uses this to monitor

access to the memory line. The attack is a variation of

the technique suggested by Gullasch et al. [29], which in-

clude adaptations for use in multi-core and in virtualised

environments.

A round of attack consists of three phases. During the

first phase, the monitored memory line is flushed from

the cache hierarchy. The spy, then, waits to allow the

victim time to access the memory line before the third

phase. In the third phase, the spy reloads the memory

line, measuring the time to load it. If during the wait

phase the victim accesses the memory line, the line will

be available in the cache and the reload operation will

take a short time. If, on the other hand, the victim has

not accessed the memory line, the line will need to be

brought from memory and the reload will take signifi-

cantly longer. Figure 3 (A) and (B) show the timing of

the attack phases without and with victim access.

As shown in Fig. 3 (C), the victim access can overlap

the reload phase of the spy. In such a case, the victim ac-

cess will not trigger a cache fill. Instead, the victim will

use the cached data from the reload phase. Consequently,

the spy will miss the access.

Attacker

(A)
Victim

Attacker

(B)
Victim

Attacker

(C)
Victim

Attacker

(D)
Victim

Attacker

(E)
Victim

Attacker

Access Something else

Victim

Wait ReloadFlush

Figure 3: Timing of FLUSH+RELOAD. (A) No Victim

Access (B) With Victim Access (C) Victim Access Over-

lap (D) Partial Overlap (E) Multiple Victim Accesses

A similar scenario is when the reload operation par-

tially overlaps the victim access. In this case, depicted

in Fig. 3 (D), the reload phase starts while the victim is

waiting for the data. The reload benefits from the vic-

tim access and terminates faster than if the data has to be

loaded from memory. However, the timing may still be

longer than a load from the cache.

As the victim access is independent of the execution of

the spy process code, increasing the wait period reduces

the probability of missing the access due to an overlap.

On the other hand, increasing the wait period reduces the

granularity of the attack.

One way to improve the resolution of the attack with-

out increasing the error rate is to target memory accesses

that occur frequently, such as a loop body. The attack

will not be able to discern between separate accesses,

but, as Fig. 3 (E) shows, the likelihood of missing the

loop is small.

Several processor optimisations may result in false

positives due to speculative memory accesses issued by

the victim’s processor [34]. These optimisations include

data prefetching to exploit spatial locality and specula-

tive execution [52]. When analysing the attack results,

the attacker must be aware of these optimisations and de-

velop strategies to filter them.

Our implementation of the attack is in Figure 4. The

code measures the time to read the data at a memory ad-

dress and then evicts the memory line from the cache.

This measurement is implemented by the inline assem-

bly code within the asm command.

The assembly code takes one input, the address, which

is stored in register %ecx. (Line 16.) It returns the time

to read this address in the register %eax which is stored

4

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Probe Time (cycles)

From Memory
From L1 Cache

Figure 5: Distribution of Load Times.

1 int probe(char *adrs) {

2 volatile unsigned long time;

3

4 asm __volatile__ (

5 " mfence \n"

6 " lfence \n"

7 " rdtsc \n"

8 " lfence \n"

9 " movl %%eax, %%esi \n"

10 " movl (%1), %%eax \n"

11 " lfence \n"

12 " rdtsc \n"

13 " subl %%esi, %%eax \n"

14 " clflush 0(%1) \n"

15 : "=a" (time)

16 : "c" (adrs)

17 : "%esi", "%edx");

18 return time < threshold;

19 }

Figure 4: Code for the FLUSH+RELOAD Technique

in the variable time. (Line 15.)

Line 10 reads 4 bytes from the memory address in

%ecx, i.e. the address pointed by adrs. To measure the

time it takes to perform this read, we use the processor’s

time stamp counter.

The rdtsc instruction in line 7 reads the 64-bit

counter, returning the low 32 bits of the counter in %eax

and the high 32 bits in %edx. As the times we measure

are short, we treat it as a 32 bit counter, ignoring the 32

most significant bits in %edx. Line 9 copies the counter

to %esi.

After reading the memory, the time stamp counter is

read again. (Line 12.) Line 13 subtracts the value of the

counter before the memory read from the value after the

read, leaving the result in the output register %eax.

The crux of the technique is the ability to evict specific

memory lines from the cache. This is the function of the

clflush instruction in line 14. The clflush instruc-

tion evicts the specific memory line from all the cache

hierarchy, including the L1 and L2 caches of all cores.

Evicting the line from all cores ensures that the next time

the victim accesses the memory line it will be loaded into

L3.

The purpose of the mfence and lfence instructions in

lines 5, 6, 8 and 11 is to serialise the instruction stream.

The processor may execute instructions in parallel or out

of order. Without serialisation, instructions surrounding

the measured code segment may be executed within that

segment.

The lfence instruction performs partial serialisation.

It ensures that load instructions preceding it have com-

pleted before it is executed and that no instruction fol-

lowing it executes before the lfence instruction. The

mfence instruction orders all memory access, fence in-

structions and the clflush instruction. It is not, how-

ever, ordered with respect to other instructions and is,

therefore, not sufficient to ensure ordering.

Intel recommends using the serialising instruction

cpuid for that purpose [45]. However, in virtualised en-

vironments the hypervisor emulates the cpuid instruc-

tion. This software emulation takes too long (over 1,000

cycles) to provide the fine granularity required for the at-

tack.

Line 18 compares the time difference between the

two rdtsc instructions against a predetermined thresh-

old. Loads shorter than the threshold are presumed to

be served from the cache, indicating that another process

has accessed the memory line since it was last flushed

5

from the cache. Loads longer than the threshold are pre-

sumed to be served from the memory, indicating no ac-

cess to the memory line.

The threshold used in the attack is system dependent.

To find the threshold for our test systems, we used the

measurement code of the probe in Listing 4 to measure

load times from memory and from the L1 cache level.

(To measure the L1 times we removed the clflush in-

struction in line 14.) The results of 100,000 measure-

ments of each on an HP Elite 8300 with an i5-3470 pro-

cessor, running CentOS 6.5 are presented in Figure 5.

Virtually all loads from the L1 cache measure 44 cy-

cles. (Note that this measure includes an overhead for the

rdtsc and the fence instructions and is, therefore, much

longer than a single load instruction.) Loads from mem-

ory show less constant timing. Over 98% of those take

between 270 and 290 cycles. The rest are mostly spread

around 880 cycles with about 200 loads measured 1140–

1175 cycles. No loads from memory measured less than

200 cycles.

The timings of load operations depend on both the sys-

tem architecture and the software environment. For ex-

ample, on a Dell PowerEdge T420 with Xeon E5-2430

processors, loads from L1 take between 33 and 43 cy-

cles and loads from memory take around 230 cycles. On

the same architecture, within a KVM [37] guest, about

0.02% of the loads from memory take over 6,000 cycles.

We believe these are caused by hypervisor activity.

The L1 measurements underestimate the probe time

for data that the victim accesses. In an attack, data the

victim accesses is read from the L3 cache. Intel docu-

mentation [34] states that the difference is between 22

and 39 cycles. Based on the measurement results and the

Intel documentation we set the threshold to 120 cycles.

To use the FLUSH+RELOAD technique the spy and the

victim processes need to share both the cache hierarchy

and memory pages. In a non-virtualised environment, to

share the cache hierarchy, the attacker needs the ability

to execute software on the victim machine. The attacker,

however, does not need elevated privileges on the vic-

tim machine. For a virtualised environment, the attacker

needs access to a guest co-located on the same host as

the victim guest. Techniques for achieving co-location

are described by Ristenpart et al. [47]. Identifying the

OS and software version in co-resident guests has been

dealt with in past research [44, 49].

For sharing memory pages in system that use content-

aware sharing, the attacker needs read access to the at-

tacked executable or shared libraries. In systems that

support de-duplication the attacker needs access to a

copy of the attacked files. De-duplication will coalesce

pages from these copies with pages from the attacked

files.

4 Attacking GnuPG

In this section we describe how we use the FLUSH+RE-

LOAD technique to extract the components of the private

key from the GnuPG implementation of RSA.

We tested the attack on two hardware platforms: an

HP Elite 8300, which features an Intel Core i5-3470 pro-

cessor and 8GB DDR3-1600 memory and a Dell Pow-

erEdge T420, with two Xeon E5-2430 processors and

32GB DDR3-1333 memory. On each hardware platform

we experimented with two scenarios. The same-OS sce-

nario tests the attack between two unrelated processes in

the same operating system while the cross-VM scenario

demonstrates that the attack works across the virtual ma-

chine isolation boundary in virtualised environments.

The same-OS tests use CentOS 6.5 Linux running on

the hardware. The spy and the victim execute as two

processes within that system. To achieve sharing, the spy

mmaps the victim’s executable file into the spy’s virtual

address space. As the Linux loader maps executable files

into the process when executing them, the spy and the

victim share the memory image of the mapped file. On

the Dell machine we set the CPU affinity of the processes

to ensure that both the victim and the spy execute on the

same physical processor. We do let the processes float

between the cores of the processor.

For the cross-VM scenario we used two different hy-

pervisors: VMware ESXi 5.1 on the HP machine and

Centos 6.5 with KVM on the Dell machine. In each hy-

pervisor we created two virtual machines, one for the

victim and the other for the spy. The virtual machines

run CentOS 6.5 Linux. In this scenario, the spy mmaps a

copy of the victim’s executable file. Sharing is achieved

through the page de-duplication mechanisms of the hy-

pervisors. As in the same-OS scenario, on the Dell ma-

chine we set the CPU affinity of the virtual machines to

ensure execution on the same physical processor.

When a pages is shared, all of the page entries in the

virtual address spaces of the sharing processes map to the

same physical page. As the LLC is physically tagged, en-

tries in the cache depend only on the physical address of

the shared page with no dependency on the virtual ad-

dresses in which the page is mapped. Consequently, we

do not need to take care of the virtual to physical address

mapping and the attack is oblivious to some diversifica-

tion techniques, such as Address Space Layout Random-

ization (ASLR) [50].

The approach we take is to trace the execution of

the victim program. For that, the spy program ap-

plies the FLUSH+RELOAD technique to memory loca-

tions within the victim’s code segment. This, effec-

tively, places probes within the victim program that are

triggered whenever the victim executes the code in the

probed memory lines. Tracing the execution allows the

6

 0

 100

 200

 300

 400

 500

 3900 3910 3920 3930 3940 3950 3960 3970 3980 3990 4000

P
ro

b
e

 T
im

e
 (

c
y
c
le

s
)

Time Slot Number

Threshold

Square
Multiply
Modulo

Missed slots

Figure 6: Time measurements of probes

spy program to infer the internal state of the victim pro-

gram.

To implement the trace, the spy program divides time

into fixed slots of 2,500 cycles each. In each slot it probes

one memory line of the code of each of the square, mul-

tiply and modulo reduce calculations. To increase the

chance of a probe capturing the access, we selected mem-

ory lines that are executed frequently during the calcu-

lation. Furthermore, to reduce the effect of speculative

execution, we avoided memory lines near the beginning

of the respective functions. After probing the memory

lines, the spy program flushes the lines from the cache

and busy waits to the end of the time slot.

We used the default build of the gpg program, which

includes optimisation at -O2 level and which leaves the

debugging symbols in the executable. We use the debug-

ging symbols to facilitate the mapping of source code

lines to memory addresses. In most distributions, the

GnuPG executable is stripped and does not include these

symbols. Attacks against stripped executables would re-

quire some reverse engineering [20] to recover this map-

ping. As the debugging symbols are not loaded in run

time, these do not affect the victim’s performance.

Measurement times for 100 time slots of the GnuPG

signing with a 2,048 bit key are displayed in Figure 6. In

each time slot, the spy flushes and then measures the time

to read the memory lines in the Square, Multiply and Re-

duce functions. Measurements under the threshold indi-

cate victim access to the respective memory lines. The

exponentiations for signing takes a total of 15,690 slots

or about 18ms. The CRT components used for exponen-

tiation are 1,022 and 1,023 bits long.

Figure 7 is an enlarged view of the boxed section

 40

 50

 60

 70

 80

 3917 3918 3919 3920 3921 3922 3923 3924 3925

P
ro

b
e
 T

im
e
 (

c
y
c
le

s
)

Time Slot Number

Square MultiplyReduce Reduce

Speculative Execution

Figure 7: Section of Fig. 6

in Fig. 6. As the displayed area is below the thresh-

old, the diagram only displays the memory lines that

were retrieved from the cache, showing the activity of

the GnuPG encryption. The steps of the exponentia-

tion are clearly visible in the diagram. For example, be-

tween time slots 3,917 and 3,919 the victim was calcu-

lating a square, Time slots 3,919–3,921 are for modulo

reduce calculation, multiplication in slots 3,922–3,923,

and another modulo reduce in 3,923–3,925. A sequence

of Square-Reduce-Multiply-Reduce indicates that during

these time slots the victim was processing a set bit.

Figure 7 also demonstrates the effects of speculative

execution. To improve performance, the processors tries

to predict future behaviour of the program. When pre-

dicting the behaviour of the test of the bit value (Line 7

in Fig. 2), the processor does not know the value of the

bit. Instead of waiting for the value to be calculated, the

processor speculates that the bit might be clear and starts

bringing memory lines required for the square calcula-

tion into the cache. As a result, cache lines that are part

of the square calculation in Line 5 are brought into the

cache, and are captured by the spy.

We have witnessed speculative execution on both the

7

HP and the Dell machines. Moving the probes to cache

lines closer to the end of the probed functions eliminates

the effects of speculative execution on the HP machine.

However, speculative execution is still evident on the

Dell machine.

By recognising sequences of operations, an attacker

can recover the bits of the exponent. Sequences of

Square-Reduce-Multiply-Reduce indicate a set bit. Se-

quences of Square-Reduce which are not followed by

Multiply indicate a clear bit. For example, in Fig. 6, be-

tween time slots 3,903 and 3,906 the calculated sequence

is Square-Reduce, which is followed by a Square, indi-

cating that in these time slots the victim was processing

a clear bit.

Continuing throughout Fig. 6 we find that the bit se-

quence processed in this sample is 0110011010011. Ta-

ble 1 shows the time slots corresponding to each bit.

Table 1: Time Slots for Bit Sequence

Seq. Time Slots Value

1 3,903–3,906 0

2 3,907–3,916 1

3 3,917–3,926 1

4 3,927–3,931 0

5 3,932–3,935 0

6 3,936–3,945 1

7 3,946–3,955 1

Seq. Time Slots Value

8 3,956–3,960 0

9 3,961–3,969 1

10 3,970–3,974 0

11 3,975–3,979 0

12 3,980–3,988 1

13 3,989–3,998 1

System activity may cause the spy to miss time slots.

The spy identifies missed time slot by noting jumps in

the cycle counter. For example, In the run used for gen-

erating Fig. 6, the spy missed time slots 3,983 and 3,984.

In this instance, the missed bits were not enough to hide

the information on the bit processed during these time

slots. However, if more slots are missed, data on bits of

the private key exponent will be lost resulting in capture

errors.

To measure the prevalence of capture errors, we used

our spy program to observe and capture 1,000 signatures

on each of the test configurations. We used a single in-

vocation of a spy program to capture all the signatures

in each system configuration. The GnuPG victim was

executed from a shell in another window. Except for en-

suring that the spy executes while running the signatures,

the executions of the spy and of GnuPG are not synchro-

nised.

For each observed signature, the spy outputs a text line

representing the observed probes in each time slot. We

used a shell script to parse this output and compared the

results against the ground truth. The results are sum-

marised in Table 2 and in Fig. 8. (For clarity, we trim

Fig. 8 at 30% and 100 erroneous bits. A total of 15 sam-

ples have capture errors of more than 100 bits and the

probability of no errors for the HP-CentOS configuration

is 33%.)

Table 2: Statistics on Bit Errors in Capture
Hardware HP Elite 8300 Dell PowerEdge T420

Software CentOS VMware CentOS KVM

Average 1.41 26.55 25.12 66.12

Median 1 25 24 65

Max 15 196 96 190

0%

5%

10%

15%

20%

25%

30%

 0 20 40 60 80 100

Lost Bits

HP-CentOS
HP-VMware

Dell-CentOS
Dell-KVM

Figure 8: Distribution of Bit Errors in Capture

The shell script overestimates the number of errors.

For example, due to the missing time slots, the script

does not identify bit 12 in Table 1. We have manually

inspected a few samples of capture output and estimate

that manual inspection can reduce the number of errors

by 25%-50%. Yet, the use of an automated script allows

us to examine a large number of results.

On the HP machine we observe better results and sig-

nificantly less noise than on the Dell machine. We be-

lieve this to be a consequence of the more advanced op-

timisations of the Xeon processor of the Dell machine.

On each machine, results for the same-OS configuration

are better than those for the cross-VM attack due to the

added processing of the virtualisation layer.

Even accounting for the better results expected from

manual inspection, the number of errors may be too big

for a naı̈ve brute force attack. Several strategies can be

used to reduce the search space and to recover the pri-

vate key. One such strategy is to rely on the nature of

CRT-RSA exponentiation. As discussed in Section 2.3,

an attacker only needs to recover one of the CRT com-

ponents to break the encryption. By attacking the CRT

component that has less errors, the attacker can reduce

the search space to a more manageable size. Table 3 and

Fig. 9 show the distribution of erroneous bits in the bet-

ter captured CRT component in each signature. As these

demonstrate, the search space is significantly reduced.

Several algorithms have been suggested for recover-

ing the RSA exponent from partial information on the

exponent bits [30, 31, 46]. These algorithms require be-

tween 27% and 70% of the bits of the exponent to re-

cover the system key. While our attack reveals over 90%

of the bits, it does not always recover the positions of

8

Table 3: Statistics on Bit Errors in the Better Captured

CRT Component
Hardware HP Elite 8300 Dell PowerEdge T420

Software CentOS VMware CentOS KVM

Average 0.20 11.75 7.11 28.66

Median 0 12 6 28

Max 4 68 26 47

0%

5%

10%

15%

20%

25%

30%

 0 20 40 60 80 100

Lost Bits

HP-CentOS
HP-VMware

Dell-CentOS
Dell-KVM

Figure 9: Distribution of Bit Errors in the Better Cap-

tured CRT Component

these bits. E.g. when a sequence of about 10 time slots

is missed, this sequence can cover either one set bit or

two clear bits. The attacker cannot, therefore, determine

the bit positions of the following bits. Further research

is required to determine whether these algorithms can be

adapted to the data our attack recovers.

Another approach for recovering the key is to combine

data from multiple signatures. As the positions of errors

in each capture are independent, there is a small likeli-

hood that any two captures will have errors in the same

bit positions. To test this approach we manually merged

the output of several pairs of observations of the spy un-

der the Dell cross-VM scenario. When merging random

pairs, we had at most a one bit error in the merged results.

When merging the worst capture for the Dell cross-VM

scenario with a random capture, the merged results had

six bit errors, all of them in one of the CRT components

and all have been identified during the process as poten-

tial errors. We, therefore, conclude that by observing two

signatures, the attacker can recover the private key.

While the attack is very effective in recovering expo-

nent bits, it does have some limitations. For the attack to

work, the spy and the victim must execute on the same

physical processor. For our testing, we set the proces-

sor affinity on the multi-processor system. However, in

a real attack scenario the attack depends on the system

scheduler.

When performing the tests, the spy and the victim

were the only load on the system. Such a scenario is not

representative of a real system where multiple processes

are running. We expect such load to create noise that will

affect the quality of capture. Furthermore, for a load that

includes multiple parallel instances of GnuPG, the spy

will be unable to distinguish between memory access of

each instance and will be unable to recover any data.

Another limitation is the length of the secret key. On

the Dell machine, probing three memory locations takes

about 2,200 cycles. Hence, the attack cannot work with

time slots shorter than that. With shorter key lengths,

time slots of 2,200 cycles or more do not provide enough

resolution to trace the victim. Consequently, recovering

the private key is more difficult with shorter keys, sup-

porting the results of Walter [56].

5 Mitigation Techniques

The attack presented here is a real, immediate threat to

computer security. It, therefore, raises the very pertinent

question of countermeasures. The FLUSH+RELOAD at-

tack relies on a combination of four factors for its opera-

tion: data flow from sensitive data to memory access pat-

terns, memory sharing between the spy and the victim,

accurate, high-resolution time measurements and the un-

fettered use of the clflush instruction. Preventing any

of these blocks the attack.

The lack of permission checks for using the clflush

instruction is a weakness of the X86 architecture. Conse-

quently, the most complete solution to the problem is to

limit the power of the clflush instruction. The main use

of the clflush instruction is to enforce memory coher-

ence, e.g. when using devices that do not support mem-

ory coherence [34]. Another potential use of the instruc-

tion is to control the use of the cache for improving pro-

gram performance, e.g. by flushing lines that the program

knows it will not require. However, we are not aware of

any actual use of the instruction for this purpose.

As the first use is, clearly, a system function and the

second is based on the assumption that no other pro-

cess has access to the data, we suggest restricting the

use of clflush to memory pages to which the process

has write access and to memory pages to which the sys-

tem allows clflush access. This access control could be

implemented by adding memory types that restrict flush

access to the PAT (Page Attribute Table) [35, chap. 11].

The ARM architecture [7] also includes instructions to

evict cache lines. However, these instructions can only

be used when the processor is in an elevated privilege

mode. As such, the ARM architecture does not allow

user process to selectively evict memory lines and the

FLUSH+RELOAD is not applicable in this architecture.

Our attack seems not to work on contemporary AMD

processors, such as the A10-6800K and Opteron 6348.

The code in Fig. 5 returns the same result with and

without the clflush instruction. Replacing the second

9

rdtsc instruction (Line 12) with the similar rdtscp in-

struction fixes this issue, however, two problems prevent

the use of the technique. The first problem is that data

seems to linger in the cache for some time after being

evicted. The second problem is that the attack does not

capture accesses from other processes. A possible ex-

planation for this behaviour is that the AMD caches are

non-inclusive, i.e. data in L1 does not need to also be in

L2 or L3, as is the case with the Intel caches. Conse-

quently, evicting data from the LLC does not, necessar-

ily, evicts it from the L1 caches of other cores. Processes

executing on other cores can access data in the L1 cache

without triggering a load from memory to the LLC. The

attack does work on older AMD processors, such as the

Opteron 2212.

Hardware based countermeasures, such as those de-

scribed above cannot provide an immediate solution to

the problem. They will take time to develop and will not

protect existing hardware. Consequently, for immediate

mitigation of the attack, software-based solutions are re-

quired.

Another possible solution is preventing sharing be-

tween the spy and the victim. Preventing page shar-

ing between processes provides protection against the

FLUSH+RELOAD attack. However, this approach goes

against the trend of increased sharing in operating sys-

tems and virtualisation hypervisors. Completely elim-

inating page sharing would significantly increase the

memory requirements of modern operating systems and

is, therefore, unlikely to be a feasible solution. As a

partial solution, it may be possible to avoid sharing of

sensitive code by changing the program loader. Another

partial solution is disabling page de-duplication, which

prevents using the FLUSH+RELOAD attack between co-

hosted guests in a virtualised system. This approach is

recommended for public compute clouds which offer the

implied promise that guests cannot interfere with each

other.

Software diversification [24] is a collection of tech-

niques that permute the locations of objects within the

address spaces of processes. While most of these tech-

niques were originally developed as a protection against

memory corruption attacks, some of them can be used to

prevent sharing and, consequently, to mitigate the FLU-

SH+RELOAD attack. More specifically, in virtualised en-

vironments, static reordering of code and data [12,24,36]

can be used to create unique copies of programs in each

virtual machines. As these copies are not available out-

side the specific virtual machine, pages of the program

are not de-duplicated and sharing is prevented. Diversi-

fying the program at run time [22] can prevent sharing of

the program text even when the attacker has access to the

binary file. As discussed above, the FLUSH+RELOAD

technique is oblivious to the virtual to physical address

mapping. Consequently, diversification techniques that

rely on permuting the virtual address mapping of code

pages, such as [50, 59], do not provide any protection

against the attack.

FLUSH+RELOAD, like other side-channel attacks, re-

lies on the availability of a high-resolution clock. Re-

ducing the resolution of the clock or introducing noise to

clock measurement [32, 53] can be an used as a counter-

measure against the attack. The main limitation of this

approach is that the attacker can use other methods for

generating high resolution clocks. Examples include us-

ing data from the network or running a ‘clock’ process in

a separate execution core.

Irrespective of the measures described above, cryp-

tographic software should be protected against the at-

tack. Following our disclosure [18, 38], the GnuPG

team released GnuPG version 1.4.14 and libgcrypt

version 1.5.3. These mitigate the attack using the

square-and-multiply-always [21] algorithm, shown in

Listing 10. The algorithm executes the square and the

multiply steps for each bit, but ignores the result of the

multiply step for bits of value 0.

function exponent(b, e, m)

begin

x← 1

for i← |e|−1 downto 0 do

x← x2

x← x mod m

x′← xb

x′← x′ mod m

if (ei = 1) then

x = x′

endif

done

return x

end

Figure 10: Exponentiation by Square-and-Multiply-

Always

When introducing instructions with no effect, care

should be taken to prevent the compiler from optimising

these away. In the case of the GnuPG fix, the optimiser

cannot know that the added addition does not have side-

effects. With the possibility of side-effects, the optimiser

takes a conservative approach and invokes the function.

The implementation still contains a small section of

code that depends on the value of the bit, which could,

theoretically, be exploited by a cache side-channel at-

tack. However, due to speculative execution, the proces-

sor is likely to access the section irrespective of the value

of the bit. Furthermore, as this section is short and is

smaller than a cache line, it is likely to fit within the same

cache line as the preceding or following code. Hence,

we believe that this implementation protects against the

FLUSH+RELOAD attack.

10

This fix, however, does not protect against other forms

of side-channel attack. In particular, the code is likely

to be vulnerable to Branch Prediction Analysis [3]. Fur-

thermore, as access patterns to data depend on the values

of the exponent bits, the code is likely to be vulnerable to

PRIME+PROBE attacks [51,61]. Like FLUSH+RELOAD,

these side-channel attacks rely on data flow from secret

exponent bits to memory access patterns. These attacks

can be prevented by using constant time exponentiation,

where the sequence of instructions and memory locations

accessed are fixed and do not depend on the value of the

exponent bits. Techniques for constant time computa-

tion have been explored in the NaCl cryptographic li-

brary [10]. The pattern of accesses to memory lines of

the OpenSSL [41] implementation of RSA exponentia-

tion is not dependent on secret exponent bits. Conse-

quently, even though the implementation is not constant

time [11], it is not vulnerable to our attack.

Constant time computation is not, however, a panacea

for the problem of side-channel attacks. FLUSH+RE-

LOAD can be applied no extract secret data from non

cryptographic software. For such software, the perfor-

mance costs of constant-time computation are unreason-

able, hence other solutions are required.

6 Related Work

Several works have pointed out that page sharing exposes

guests to information leakage, which can be exploited

for implementing covert channels [58], OS fingerprint-

ing [44] and for detecting applications and data in other

guests [49]. These works exploit the copy-on-write fea-

ture of page sharing. Copy-on-write introduces a sig-

nificant delay when a page is copied. Hence, by timing

write operations on pages, a spy can deduce the existence

of pages with identical contents in other guests. As page

de-duplication is a slow process, all these attacks have a

very low resolution.

Using a cache side-channel to trace the execution of

a program is not a new idea [1, 2, 4, 14, 19, 29, 61]. In

all of these attacks, the victim and the spy must share

the execution core, either by using hyper-threading or by

interleaving the execution of the victim and the spy on

the same core.

Gullasch et al. [29] describes an attack on AES which

traces the victim’s access to the S-Boxes. Our work

builds on the attack technique presented by Gullasch et

al. and extends it in two ways. Gullasch et al. only ap-

plies the attack on a time-shared core and does not ex-

ploit the eviction from a shared LLC. Our attack exposes

the use of a shared LLC and demonstrates that the tech-

nique can be used across cores. Additionally, Gullasch

et al. uses the cpuid instruction to synchronise the in-

struction stream whereas we use fence instructions. In

virtualised environments, the cpuid is emulated in soft-

ware and this emulation takes over 1,000 cycles. With

two cpuid instructions in each probe, the Gullasch et al.

probe spans over 2,500 cycles. As our attack requires

three probes within 2,500 cycles, the resolution of the

Gullasch et al. code is is not high enough for implement-

ing our cross-VM attack.

The attack in Zhang et al. [61] specifically targets

virtualised environments, extracting the private ElGa-

mal [23] key of a GnuPG decryption executing in another

guest. The attack depends on a weakness in the scheduler

of the Xen hypervisor [8]. The granularity of the attack

is one probe in 50,000 cycles, limiting the minimum size

of victim key that can be captured. The modulus in the

paper is 4,096 bits long. The attack has low signal to

noise ratio, and requires the use of filtering. Even with

this filtering and the large modulus, the attack requires

six hours of constant decryption to recover the key.

Weiß et al. [57] also describes cache timing attack in

a virtualised environment. The attack is an adaptation

of Bernstein’s attack [9] that relies on the short constant

communication time between domains in the L4 kernel.

7 Conclusions

In this paper we describe the FLUSH+RELOAD tech-

nique and how we use it to extract GnuPG private keys

across multiple processor cores and across virtual ma-

chine boundaries.

It is hard to overstate the severity of the attack, both in

virtualised and in non-virtualised environments. GnuPG

is a very popular cryptographic package. It is used as the

cryptography module of many open-source projects and

is used, for example, for email, file and communication

encryption. Hence, vulnerable versions of GnuPG are

not safe for multi-tenant systems or for any system that

may run untrusted code.

While significant, the attack on GnuPG is only a

demonstration of the power of the FLUSH+RELOAD

technique. The technique is generic and can be used to

monitor other software. It can be used to devise other

types of attacks on cryptographic software. It can also

be used against other types of software. For example, it

could be used to collect statistical data on network traffic

by monitoring network handling code or it could monitor

keyboard drivers to collect keystroke timing information.

Hence, while the GnuPG team has fixed the vulner-

ability in their software, their fix does not address the

broader threat exposed by this paper.

The FLUSH+RELOAD technique exploits the lack of

restrictions on the use of the clflush instruction. Not

restricting the use of the instruction is a security weak-

ness of the Intel implementation of the X86 architecture.

This enables processes to interact using read-only pages.

11

Addressing this weakness requires a hardware fix, which,

unless implemented as a microcode update, will not be

applicable to existing hardware.

Preventing page sharing also blocks the FLUSH+RE-

LOAD technique. Given the strength of the attack, we

believe that the memory saved by sharing pages in a vir-

tualised environment does not justify the breach in the

isolation between guests. We, therefore, recommend that

memory de-duplication be switched off.

Acknowledgments

We would like to thank the anonymous reviewers and

our shepherd, Thomas Ristenpart, for their valuable com-

ments and support.

This research was performed under contract to the

Defence Science and Technology Organisation (DSTO)

Maritime Division, Australia.

References

[1] ACIIÇMEZ, O. Yet another microarchitectural attack: exploiting

I-Cache. In Proceedings of the ACM Workshop on Computer Se-

curity Architecture (Fairfax, Virginia, United States, November

2007), P. Ning and V. Atluri, Eds., pp. 11–18.

[2] ACIIÇMEZ, O., BRUMLEY, B. B., AND GRABHER, P. New re-

sults on instruction cache attacks. In Proceedings of the Work-

shop on Cryptographic Hardware and Embedded Systems (Santa

Barbara, California, United States, April 2010), S. Mangard and

F.-X. Standaert, Eds., pp. 110–124.

[3] ACIIÇMEZ, O., KOÇ, Ç. K., AND SEIFERT, J.-P. On the power

of simple branch prediction analysis. In Proceedings of the Sec-

ond ACM Symposium on Information, Computer and Communi-

cation Security (Singapore, March 2007), pp. 312–320.

[4] ACIIÇMEZ, O., AND SCHINDLER, W. A vulnerability in RSA

implementations due to instruction cache analysis and its demon-

stration on OpenSSL. In Proceedings of the Cryptographers’

Track at the RSA Conference (San Francisco, California, United

States, April 2008), T. Malkin, Ed., pp. 256–273.

[5] ACIIÇMEZ, O., SCHINDLER, W., AND KOÇ, Ç. K. Cache based

remote timing attacks on the AES. In Proceedings of the Cryptog-

raphers’ Track at the RSA Conference (San Francisco, California,

United States, February 2007), M. Abe, Ed., pp. 271–286.

[6] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing mem-

ory density by using KSM. In Proceedings of the Linux Sympo-

sium (Montreal, Quebec, Canada, July 2009), pp. 19–28.

[7] ARM Architecture Reference Manual, ARMv7-A and ARMv7-

R ed., 2012.

[8] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,

HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND

WARFIELD, A. Xen and the art or virtualization. In Proceedings

of the Ninteenth ACM Symposium on Operating Systems Princi-

ples (Bolton Landing, New York, United States, October 2003),

M. L. Scott and L. L. Peterson, Eds., ACM, pp. 164–177.

[9] BERNSTEIN, D. J. Cache-timing attacks on AES. http:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf,

April 2005.

[10] BERNSTEIN, D. J., LANGE, T., AND SCHWABE, P. The se-

curity impact of a new cryptographic library. In Proceedings of

the Second International Conference on Cryptology and Informa-

tion Security in Latin America (Santiago, Chile, October 2012),

A. Hevia and G. Neven, Eds., pp. 159–176.

[11] BERNSTEIN, D. J., AND SCHWABE, P. A word of warning.

CHES 2013 Rump Session, August 2013.

[12] BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address

obfuscation: an efficient approach to combat a broad range of

memory error exploits. In Proceedings of the USENIX Secu-

rity Symposium (Washington, DC, United States, August 2003),

pp. 105–120.

[13] BOBROW, D. G., BURCHFIEL, J. D., MURPHY, D. L., AND

TOMLINSON, R. S. TENEX, a paged time sharing system for

the PDP-10. Communications of the ACM 5, 3 (March 1972),

135–143.

[14] BRUMLEY, B. B., AND HAKALA, R. M. Cache-timing template

attacks. In Advances in Cryptology - ASIACRYPT 2009 (2009),

M. Matsui, Ed., vol. 5912 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 667–684.

[15] BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM,

M. Disco: Running commodity operating systems on scalable

multiprocessors. ACM Transactions on Computer Systems 15, 4

(November 1997), 412–447.

[16] CAMPAGNA, M., AND SETHI, A. Key recovery method for CRT

implementation of RSA. Report 2004/147, IACR Cryptology

ePrint Archive, 2004.

[17] CERON, R., FOLCO, R., LEITAO, B., AND TSUBAMOTO, H.

Power Systems Memory Deduplication. IBM, September 2012.

[18] CERT vulnerability note vu#976534: L3 cpu shared cache ar-

chitecture is susceptible to a Flush+Reload side-channel attack.

http://www.kb.cert.org/vuls/id/976534, October 2013.

[19] CHEN, C., WANG, T., KOU, Y., CHEN, X., AND LI, X. Im-

provement of trace-driven I-Cache timing attack on the RSA al-

gorithm. The Journal of Systems and Software 86, 1 (2013), 100–

107.

[20] CIPRESSO, T., AND STAMP, M. Software reverse engineer-

ing. In Handbook of Information and Communication Secu-

rity, P. Stavroulakis and M. Stamp, Eds. Springer, 2010, ch. 31,

pp. 659–696.

[21] CORON, J.-S. Resistence against differential power analysis for

elliptic curve cryptosystems. In Proceedings of the Workshop

on Cryptographic Hardware and Embedded Systems (Worces-

ter, Massachusetts, United States, August 1999), Ç. K. Koç and

C. Paar, Eds., pp. 292–302.

[22] CURTSINGER, C., AND BERGER, E. D. STABILIZER: Statisti-

cally sound performance evaluation. In Proceedings of the 18th

International Conference on Architectural Support for Program-

ming Languages and Operating Systems (Houston, Texas, United

States, March 2013), pp. 219–228.

[23] ELGAMAL, T. A public key cryptosystem and a signature

scheme based on discrete logarithms. IEEE Transactions on In-

formation Theory 31, 4 (July 1985), 469–472.

[24] FORREST, S., SOMAYAJI, A., AND ACKLEY, D. H. Building

diverse computer systems. In Proceedings of the Sixth Workshop

on Hot Topics in Operating Systems (Cape Code, Massachusetts,

United States, May 1997), pp. 67–72.

[25] GARNER, H. L. The residue number system. IRE Transactions

on Electronic Computers EC-8, 2 (June 1959), 140–147.

[26] GINGELL, R. A., LEE, M., DANG, X. T., AND WEEKS, M. S.

Shared libraries in SunOS. In USENIX Conference Proceedings

(Phoenix, Arizona, United States, Summer 1987), pp. 131–145.

12

[27] GNU Privacy Guard. http://www.gnupg.org, 2013.

[28] GORDON, D. M. A survey of fast exponentiation methods. Jour-

nal of Algorithms 27, 1 (April 1998), 129–146.

[29] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache

games — bringing access-based cache attacks on AES to prac-

tice. In Proceedings of the IEEE Symposium on Security and

Privacy (Oakland, California, United States, may 2011), pp. 490–

595.

[30] HENINGER, N., AND SHACHAM, H. Reconstructing RSA

private keys from random key bits. In Proceedings of the

29th Annual International Cryptology Conference (CRYPTO

2009) (Santa Barbara, California, United States, August 2009),

S. Halevi, Ed., pp. 1–17.

[31] HERMANN, M., AND MAY, A. Solving linear equations modulo

divisors: On factoring given any bits. In Advances in Cryptol-

ogy - ASIACRYPT 2008 (Melbourne, Australia, December 2008),

vol. 5350 of Lecture Notes in Computer Science, pp. 406–424.

[32] HU, W.-M. Reducing timing channels with fuzzy time. In Pro-

ceedings of the IEEE Symposium on Security and Privacy (Oak-

land, California, United States, May 1991), pp. 8–20.

[33] HUFFMAN, C. Memory combining in Windows

8 and Windows Server 2012. http://blogs.

technet.com/b/clinth/archive/2012/11/29/

memory-combining-in-windows-8-and-windows-server-2012.

aspx, November 2012.

[34] INTEL CORPORATION. Intel 64 and IA-32 Architecture Opti-

mization Reference Manual, April 2012.

[35] INTEL CORPORATION. Intel 64 and IA-32 Architectures Soft-

ware Developer’s Manual Volume 3A: System Programming

Guide, Part 1, March 2013.

[36] KIL, C., JUN, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-

dress space layout permutation (aslp): Towards fine-grained ran-

domization of commodity software. In Proceedings of the An-

nual Computer Security Applications Conference (Miami Beach,

Florida, United States, December 2006), pp. 339–348.

[37] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND

LIGUORI, A. kvm: the Linux virtual machine monitor. In Pro-

ceedings of the Linux Symposium (Ottawa, Ontario, Canada, June

2007), vol. one, pp. 225–230.

[38] KOCH, W. GnuPG 1.4.14 released. http://lists.gnupg.

org/pipermail/gnupg-announce/2013q3/000330.html,

July 2013.

[39] MIŁOŚ, G., MURRAY, D. G., HAND, S., AND FETTERMAN,

M. A. Satori: Enlightened page sharing. In Proceedings of the

2009 USENIX Annual Technical Conference (San Diego, Califor-

nia, United States, June 2009).

[40] MURPHY, D. L. Storage organization and mamagement in

TENEX. In Proceedings of the Fall Joint Computer Conference,

AFIPS’72, Part I (Anaheim, California, United States, December

1972), pp. 23–32.

[41] OPENSSL. http://www.openssl.org.

[42] ORGANICK, E. I. The Multics System: An Examination of Its

Structure. The MIT Press, 1972.

[43] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks

and countermeasures: the case of AES. http://www.cs.tau.

ac.il/~tromer/papers/cache.pdf, November 2005.

[44] OWENS, R., AND WANG, W. Non-interactive OS fingerprint-

ing through memory de-duplication technique in virtual ma-

chines. In Proceedings of the 30th IEEE International Per-

formance Computing and Communicatons Conference (Orlando,

Florida, United States, November 2011), S. Zhong, D. Dou, and

Y. Wang, Eds., IEEE, pp. 1–8.

[45] PAOLONI, G. How to Benchmark Code Execution Times on Intel

IA-32 and IA-64 Instruction Set Architectures. Intel Corporation,

September 2010.

[46] PERCIVAL, C. Cache missing for fun and profit. http://www.

daemonology.net/papers/htt.pdf, 2005.

[47] RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE,

S. Hey, you, get off my cloud: Exploring information leakage

in third-party compute clouds. In Proceedings of the 16th ACM

Conference on Computer and Communication Security (Chicago,

Illinois, United States, November 2009), E. Al-Shaer, S. Jha, and

A. D. Keromytis, Eds., pp. 199–212.

[48] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for

obtaining digital signatures and public-key cryptosystems. Com-

munications of the ACM 21, 2 (February 1978), 120–126.

[49] SUZAKI, K., IIJIMA, K., YAGI, T., AND ARTHO, C. Mem-

ory deduplication as a threat to the guest. In Proceedings of the

2011 European Workshop on System Security (Salzburg, Austria,

2011).

[50] The PaX project. http://pax.grsecurity.net/.

[51] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache

attacks in AES, and countermeasures. Journal of Cryptology 23,

2 (January 2010), 37–71.

[52] UHT, A. K., AND SINDAGI, V. Disjoint eager execution: An

optimal form of speculative execution. In Proceedings of the

28th International Symposium on Microarchitecture (Ann Arbor,

Michigan, United States, November 1995), pp. 313–325.

[53] VATTIKONDA, B. C., DAS, S., AND SHACHAM, H. Eliminating

fine grained timers in Xen. In Proceedings of the ACM Workshop

on Cloud Computing Security (Chicago, Illinois, United States,

October 2011), C. Cachin and T. Ristenpart, Eds., pp. 41–46.

[54] VMWARE INC. Understanding Memory Resource Management

in VMware ESX Server. Palo Alto, California, United States,

2009.

[55] WALDSPURGER, C. A. Memory resource management in

VMware ESX Server. In Proceedings of the Fifth Symposium

on Operating Systems Design and Implementation (Boston, Mas-

sachusetts, United States, December 2002), D. E. Culler and

P. Druschel, Eds., pp. 181–194.

[56] WALTER, C. D. Longer keys may facilitate side channel attacks.

In Selected Areas in Cryptography (2004), M. Matsui and R. J.

Zuccherato, Eds., vol. 3006 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, pp. 42–57.

[57] WEISS, M., HEINZ, B., AND STUMPF, F. A cache timing attack

on AES in virtualization environments. In Proceedings of the

16th International Conference on Financial Cryptography and

Data Security (Bonaire, February 2012), A. D. Keromytis, Ed.

[58] XIAO, J., XU, Z., HUANG, H., AND WANG, H. A covert chan-

nel construction in virtualized environments. In Proceedings of

the 19th ACM Conference on Computer and Communication Se-

curity (Raleigh, North Carolina, United States, October 2012),

T. Yu, G. Danezis, and V. D. Gligor, Eds., pp. 1040–1042.

[59] XU, J., KALBARCZYK, Z., AND IYER, R. K. Transparent run-

time randomization for security. In Proceedings of the 22nd Inter-

national Symposium on Reliable Distributed Systems (Florence,

Italy, October 2003), pp. 260–269.

[60] XU, Y., BAILEY, M., JAHANIAN, F., JOSHI, K., HILTUNEN,

M., AND SCHLICHTING, R. An exploration of L2 cache covert

channels in virtualized environments. In Proceedings of the

ACM Workshop on Cloud Computing Security (Chicago, Illinois,

United States, October 2011), C. Cachin and T. Ristenpart, Eds.,

pp. 29–40.

13

[61] ZHANG, Y., JULES, A., REITER, M. K., AND RISTENPART, T.

Cross-VM side channels and their use to extract private keys. In

Proceedings of the 19th ACM Conference on Computer and Com-

munication Security (Raleigh, North Carolina, United States, Oc-

tober 2012), T. Yu, G. Danezis, and V. D. Gligor, Eds., pp. 305–

316.

14

