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ABSTRACT '

The torsion flutter and forced response of tuned and mistuned
cascades is examined using a standing wave approach, as opposed
to the traditional traveling wave approach used in cascades aerodynamic
models. The motion of the blades and the corresponding cascade aero-

dynamic loads are expressed in terms of standing wave modes and arbitrary

[RVL

transient motion, by fitting the sinusoidal force coefficients in terms

of ratios of polynomials in the Laplace transform variable, sometimes %
referred to as Padé approximants. Whitehead's two dimensional, incom- f _ ;
pressible aerodynamic model is expressed in this transient form and is g %

used to solve the flutter and forced response problems. Results obtained
with the transient, standing wave analysis for the flutter and forced
respense are similar to those obtained by traveling wave analyses, but
they yield the transient decay rate associated with vibrations of the
blades, as opposed to the structural damping required for flutter obtained

by the traveling method.

The standing wave analysis presented here may prove to be more
versatile for dealing with certain applications such as mistuned rotors,

"localized" blade flutter, low engine order excitation, transient impulses
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on the rotor, and coupling in with forced response and dynamic shaft prob-

lems.
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NOMENCLATURE

AA ) AB) AL,’ ')AZD nondimensional traveling wave force coefficients
as they enter (2-40) and (2-41), {
= (Mg *idyg), ete.
A _ nondimensional aerodynamic coefficients
associated with forward and backward
. .
traveling waves, = (AIR+1AAI), etc.

defined by (2-10)

>\
[ ]
~3
>\
»
~3
=t
[

matrices of first order form of equations of

P

motion, defined by (3-18) for the tuned
cascade, and by (3-33) for the mistuned

cascade

L e Aiecmsm

A,\ B) (D coefficients of cubic equation, (3-8)

real part of eigenvalue . }

elastic axis loéation in semichords aft of i "
midchord

coefficients of transient, standing wave

3
SN

D;’BI"BC7Bz, 4,-’

form of airloads

B, N %l ) E"’ matrices of coefficients of transient, standing
wave form of airloads, defined by (2-38) for
? § the tuned cascade, and by (2-42) for the
1 mistuned cascade
@ é b semichord
E é Ci P C (: force and moment coefficients as defined
E Fi g TFX N: ’ Mo
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by Whitehead [2]

G (k) Theodorsen Function

C matrix defined by (3-17)

D matrix defined by (3-31)

G imaginary part of Theodorsen Function

E vector of applied loads in first order form
of equations of motion

'Fcn’gsn nondimensional coefficients associated with
components of engine order excitation

F real part of Theodorsen Function

G‘.,fjo,a. coefficients of transient form of airloads

G'. ,§° matrices of coefficients of transient, standing
wave form of airloads, defined by (2-38) for
the tuned cascade, and by (2-42) for the
mistuned cascade

h displacement of blade

h magnitude of blade displacement

I identity matrix

Ix mass moment of inertia

Tave average mass moment of inertia

I° reference mass moment of inertia

Ik‘.3h7rhw inertia associated with the high and low
frequency blades of a mistuned cascade,
respectively

3' blade number

k reduced frequency, wb/ U
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7
i v )eoq:" torsional stiffness of blade j
E i,[_ ] Laplace transform
[ R 1lift on section of isolated airfoil
g ! m aerodynamic moment acting on section of
%' isolated airfoil
mj : aerodynamic moment acting on section of
blade j
M? disturbance moment acting on blade j
- m?* nondimensional disturbance moment acting on
j blade j
‘ N number of blades "
. n engine order :
. g transformation matrix of blade coordinates 3
and multiblade coordinates 3
'ﬁ nondimensional eigenvalue, T o/w, + L w/lw, ’
Zcr; 2” multiblade coordinates
g vector of multiblade coordinates
Z eigenvector of multiblade coordinates
; mode number, number of nodal diameters
!,( s’ Laplace transform variable
R radius of rotor to section of blade under
g consideration
‘ I matrix defined by (4-7)
t time
E w velocity at blade
I reduced velocity, u/w,,b
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vector of modal coordinates of first order

o

i
3

form of equations of motion
\(c,, Y;r coordinates associated with augmented
equation of standing wave form of airloads

vector of coordinates, Y., Y.

< v-

L et th it bl i o
=<

[

X rotation of isolated airfoil
0{i rotation of blade j
22 complex magnitude of torsional vibration
er modal coordinate associated with traveling
wave having interblade phase angle
jo< | magnitude of torsional vibration of j
blade j g
/Br interblade phase angle, = 24qrr/N :
x“ undamped natural frequency ratio, =4 /0, :
¥ frequency ratio of vibration, =w/w, %
Srn Kronecker delta '
:y structural damping .
- aerodynamic damping !
A
y) elastic axis location in % chord aft of
leading edge
éb position of blade j with respect to fixed,
non-rotating axes
6?- position of blade j with respect to axes

fixed to disk

7,
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inertia ratio : i
stuagger angle

density of air

nondimensiona} time

’ phase angle of vibration of blade j
Kiissner Function

frequency of vibration

£ e X® Ao 2

j natural torsional frequency of vibration )
of blade J ;
thjh 2 %low natural frequencies of high and low frequency
1]

blades of a mistuned cascade

reference frequency, average frequency

P&

angular velocity of rotonr

Subscripts
( ) matrix
o d
*
< ) a/dt
(<]
() e
:i blade number
- . — - S
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1. Introduction

Most work involving the aeroelastic stability and response of
cascades makes use of cascade aerodynamic models which assume that all
blade motions are sinusoidal. Modes of motion are represented bty waves
traveling around the circumference of the rotor. Dugundji [1] has shown
that the traveling wave modes can be expressed in terms of standing wave
modes, which are  traditionally used in solvirg the fixed wing flutter

problem. One advantage of this method is that the equations of motion for

rotating str.ctures and "static" structures can be easily joined.
Eventually, problems of blade-disk coupling and shaft motions can be more
easily handled by this method. The casting of the cascade traveling wave

airloads into standing wave form is detailed in Chapter 2.

Whitehead [2] gives a good history of the early development of
cascade aerodynamic models. His model for a two-dimensional,
incompressible fluid with flat plate airfoils is used in this work. Smith
[3] has extended to subsonic compressible flow, and Adamczyck and
Goldstein [4], among others, to the supersonic cascade with subsonic axial
flow. More recently, computational fluid dynamics has been used by
Whitehead [5] to obtain the airforces for the two-dimensional high

deflection cascade with subsonic axial flow. In each of thess models, the

force coefficients can be expressed as a complex number depending on the
frequency of vibration and other flight and geometric parameters. Using

these methods to generate airload coefficients requires a lengthy

O

computation for each frequency of vibration desired. To solve the flutter

f problem the V-g method is used, whereby the structural damping required




for flutter is obtained.

When control and aeroelastic interactions of fixed wing aircraft are

being examined, the airloads must be in a form suitable for general

motions of the airfoil. Edwards, Ashley and Breakwell [6] have shown that

through the use of Laplace Transforms, the complete unsteady airloads

acting on an isolated airfoil can be approximated by a ratio of

polynomials, and that a transient form of the airloads can be expressed.

The present work extends these ideas to cascade aerodynamics, expressing

the airloads in a transient form so that the airloads due to general

motions of the airfoils can be determined. In s.'ving the flutter

problem, it is no longer necessary to know the frequency of vibration when

computing coefficients. In addition, the actnual transient decay of the

motion is obtained. In Chapter 3, the transient form of the airloads is

applied to solving the torsion flutter problem. The isolated airfoil

stability is compared to the tuned cascade stability, and the effect of

mistuning is introduced.

Mistuning, or differences in natural frequencies, stiffnessea, and

inertias betwsen blades is being studied as a possible passive control of

turbomachinery flutter and forced response. Srinivasan [7] has

demonstrated the beneficial effect of mistuning on torsion flutter and

Kaza and Kield [8] have shown that mistuning often has a beneficial effect

on the bYending-torsion flutter sveed and an adverse effect on the forced

response of the cascade. The present work duplicates these results for

the torsion degree of freedom using airforces expressed in a transient,

standing wave fornm.




Thz etfects of mistuning on the forced response are discussed in
Chapter 4. The fact that the airloads are expressed in terms of general ;

13 motion allows a quick solution of tlie response problem. If the airloads |
were expressed in terms of traveling waves, then the airloads must be §
recalculated for each frequency. To demonstrate the transient form of the
airloads, the response of a cascade to an impulsive loading of one blade

is calculated.

.
T

Chapter 5 deals with the extensions of these standing wave methods
to deal with flexible disk rotors. Also these methods are applied to
3 give the cascade aerodynamic influence coefficients, that is, the effect

1 of the motions of one blade on the forces produced at another blade.

PSSRSO S
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2. Transient Cascade Airforces

Unsteady cascade aerodynamic theories have been under development
since the early 1950's. Each of these theories makes the assumption that
the airfoil motion is sinusoidal. Edwards et. al. [6], and Vepa [9]
give a method for obtaining airloads due to general motions of an airfoil
using the Theodorsen function. This method was developed to study active
control of aercelastic structures, and is based on the approximation of
the unsteady air loads by ratios of polynomials in the Laplace transform

variable, sometimes refered to as Padé approximants.

2.1 Standing Wave Representation

The cascade aerodynamic theories were developed for harmonic
vibrations that can be represented by traveling waves moving around the
ci~cumference of the disk. For a tuned rotor, each of the blades will
have the same amplitude and interblade phase angle for a given mode of
vibration. The torsional amplitude, ag, of each blade in such a cascade
can be written in terms of a traveling wave mode as,

_ (wt+is)
xXj= X, e (2-1)

r

where

/6r= 2;/”‘ » interblade phase angle

-




L

= blade number

i -

2

number of blades

r = mode number, number of nodal

diameters

Ny

= modal amplitude

See figure 1.

The airforces corresponding to such a vibration can be expressed as,

. _ {(w't+j°;31-)
My =2apW b (Ag +iAg) L e (2-2)

Here the aerodynamic moment per unit span due to pitching motion, ms of
each blade is given in terms of a traveling wave mode, where the
nondimensional complex aerodynamic coefficient (AR+iAI) is associated
with the interblade phase angle /Qr' For =2 mistuned cascade, the blades
no longer vibrate with the same amplitude or constant interblade phase
angle. In order to specify the N magnitudes and N phase angles of the
motion of each blade of an arbitrarily mistuned WN-bladedq rotor, the
solution must contain 2xN constants. To obtain solutions, then, one sums

over all nodal diameter traveling wave modes,

!
e
&
i
ﬁ»‘%
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N-I Z(Wt‘i'jpr)
XK= 2 D(r e (?—'5)
3 =0

Here, there are N modal amplitudes, ., and N modal phase angles, /i,.
When  summed, the blade amplitudes and blade phase angles are

reconstructed. The corresponding airforces are summed also as follows,

N-i

. _ wt+ip)
m; =Z7mplt b;Z (ARHAI)r X e
=0

An alternative, based on standing wave modes is discussed by Dugundji
[1]. The use of standing wave analysis is traditional when studying the
flutter of aircraft wings. In the present analysis, deflections are

represented by standing wave modes of the form

o, = 9. (¢) cos 18- (2-5)

where ?Zr is a generalized coordinate, and is in general a function of

time. For example, if 3 =0 the motion represented would be the
v ’-

“umbrella" mode, where all blades move in unison. To show that the

traveling wave representation and the standing wave representation are

equivalent, add two traveling waves of the form (2-1), traveling in

opposite directions (+j and -j) with equal amplitudes E;r, and take the

F& real part,

O U VS
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o<3 SZE_— cos (w't—f:lpr) + —rcos (cot —jpr) ('Z—b)

Expanding and combining terms leaves

o, = X, coswtcosip, (2-7)

[4
3
which is of the form (2-5) for Ztst)=5iposa:t. The form of the standing
vwave airforces can be determined in a similar manner. Adding the

traveling wave airforces associated with +j and -j directions gives,

(2-¢)

Here, (A;fiA:) refers to the complex aerodynamic coefficients agssociated
Wwith the +trav2ling wave having an interblade phase angle _ﬁ%. while the
coefficient (&;+iﬂ;) is associated with the traveling wave having an
interblade phase angle -8, or (360'/3r)‘ By examining the motion
associated with these traveling waves, the direction of the wave can be
determined. Interblade phase angles between /3,- 0 degrees and /&P- 180
degrees are associated with forward (in +the direction of rotation)
traveling waves, while interblade phase angles between f%_- -180 degrees
and f&r = 0 degrees are associated with backward traveling waves.

Expanding (2-8), taking only the real part and combining terms, yields
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m; = 2mpW b 3[R, X, cosut ~R; X _swwt] cosip,

+[- KIR‘, coswt — '-Kk'&rs\nwt] sinj ﬁ,})

(2-9)
where
Ae = s(Ax + A)
Ar=3(A7 +A;:)
Z&‘I = lz(A; - A;_) (z-10)

As has already been shown, by comparing (2-7) and (2-5) the expression for
the torsional displacement of blade J can be written in terms of an

arbitrary function of time and a standing wave mode as,

x5 =9, .(t) cesip, (z-11)

The corresponding standing wave form of the moment acting on blade j can

be written as,




é
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mj =-.2_1'(fu,7-bz {[ B‘ "E icr‘f' BO?C‘:]Cosj/jr

Here the aerodynamic moment is given as a function of the displacement and

velocity of the generalized coordinate, 7 By assuming the solution
(&a

zcrf5Q905¢ot, and comparing (2-9) and (2-12), one can see that the

~F

standing wave coefficents B|, q,, B., 30, are related to the traveling

wave coefficients K;, Ag, Ke, A, by the following relations:

Bo = Ag
kB, = K:
B°=—’AI

;_
2
i
>
o

(2-13)

— =

Since the traveling wave coefficients KR’ AI, IK, and KI vary with

Y
B

reduced frequency k = wb/U, the standing wave coefficients Q y B |

b,
and ia can be ugsed to fit the +traveling wave data over a range of
frequencies. Equations (2-13) can be solved for the standing wave
coefficients. The general motion form of the standing wave aerodynamic

moment (2-12) contains information about how the moment would vary for

different frequencies of sinusoidal motion, as well as for any arbitrary

+ [E,—E—icr-r ﬁoclc:_‘s\nj[&r (2-12)

i
!
!
|

o Tt e
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motion. The generalized coordinate 1 is an arbitrary function of time.

(A

Again, tne standing wave coefficients are in general

a function of the

interblade phase angle, /3 » gap-to-chord ratio, s/c, and stagger angle,
r

‘?’- As an example, coefficients from Whitehead's [2] incompressible,

two-dimensional theory were fit using this simple approximation. The

approximation to the Whitehead moment using (2-12) is shown by the dashed

line in figure 2. In this example, the stagger angle is zero degrees and

the forward and backward traveling wave coefficients are identical. Thus,

;', and Kt are each equal to zero. The remaining standing wave

coefficients are related to the Whitehead coefficient C " by

AR +iAL =20, (2-14)

As can be seen in figure 2 this fit (2-13) might be acceptable for low

values of reduced frequency, but is poor at higher reduced frequencies.
For a more accurate fit of the data the moment acting on blade j can be

more generally expressed as,

.

mj=21rfu’-g~§[ k,’i +Bl’:‘,‘i *+B,9.+G, Y. ] cosjg,
»+[ﬁz i;'i +B iqu-&B 1"+G Y'] Smjpi (2-15)

(2-1b)

Caw A . e .

ettt . BB gt * e n e wm—




e itk AR A A L S D

20

This represertation was motivated by the complete unsteady airforces ; .
acting on an isolated airfoil (see [10]). If the coefficient G‘= o,
then BL represents a virtual modal mass, B, a modal aerodynanmic
damping, and B, a modal aerodynamic stiffness. The coefficient G,

represents the unsteady aerodynamic effect, or the amount of aerodynamic

lag, since by solving (2-16) for Yir one obtains

LAt = ) e 9 (T)dT (2-17)

For a value of 1’ at time T, where T is any time back to 0, the
cr

effect on the moment (2-15) increases as t is taken closer and closer to

T . 1In the limit as t = T , the term 6, Y (t) reduces to ciz‘,(t) ,

another term of the form of an aerodynamic stiffness. That is, the
farther in the past the motion icr occurred, the lgss effect there is on
the aerodynamic moment. Hence, an aerodynamic "memory" or "lag" effect.
In general, G, and E: contribute to the stiffness and damping, so that
B, and B, alone do not represent the level of modal aerodynamic
damping and stiffness, respectively. Note that only one augmented
equation is used. Another possible augmented equation for Y with ﬁc is
neglected. This does not result in a significant error and it reduces the
number of equations describing the moment acting on the blades. Thus for
each second order equation expressing the aerodynamic moment for general

motiona of the airfoil, there is only one first order augmented equation.

Solving (2-16) by Laplace transform and substituting into (2-15) gives
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i,[mj]= Z*rrfuzbzz([ B,S +B,s + B,

> ]cosjﬁ,. +[§;_ S 4 § s

s s+3 :’3””3/3 §I[%¢J

(2~18)

where s = 8'b/u, and s' 1is the Laplace transform variable corresponding

to time, t. The unsteady effect is contained in the Padé approximants,

G, s/s+3° and G s/s+3

a2 R B R - LA A A Mt S dde st A e e A el S
T TR S L R R

To obtain the relations between the standing wave coefficients B

A 20
3 ~ by R .
! B, B,, G|, 3°, ﬁz’ B', Bo,and ﬁ., and the given aerodynamic
4 ,.
: coefficients KR, KI’ f&,and i,, in terms of reduced frequency, k, .
| solve (2-16) by substituting Yer=Y  cOswt + Yc“_sinwt. Then solve for
| Yeer and Y.,  and substitute back iato (2-15).  Use the solution

7 =X coswt in (2-15) ang compare terms with (2-9) to give the new

(1

relations between the standing wave coefficients and the traveling wave i
K coefficieats as follows,
i

aae S

i !
- L e o e et L
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-szz +B, +K 6, =A
k*+gq2

¢

k +q2
""sz,_ + 'B'a -+ kz a, = -ZI
K+ 97
kB, + k3.6, = Ag (2-19)
k"-t-g:'

There are many methods to obtain fits to +the traveling wave

» B,y G,

coefficients using the nine standing wave coefficients Bz’ B b ? .

'
~ ~

”
30, gz’ B', Ba, and G‘ . Since reduced frequencies at which flutter

usually occurs are in the range k = 0 to k = 1, that was the range chosen

as the one over which to fit the data. To obtain the standing wave

coefficients, the traveling wave coefficients KR’ X:’ Al’ and KI, were

fit at k = 0, k = 0.1, and k = 1, and (2-19) was used to solve for the
standing -tave coefficients. Appendix A has a more complete description of
the fitting process. Relations (2-19) give a much better approximation to
the Whitehead coefficients than the simpler relations (2-13). (See figure

2.) The coefficients 'K&, 1 T&' and I: are related to the forward

x'
and backward traveling wave coefficients by the relations (2-10).

The solution for mistunad rotors requires a summing over all the

!
1
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nodal diameter modes. In addition to the cos(Jﬁ;) modes,

wave modes sin(@d;) must also be represented for a complete solution.

standing wave deflection for sin(jg.)

subtracting the two traveling waves that were

Reducing leaves,

X, = _07‘_ St S‘mjﬁr

(z-20)
3

Corresponding airforces give results of the form (2-

15), (2-16), ang
(2-19),

Summarizing, +to represent arbitrary motion and corresponding

airforces for 4 cascade using standing wave modes, the deflections and

corresponding airforces cau be expressed in the following form,

(t)= 9 (theossp + 9. ()3injp, (2-22)

- a2 A £ B Wl e

the standing
The
can be obtained similarly by

added to give (2-7).

s
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1.+B.q +G,Y. ]sinig]

(z-24)
b v b o
— -+ - =
u Ysr 3, Ysr U ?Sr (2-25)
where QL, B', B,» G', % * ﬁz' ﬁ:, ﬁL, and 5‘, are constants

obtained by fitting the given sinusoidal traveling wave coefficients by
(2-19) and (2-10),

The above procedure can be extended to both bending and torsional

motion of the airfoils by eipressing the traveling wave deflections, hi ’

and rotations, “} y and the corresponding traveling wave lift, ﬁj » and

noment, mj y a8,

B
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o =3
. X _\—\\. b E("‘t*:j[sr)
'QJ =Z-1Tyu b AA AB __,/ (8
iﬂg /b ﬂ\c_ Ap r

where ‘E,- and z;r are generalized coordinates associated with the
traveling wave mode r, and AA' As, Q:, and A, are nondimensional
aerodynamic coefficients for lift due to deflection, 1ift due to rotationm,
etc. The coefficient A, refers to either (A:n+iA:I) or (A;‘jiA;:)

(depending on the direction of the traveling wave), as they appeared in
(2-8). The sign conventions are defined at the leading edge as in figure
3. The relations between the traveling wave coefficients defined above

and Whitehead traveling wave coefficients are as follows,

r r» >» >
.
u
|
o
Iy

0= 2ZCma (z-27)

The transient form of the deflections and the corresponding 1lift and

moment acting on blade J for a single pair of standing wave mcdes can Ve

e

g e e -
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(z-28)




o

ORIGINAL PAGE |9
OF POOR QUALITY

o<$'f‘ + Bia K D(Sr‘ + BOB“S"“-GIB xS¢
~
IERERCUE PR W
+ BZB %z D<C"' ¥ 5‘3 L\ °<cr * BOBO(C\‘-‘- GlBYO(Qv .:\V\Jpr

(2-29)
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o
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I
Slo

hev e
b v b (a—;o)
U Yu(c,nr + 30 Yo(Cr =0 °(cr

The form of ms/b is similar to the form of ﬁf' By replacing all the

B, by Bi¢s» and all BL’B by BiD » one can obtain the expression for
moment mi/b from the expression for 1lift, lj. There is one augmented
equation (2-30) for each of the four coordinates, h, h , « , and .

ce S ar s

The equations for 1ift and moment can be written more compactly in matrix

form as follows,

h; /b

(z-21)

"
MO
el
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m. /b ”
b
Bo% + G-I Y E
P (2.-32)
b _ b
W I ¥ ,3}\,{ Tou a‘
where the matrices have been defined as
h"f/b Yl\cr
_ X cr Y n‘“{'o(c v
~ hsr /b ~ Yhsr
- °<5*' Y&S\- /
(2-33)

° cos3p, o) singBr
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— , _ T
Bz, = Bz A Bz & A Th,
5 | ~
BZC B"’—D l B Bzc - le)
ZA BZB , Bz_A Bz ()
BZC Bz > | Bzc; BZ‘D
i |
[ l ] :
Q =14, o | o o !
o 30 | o 0
o o , jo o
| © ° |’ ° Jo —

The matrices B,, B,, and

»

G, are similar to B,

This work involves only the torsion degree of freedom, and only the

coefficient Am is used directly. The constants required above were
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obtained nging Whitzhead's [2] two-dimensional, incompressible

aerodynamics.  Equations (2-19)) were used to solve for the standing wave

coefficients, and their values are listed in Tables 1 and 2 for stagger

)
: angles of 9% =0 degrees and R
s/c = 1.

= 45 degrees and gap-to-chord ratio,

The values listed in the table refer to an axis system located

at the leading edge. Figures 4 and 5 show the fits of the Whitehead

traveling wave coefficients at the leading edge. Tables 3 and 4 list the

exact values of the Whitehead coefficients versus the approximate values.

To transfer information to any axis, located a distance 77 per cent

chord behind the leading edge, one finds the following relations. (See

figure 3.)

>
>

L —
~

1]

(A,)

= (AB)O + 27) (AA)OA

’\

P2
(e ]

e
=
)

(2-34)
(Ac)y = (A), + 27 (),

e

.

(Aody= (A), +20L(A,), (8, )] < 4°(a, )

where ( L represents a quantity evaluated at the leading edge. The

same transformations are used when transfering standing wave coefficients

0o any axis 1] + By substituting sz' Bzc' etc. into the above for

. AT Bl i Do e e
o  me Suaenamen amaan ol e

e e R e A e e .
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ﬁ’, Ac' etc. one can obtain the appropriate transferred coefficients.

Returning to the cascade torsion problem, expressions (2-22), (2-23),

(2-24), and (2-25) can be written more compactly in matrix form as follows

«;=P g (2-35)

T . T (2-30)
b - ,
at +9% Y =414 (= -37)

where the matrices have been defined as
g = Lcosjpr singp 9 = Yer Y - Yer

. 0 (2.-38)
By By |  9,- go
sz ~ 30

B.s

? NUD
"

The matrices B‘, Bo' and G, are similar to Bz, and all the entries

A Ar A

of all the matrices depend on the interblade phase angle. To represent

mistuned cascade aerodynamics it is necessary to include all nodal

- T TR Y iy oo
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where the new matrices have been defined

diameter standing wave modes from r =0 to = (N-1)/2. Now the
. deflections and corresponding moments can be represented by
1
-
3 = -
x=P4 (2-39)
; ~
a5 4y 6]
- - - -+ - <+ -
m-2plEp (B f+BRE B4+ G Y] (2-40
Pi o ) [ 4
" b b
i w |-+ Y = -
%

Lk ot "?'ﬂ,?’«"f e & O "t
i ]
—'_"\-'
1]
-~
<
0

o = (o, 9 =4 ]
; Ml ; hal \ l;:l 42"' h;:l \(c|
2 Qs Y
; Tca | |
L ' “ 952 | | Yeu
‘ : Yea (2"4'2)
Te s
f i Yoz
i ’ LYsﬁ’;:' J
- -
Bz = sz(fzb) o o o .. ...
o  Byle) B0 o o
o B ) Bw(\). 6 o - :
° ° . :
° ° B %) Bl )

e Elb( ) Bm()_‘

omaram .
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where, for r = 0, there is no contribution from the sinj;i mode, and so
it is neglected. Since the standing waves appear in pairs and the sinj/;

mode is a non-mode, 0dd numbers of blades are easier to handle. To model

an even number of blades, an extra set of modes would be required. The

mode number r would be N/2 ,» and the sinjpr mode is always zero, since

N is an even number. Only one mode, the cosjﬁ} mode, representing 180
degrees of phase separation of the motion of adjacent blades, is added.
For simplicity, only odd numbers of blades are used in this work. The

matrices B,, B,, and G, , are similar to Bz.

2.2 Application to Isolated Airfoil

For comparison, the complete unsteady airforces acting on a typical
section of an isolated airfoil have been expressed in terms of the general

motion of standing wave modes, and the standing wave coefficients B,»

B, B, G,, and 9e have been determined. These airforces are

given by
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5."- & h N

R=2mpu bﬁ'é&‘t*"z"‘&" 7o ] 2-43)
; FCOO[-5E v e r(3-aye <] 7 (

b I b e 2 oo

my = 2mpt bl 2 g - (3-a)8 < - (h+a) 8o

+ (A58 =t (f-a)b & (2-44)

where C(k) is the Theodorsen function (derived in terms of sinusoidal

motion), and a is the elastic axis 1location in semichords aft of

midchord. See reference [10]. To obtain the traveling wave coefficients

in the proper form, assume solutions of the form

h = Re? h e‘fwzg
o = Re§ e "%

R Now the airforces (2-43) and (2-44) can be represented by

T — S —
R - ~yape
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where for these isolated airforces the nondimensional aerodynamic

coefficients have been defined as follows,

Av= 3K - kGl
Ap=iakis {1k + L[ 1+ i(L-a)k) .
Ac=tak®s (k(a+t) G0

Ao=t(%+a) kit (4-a)k + (as ) QK1+ ke (E-a)]

If the Theodorsen function is written C(k)=F(x)+iG(k), then we find the

following
Am= LK+ kG
Aag® —kF |
Agn= oK +F-(4-a) kG
Aprz ik +6+(f-a)kF
Acp=t ok + (a+l) k6
Acz= —(q+é)kF
Aog= L (E+a) k" +(a+d)F-(4-a*) kG
Ao =3 (4-a)k +(as})6 + (- kF

(2-49)
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-19)
the Thesdorsen function C(k) =F +iG is g known function of reduced

frequency. The transient coefficients can be solved for from (2-19)

as
shown in Appendix A.

The values of the transient coefficients are shown

in Table 5 for a = -

(elastic axis at the leading edge). For the

isclated airfoil, the modal displacements are equal t0 the blade

displacements, and (2-28) vecomes,

h; = hit)

(2-50)

1]
X
o~~~
+
na”

x;

The corresponding transient 1ift ang moment are obtai

ned from (2-29) ag
fdllows,

- o T —— e m o~ e

.. e
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airfoil case. The approximate aersdynamic coefficients are compared to
the Whitehead values in figure 8, and their numerical values for several

reduced frequencies are compared in table 6.

Notice that the fits to the isclated airfoil aerodynamic coefficients
are not quite as accurate as the fits t6 the cascade aerodynamic
coefficients. Rock and DeBra [11] have shown that for an isolated airfoil
in a wind tunnel, the accuracy of the approximation depends on the ratio
of the wall spacing to the semichord 6f the airfoil. They have indicated
that to keep the same level of accuracy the order of the approximation
must be increased as the wall-gpacing-to-semichord ratio increases. This
implies that for a given order of approximation, the aerodynamics for a
cascade with a gap-to-chord ratic of one will be more accurately

represented than those of an isolated airfoil, which has an effective

gap-to-chord ratio of infinity.
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3. Application to Torsion Flutter

3.1 Isolated Airfoil

For an isolated airfoil, the torsional equation of motion can be

written

eo . 2 D
I % +2%w I o +uw I x =mam (3-1)
where

m 1is the aerodynamic moment and n? is a disturbance moment acting

on a section of the airfoil. Sign conventions at the leading edge are

shown in figure 3. From the fitting of the isolated airfoil unsteady

airforces, the moment m can be expressed in the form of (2-15) and (2-16)

where the standing wave coefficients shown in Table 3 have been

transferred to the midchord are as follows,

. e A e e

R Mt
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(B"")'):,S = .500 7 (Gxo),P.‘: —.158,

(B"")q: g =015, (Bw)q‘.: —4B

Since there is only one degree of freedom, there is a

coordinate which is equal to the rotation of the airfoil (i.e., ZLrg X).

+ 2
By placing (3-2) into (3-1) and dividing by rff‘b w

equation of motion can be obtained

where the following nondimensional quantities have been defined,
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single multiblade

o+ the nondimensional
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"V=;7:j_>-§* 9 w;t:'l', f_t( )=(.)? ‘1%():(}7

W — U
X“-'-'U:“ » U=4b (3-6)

D
To look at the flutter problem, m has been set to zero. The subscript

D, denoting .2 moment coefficient due to blade angle of attack, will be

dropped at this time.

To study the aeroelastic stability, assume a solution of the form

5 ~ T
FT ef

Y=Y

XK= e (3-7)

where

. W
’P"-_-;%D-*'LX 9 X=w,

Substituting (3-7) into (3-5), solving for Y, substituting for Y in

(3-4), and rearranging gives a cubic equation in p

AE +BF 4Ch +D =0 (3-8)

where

[
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A= V-28,
B=Yg,u +2$V¥-2B,9,0 - 28 . (3-9)
C=20$YYg,+2¥3 7 -2 (B,9,+B,+6,) i

D- Vg, ¥ - 28,5,

The cubic equation is solved for the roots § = afet i), and a, /..
Flutter occurs when P =£i¥ and a, = 0. The roots of this equation are
shown by the dashed line in figure 7. Only the upper half-plane is shown.
The plot shows the roots associated with increasing values of reduced
velocity w, for a structural damping ratio 'j = 0, and frequency ratio
Kx = 1. Using data for NASA Test Roior 12, the value of the inertia ratio
N = 86.2, for the elastic axes of the blades at their midchords. The
addition of an augmented state produces a pole with a high decay rate.

This pole stays on the negative real axis as the reduced velocity is

increased, and is not plotted.

As can be seen in figure 7, the isolated airfoil does not flutter for
this set of parameters. At a reduced speed of zero the free vibration
response is obtained. Since there is no structural damping, the free
vibration is an undamped sinusoidal vibration. As the reduced velocity,
it , is increased, the exponential decay rate (the magnitude of which is
given by the real part of the eigenvalue) of the motion increases due to
aerodynamic damping only. TFinally, as the frequency (the imaginary part

of the eigenvalue) drops to zero, the airfoil becomes overdamped and no

- - A




vibratory response is possible.

Note that the root locus is shown only up

to wW=4, at which speed the response is gtill a aamped vibration.

After the root locus touches the real axis, it moves in the direction of

the positive real axis. The point of divergence is reached when the root

is at the origin. Increasing the reduced velocity further brings the root

into the unstable right half-plane.

3.2 Tuned Cascade

a o

For a tuned cascade the equation of motion fdf'any blade is identical

to the equation of motion for any other blade. Here we look at the case

of a tuned cascade, where by definition no structural coupling of the

blades is allowed. This is also the case of blades on a rotor with a

A massive, rigid disk. The equation for each blade can be written

' . 2 D

. X Wy Lo . *w, I .= m.em,

I«J °(J <+ ZTJ etJ Iqj j ,(J g(J. 7 J 1
(3-10)

I T 0 Ui

By substituting for the aerodynamic moment as obtained in the previous

TNy
A

4 2
. chapter (2-36), and dividing by ﬂ})b W, , one can obtain the
i

nondimensional equations of motion:




where the nondimensional disturbance moment acting on the blade is,
b
* -
D mJ L"‘L
m., = ///;}
j b e

: 1
and the matrices are defined by (2-38). Next, express the blade rotations ‘ ;

on the right hang side of (3-11) in terms of multiblade coordinates of ?

mode r as,

X; =P 1 (2-29)

LA

T
Premultiplying by ]? yields,
”~

SR, U
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Rearranging yields,

Moci +g§ +KZ +GY =P \M; (3-15)

Lo d o~ Pt

+H Y - § (5-16 )

~

=<0 ?

where




ORIGINAL PAGE 19
OF POOR QUALITY

(Y =X
(}] |
A

N
try X

1
11}
<\
1o
(1]

This set of two second order equations (3-15), and two first order

augmented equations (3-16) can be cast into six first order equations of

motion for the tuned cascade as follows,

- I ey W r paan v T
.

o

AX -BxX =F (3-18

P aad

. i A S RS . s I RIC IR R 20 o il s
e N VYR (RO S AR A i} :

where
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S S - Pom
= 2 1 5 °

o ] \Z:_ (3-19)
Ysr

twy
"

0 X ‘0
]

U= WO Yy
]
Q

To look at the flutter problem, let .g =‘g and assume solutions of the

form

e FT (3-20)

z:;-

Ual

which give, upon snbstitution into (3-18) and rearranging, the standard

eigenvalue problem

A B

(3-21)

il
I
]

P

The real and imaginary part of the eigenvalues 'ﬁ = a/wb;t 1Y are plotted

in figure 7 for the case of a nine-bladed cascade. Flutter occurs when

the real part of the eigenvalue, a/mb y 1s gzero, corresponding to a

solution of the form,
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This is an undamped sinusoidal motion that characterizes flutter. If the
frequency ratio, ){ » drops to zero before the exponential damping rate,

a/a%, the phenomenon of divergence is observed, as the damping rate

crosses the imaginary axis. The solutiom in that case growvs
exponentially,

}[ = :Z:‘ e “Wo a >0

— o~

The system shown in figure 7 is a nine-bladed rotor with a stagger angle
"? = 45 degrees, gap-to-chord ratic of 1, zero structural damping, an
inertia ratio -v = 86.2, and the elastic axis at midchord, rz = 0.5. The
plot shows the eigenvalues associated with each interblade phase angle
mode. For each interblade phase angle there are two roots, one
corresponding to a forward traveling wave, the other corresponding ¢o a
backward traveling wave. The three modes that flutter are forward
traveling waves. There will be more about the flutter modes in a
following section. PFor a tuned cascade with nine blades and a stagger
angle of 45 degrees, the flutter reduced speeds associated with an
interblade phase angle mode are shown in figure 7. These were verified by
comparing withk the sinusoidal solution results using Whitehead
coefficients directly. Sec Appendix B. A comparison of ths struct.ral

damping required 2for flutier, ard the actual dzmping for a given reduccd

relocity are shown in figure 8. The difference between the sinusoidal

,4..—‘,ﬂ-—- o-. - “" —’._.au " SR,

o e
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solution curve and the curve ﬁgk = 0 is proportional to the amount of

structural damping required to obtain flutter. The curve obtained by

= T
solutions of the form xeF shows the decay rate associated with

vibration in that mode for a given reduced velocity. Since there is no

structural démping, the decay rate indicates the level of aerodynamic

damping present. The value of reduced frequency k = wWb/u at which

T;A =0 is the flutter reduced frequency. The two dampings, although

essentially different in origin, are _approximately equal. For the

important region below the flutter point the two values are hardly

distinguishable.

3.3 Mistuned Cascade

Mistuning refers to small differences Dbetween the natural

frequencies, stiffnesses, and inertias of the blades of a cascade. Since

it is easiest to measure blade frequencies in an actual rotor, the
undamped natural frequencies of the blades are the quantities to be

mistuned. For any blade J the natural frequency is defined as,

-
Wyy = J AT /I*j (3-22)

where ,&&3 refers to the torsional spring stiffness of the blade and !;*5
is the moment of inertia of the blade about the elastic axis.

A reference




frequency is defined as the average natural frequency of the blades as

follows,

;:— Z Wy s _ (3-23)

ot Bt foded ur AR SR Eanle 2 & £2
()
]

If one blade is to have a 5% higher frequency than the remaining blades,

A R A e TR

the frequency of the blades must be given by,

AR E

Y L

W, = Ni[l. w\‘.’ﬁ"‘ ¥ (N-1) w\w]

Wyig Jw,., = tos

MY SH . . ke

R e

or, Jolving the above to give the blade frequencies,

_._.l.i.s.ﬂ—-w 'A) = N (80
Wgh~ N+ ,05 o lew N+,05 °

Which yields, for a nine-bladed rotor, N =9, with one blade at a 5%

; higher frequency than the remaining eight,
- w\\‘s\“ =\s°*4‘ wo w\c\l - 0:99“' wD
To achieve these frequencies one must mistune the blade stiffnesses and/or

g the blade inertias. If frequency is to be mistuned by varying the inertia
; alone, then the stiffness is constant and (3-22) can be used Lc solve for
*®

A= the inertias

.

L
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This means that the average inertia is not equal to the reference inertia,
2 2
Tave _ 1| (w0 ) +(N-\)(“’°>]
I, N w““&“ Wiew

For a nine-bladed cascade with one blade of 5% higher frequency than the

remaining blades, the difference between the reference inertia and the

average inertia is sliglt, Lo/ I.= 1.001¢

For alternately mistuned blades, the difference between adjacent

blades is set to, say, 5%. To find the high and low frequency for an

average (reference) frequency of 1,

( N+| N-l
Wo = ;;-( = whiak + 2 wlow)

“’k;5%

(3-25)

L. = 105
"w
or, solving for the frequencies,
. 2,1 N Wo w _ zN:u,
Digw™ 2,05 N+,08 oy = 205N +,08

For N = 9 with 5% "alternate" mistuning,

T SO APU
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wk‘sk = o2z wc‘ w\cw= 0,573 w°

The corresponding average inertia, I‘“; 1.0013 T

For a mistuned cascade the equation of motion of each blade is as for

the tuned cascade (3-10). o express the motion of each blade of a

mistuned cascade, the modal coordinates are summed as follows,

I?‘% (3’?16)

This allows for N different blade ampiitudes and N different blade

phase angles. The moment acting on a mistuned cascade (3-15), (3-16), was

developed in +he pPrevious chapter. By substituting for the blade

amplitudes and moment into (3-10), and rearranging as was done for the

tuned cascade, similar equations of motion are defined as follows,

%*

+K1+GY =me° (3-27)

1,
O
+
oY
o

t~Co
+

X

-
]

: (3-28)

For a mistuned cascade with N blades, there are X second order equations

of wmotion (3-27), and N cor

responding augmented equations (3-28). The
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new, N-by-N matrices have been defined as follows,

K=P [X21P - 2572 P8, (329)

All the matrices needed above are defined b (2-42). By making use of the

orthoganality of the standing wave modes, one obtains,

N-1! N=1

z Cosszr= 'Z anzj'/ﬂr = N/Z.

'-o =‘

7= I (3-30)

-t

2

M

singPeesgB= 0
o

Sl e
"

T
By applying (3-30), the matrix product P P + which appears in (3-29) can
"~ ~

i
]
A
4
!
!
|
|
!
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be reduced to a very simple form,

-
PP=D D= |N

A

' T .

P y "

_,b -
¢ =D

~e

where the first entry is N because it represents the sum

N-1 .
> cos {-0 = N
foo

Casting (3-27) and (3-28) into first order form yields

AX - BX =F

where the matrices of the 3N order system have been defined as,

.2

(3-31)

(3-32)

e BB
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A flutter mode will now consist of a linear combination of all interblade
phase angle modes. Setting the disturbance vector §_=‘Q, the 6-by-6
standard eigenvalue problem (3—21), now becomes a 3N-by-3N eigenvalue

problem:

(3-34)

Vbl

-
= A B

o]

P

Because of the form of the 3N-by-3N matrix ﬁ! only the N-by-N matrix M

fad

must be inverted to set up the eigenvalue problem.

A computer program was written to set up and solve the eigenvalue
problem for the tuned (3-21), or mistuned (3-34) cascade. See Appendix C.
The root locus associated with the system with ore blade of a nine-bladed

rotor being mistuned 5% in frequency by varying the mass is shown in

N -- o TR T raemr R —
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figure 9. Each of the root loci of the mistuned system approach the root
loci of the tuned system for sufficiently large values of reduced
velocity, W . The relationship between reduced frequency, k, and

reduced velocity is,

w, b
u

-
-

_wb_
k=ub.

£le
SILS

(3-35)

All roots on the plot with a value of U greater than about 1 are within
the range of the original approximation to the unsteady airloads, k =0

to k = 1. Note the effect on the flutter speed. For the case of one

blade mistuned 5%, the flutter reduced speed increased 19%. The flutter

s

reduced frequency decreased by 188. The magnitude of this effect
decreases with an increasing number of blades. The one mistuned blade
i becomes a smaller part of the system and localized behavior is observed.
! To show that this is the case, a similar five-bladed cascade gained 33% in
flutter reduced speed, and lost 26% in flutter reduced frequency over the
tuned case. For a realistic number of blades, one can expect that the

flutter speed will not be increased greatly.

The eigenvalues associated with the alternately mistuned system are
shown in figure 10. The eigenvalues are plotted in the complex plane, for
increasing values of reduced velocity, & . Again, for high values of
reduced velocity the individual mistuned root loci approach the tuned root

loci. A measure of the effectiveness of this type of mistuning is the 61%

increase in flutter reduced velocity corresponding to'a 40% decrease in

the flutter reduced frequency.
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The effect on the eigenvalues of mistuning one blade at a given
reduced speed is shown in figure 11. At this value of reduced speed two
of the tuned eigenvalues are in the unstable right half-plane. Mistuning
Just one blade shifts all of the eigenvalues. There is now one high
frequency eigenvalue, and the remaining eigenvalues have shifted towards
each other. This shifting together .s beneficial in that the unstable
eigenvalues have been made more stable. The shifting has also resulted in
less damping for the most stable eigenvalues, a problem which can have a
adverse effect on the forced response of the system, as will be seen in : ;

ﬁi the next chapter. See reference [8]. |

; "Alternate” mistuning has a much greater effect on the eigenvalues
(See figure 11). Now there is a high frequency group and a low frequency
group of eigenvalues. All the eigenvalues of the mistuned system are in
the stable left half-plane. Again, the least stable eigenvalues are made
more stable, but the most stable eigenvalues are made less stable. The

effect that the 1level of alternate mistuning has on the flutter reduced

"
) :?...
R 4 P T O

[ —

speed is shown in figure 12. Starting with a tuned rotor (alternate
mistuning of O%), the level of mistuning was increased gradually to 10%.
There is a significant effect on flutter speed, as was shown in [8]. The
example is a nine-bladed rotor, with a stagger angle of 45 degrees,
gap-to-chord ratio of 1.0, no structural damping, and with the elastic ‘

axis of the blades at the midchord.
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3.4 Flutter Vibration Modes

The information in the preceding sections was obtained entirely from
the eigenvalues of tuned and mistuned cascades. To study the flutter
vibration modes of the blades, it is necessary to examine the eigenvectors
associated with the eigenvalue of the form F =+ ix. Solutions at the

flutter point are of the form
7 =7 e (3-38)
:. ~ ~

where i is the complex eigenvector denoting the motion of the modal

coordinates at the flutter point. To examine the motion of the blades use

(2-39) to obtain,

121

f 2= PretT g v

(3-37)

vwhere ES is the eigenvector of complex amplitudes of the blades. Motion

of the type (3-37) can also be represented in terms of amplitude and phase
as follows,

- (& T+ @,
X = IN,:,.C (¥ ¢) (3-33)

A

s oo

where the amplitude |«| and phase ﬁ of each blade are given by

. ol - B KB il 2. - wal A e e a A WA YA Ryt oy
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To examine the actual motion of each blade, take the real part of (3-38)

to obtain,

e o

o () = lQIJ- CD.S(XT+¢:’.) (3-49)

If adjacent blades have a different phase, then the blade with a larger

value of phase is the blade that leads the motion. Figure 1% shows the

T ey vapCmenee - 2 XLEEE v

amplitude and phase of each blade, for a tuned cascade, and the amplitude

s S 3 R

and phase for the two types of mistuning discussed in this chapter. For

the tuned cascade all the blades have the same amplitude and the sane

9 interblade phase angle. Plotted as straight lines are the phases each

blade would have with respect to blade zero for flutter in pure /3}= 40

‘o degrees and /ﬁ.= 80 degrees interblade phase angle traveling wave modes.

The actual tuned cascade fiuttered in a pure ﬁ%.= 40 degrees forward

traveling wave mode, in the same direction as the rotation of the rotor.

To an observer on the disk, the traveling wave speed is w /r, where

js the frequency of vibration. To an observer away from the disk, the
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wave would appear to be traveling with a speed (fL+w/r), greater than the

speed of rotation, _fL .

It can be seen in figure 13 that mistuning one blade creates a "dead
spot" in the area of the mistuned blade. The mistuned blade and the
blades immediately after it (those numbered higher) do not participate in
the flutter mode as much as those farther ﬁlong. The blade immediately
before the mistuned blade vibrates with the greatest amplitude. It is
interesting to note that the dcminant interblade phase angle of the
flutter motion is now 80 degrees, whereas the flutter interblade phase
angle of the tuned cascade was 40 degrees. This can be seen in figure 9
where it appears that the root locus associated primarily with the /%_= 80

degrees interblade phase angle mode is the first to go unstable. A

similar case was examined in which the one mistuned blade had a 5% 1lower

frequency than the remaining blades. There was no significant change in

flutter speed between the two mistuned systems, and the mistuned blade P

created a dead spot just as the mistuning with one high frequency blade

had. i

‘ In the alternately mistuned cascade, the high frequency blades
vibrate with *he greatest amplitude. Pairs of blades vibrate in phase,
with the low frequency blades lagging slightly behind the high frequency
blades. The dominant interblade phase angle is the same as for the tuned

cascade, namely, 40 degrees. The results are similar to those of ?

Tl

reference [8].

Tre amplitudes of the complex modal eigenvectors give ain Indiecaticn
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of the amounts of each standing wave mode present in the flutter

vibration. Table 8 shows the amounts of each mode present in the flutter

mode for the tuned and two mistuned cases studied. Again, the tuned and

alternately mistuned flutter modes vibrate predominantly with an

interblade phase angle of 40 degrees (one nodal diameter traveling wave),

while the interblade phase angle for the mistuning of a single blade is

predominantly 80 degrees (two nodal diameter traveling wave).

e e s Ay e
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4. Application to Forced Response

4.1 Engine Order Excitation

Consider the case of a typical section of a single blade of the
obstructed rotor shown in figure 14. Due to the obstruction, the blade is
subjected to a sinusoidal variation in velocity of n =2 cycles per
revolution, where n is sometimes refered to as the engine order of the
excitation. The velocity at which the blade approaches the sinusoidal
gusts is fLR, where R is the radius from the center of the rotor to the
section of the blade under consideration, and JSL is the speed of rotation
of the rotor, in radians/sec. For a stagger angle 'S = A5 degrees,

JLR= QAxhl' See figure 1.

In order to assume quasi-steady conditions, the cyclic velocity
variations must be slow enough to allow the moment actingldn the blade to
reach most of its steady-state value. If, instead of a sinusoidal
variation in velocity there is a step change in velocity causing a step
change in angle of attack, the moment acting on the blade about the

midchord can be written
]
M=2.7rfuzbz°<,[i Yis)] (+-1)

where Y (s) is the Kifssner gust function, and 8=Ut/b is the distance the

blade travels in semichords. See [10], for example. The Kissner function

is shown in figure 15. The blade must travel about 20 semichords for the
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moment acting on the airfoil to reach most of its steady-state value. If
this unsteady effect is ignored, the error in the moment produced by a
step change in velocity (angle of attack) will be negligible at the end of

20 semichords of travel.

Now, if the sinusoidal gusts are broken up into step changes in
. velocity, and the airfoil is allowed to travel 20 semichords after each
step change, the quasi-steady moment and the unsteady moment will be
% approximately equal. Ignoring the time lag between the moment and the
i velocity will not introduce significant errors. See figure 15. For
g nearly sinusoidal velocity variations, the error between the unsteady and
' quasi-steady moments will be 1less than that for the step changes
considered above. For accuracy, any blade should travel 20 semichords for

each half-cycle of velocity variationm,

(vdoc.'+y)x<-£|‘mc per halc-qcle)‘azo b

R x_n'"' = 20 b (4-2)
? R A 20
= 7"

! For the quasi-steady assumption to be valid, the ratio of the radius of

the rotor to the semichord of a blade must be greater than a number which

is proportional to the engine order of the disturbance. For the typical

vy % . .
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section model used here, the reference radius is at the three-quarters
span of the blade. Using data for the NASA Test- Rotor 12, R/v 1is
approximately 11. Using (4-2) the minimum acceptable R/b is 6.4 for a one
engine order excitation, and 12.7 for an n = 2 engine order. The work
that follows makes use of the quasi-steady assumption, necessarily
limiting itself to low engine order excitatioﬂs, examples of which are
inlet distortion or the presence of struts or supports. Whitehead [2] has
a provision for the unsteady effect of sinusoidal upstream disturbances,

but they are not used in this work. To study the effect of Ligher engine

order disturbances, the correspondirg Whitehead coefficients would have to

be included.

To incorporate an engine order forcing into the equations of motion
already developed, assume that the nondimensional moment acting on blade

J due to inlet velocity distortion can be expressed as,

»#
m;-)'(t)= gcn Cosn-éj + -st Sinn 63' (4-3)

See [1]. Here, n represents the engine order and é% represents the

position of blade j with respect to axes fixed in space, us8 shown in

figure 14. The position of blade j with respect to fixed axes can be
represented in terms of the rotation rate and an angle that gives the
position of the blades in the rotating frame as follows,

= Q'J -t (4-4)

e e o YAt —
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where 63= j2w /N, is the position of blade J with respect to an axis
E system fixed to the disk. Substituting (4-4) into (4-3), making the

- trigonometric expansion, and rearranging yields the force on blade j due

to engine order n,

*

f = ['fcn cos nNt - £, sia n St ] cos n&y

+ ['Fcr\ sinndlt+ '?anDS “-ﬂ-'t] Sin nQJ- (4-5)

m

Writing the force on each blade in matrix form yields

*

P = T ) S, cosndt - gs,\ sin njlt
S;Cn sin nilt +_'C5n cos n {1t (4-L)

where

2.1 . 2w
ces N N 0 siun ',2,‘0

Nx2 Cos n%"'i Sin N ?Tf'i i (4’ "7)

1
l

[ J
b L
L

AR ) J

BEyuation (4-6) can be further reduced by making use of the fact that

R - SR
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where

L5, i f

en sSn

Now the forcing on the blades due to an engine order disturbance can be

written in matrix form as,

* )= nfLt
f e’ (4 -9)

Substituting (4-9) into (3-27) gives an equation of motion for sinusoidal

forcing as follows,

Hy+Cf KyeeY- FT] ffe s

(+~-10)

f-&-t&Y:i

where the matrices 5, C, &, G, K, » and Y have bYeen defined in

(3-29) and (2-42). Since the prodlem is linear, solutions for different

- R R L

3 U o et e

b dhbm A 1 s A
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engine orders can be superposed. I. is only necessary *2 wusolve for a
single engine order response at a time. Later, constructing the response
to any engine order forcing pattern is a matter of superposing the

responses to the different engine orders.

T
Next, examine the form of the matrix product PT. Por engine
, ‘ ~ o~
orders n up to the maximum structural mode (here, (N-1)/2 ), the

trigonometric relations (3-30) can be used to obtain

®
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where S is the Kronecker delta, and n is the engine order chosen.
™ .

So, in a tuned rotor, forciﬁg in engine order n will excite only the

n = r structural modes for harmonics r less than N/2. In a mistuned
rotor, the cross-coupling of the structural modes generally leads to an
excitation of all structural modes, even though a single engine order i3
being forced. In reality, engine orders higher than the number of
structural modes used often are of interest. In these cases the relations

(3-30) can no longer be applied. Use instead the following to determine

T,

. . ' o ,
SN n 91. sinr; = 7 o5(n -f)ej‘ 5 Cos(n+r) By

. [ .
Sin n 93' COSrei = "i_Sm(n ‘\ﬂ)@i"' 2 3w (nh-) 97

La Lo .
coS n 93 S;l'l rQ.i:-LSnn (n-r)gi + -,;_s\h(n +r) 91
co5 6, cos re, = 3 cos (n-r)oj + zcos(ntr) B4

3 (4-12)

N-l
? Sinme:)-: 0
4=0
N=l N {OI" m = N)ZNJBN”.
6. =
j§o eos M 1 o 60( m#N,Z’%?N"'

See [12]. Now it can be seen that the r = 0 structural mode is excited
not only by the =n =0 engine order but also the n = N, 2N, 3K, etc.

engine ovders. Whenever the sum or difference oI the engine order und the

?
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structural mode number equals a multiple of the number of blades, there

will be an excitation of that structural mode by that engine order. As an

example, the engine orders and the structural modes of vibration they will

excite in a tuned rotor are listed in Tab.» 9

To find the response of the blades to engine order excitations, start

with the mistuned cascade equations of motion (3-32), where the

disturbance moment for the engine order chosen has been defined above,

. _‘LT
th-==
€ &, can be expressed as,

Substituting into (3-32) ang solving for X yields,

1ol
i
| I
o~
b J
Elp
>
|
=,
2 »-o_‘
t—
N

. “-14)
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T
(-3
Since X =L1 z Y_l, the torsional response of the blades, e(_, can be

obtained by extracting the modal eigenvector 7 from i, ani using (3-26)

~

to obtain,
X = P % (3-2¢6)
~ ey
g#
For a tuned rotor, A, B, F, and X are as in (3-19), where m is

given by (4-5). A computer program was written to set up and solve the
forced response problem associated with tuned and mistuned cascades. See
Appendix C. Shown in figure 16 is the frequency response of the blades of
a tuned rotor to an n =1 engine order excitation. It is typical of the

response of a single degree of freedom system.

A comparison can be made of the damping obtained by solving the
flutter problem in transient form with the damping ratio obtained from the

half-power points of the response curve. The relationships required are

Z =g &) Easd @15
w, ~§ Wy J Wo hal{- prwer S We (

where a/, is the real part of the eigenvalue associated with interblade
phase angle mode being forced. In this case the backward traveling wave
is being forced. The damping ratio using tne flutter data is "SA = 0.0079
for the backward traveling wave mode. See figure 7. From the half-power
points of the response curve, the damping ratio SA- 0.0086. Remember

that there is no structural damping, so these numbers represent levels of

aerodynamic damping.
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Also plotted in figure 16 are the responses of the rotor mistuned by
letting blade zero have a 5% higher frequency than the femaining blades.
Now the n = { engine order excitation forces all the interblade phase
angle modes, resulting in different levels of response for each blade.
For clarity only the responses of the mistuned blade and the blades , f
edjacent to it &re shown in the amplitude plot. The forced response of
adjacent blades is similar to the response of a two degree of freedom
system. See, fof example, [13]. The 40 degree interblade phase angle i
representing the backward traveling wave of the forcing function is
apparent in the phase pl:t. At resonances the mistuned blade, blade 0, is .
vibrating in phase with the ad jacent blade, blade 8. Instead of lagging ;
the motion of blade 8 as in the tuned case, the motion of blade 0
leads the motion of blade 8, for frequencies between their respective
resonance frequencies. Far away from resonances the tuned and mistuned

systems show essentially the same response.

AR AT o SRR =L i S i

The forced rasponse of the mistuned system is worse than the response |
of +the tuned systen. To explain this, examine the shifting of the
eigenvalues of the two systems, shown in figure 17. The damping ratio
associated with the mode being forced decreases when the rotor is
..istuned, hence the worsening of the forced response for +this particular
case.  Although the structural mode being forced is not a pure /3 = 40
degrees mode (because of mistuning), that mode will still have the largest
résponse, as will be shown for the case of the alternately mistuned

cascade. For forcing frequencies away from resonance, the phase between

ad jacent blades is -40 degrees, showing that the forcing is of the form of }

e - .y -
R o il 2o i - v T RS,
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a backward traveling wave, which is to be expected.

The frequency response for the "alternately” mistuned rotor is shown
in figures 18 and 19, Again, the mistuned response is worse for the
mistuned cascade than for the tuned cascade. The eigenvalue of the
mistuned system associated most closely with the type of forcing has been
shifted to the right due +to mistuning, resulting in lower levels of
damping for that mode. (See figure 17.) Note that at resonances, pairs of
high and low frequency blades vibrate in phase, while between resonances,
the high frequency blade leads the low frequency blade in the motion. PFar

below resonance, the motion of all blades is in phase with the engine

order forcing.

The modal response of the tuned and mistuned systems is shown in
figures 20-22, Only the amplitudes are shown. To reconstruct the blade
amplitudes from the modal amplitudes, information about the relative
phasing of the blades is required. For the tuned system, the only modal
response is in the mode that is being forced, as was stated earlier. For
the mistuned cascade, all modes are excited, the largest response still
being in the mode being forced. Note that the mode associated with the

engine order forcing has a smaller mistuned response.

4.2 Transient Response

The flutter and forced response of cascades can be examined using

either traveling wave analysis or standing wave analysis. However, the
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important problem of the transient response of cascades can not be

examined using traveling wave analysis. One way to examine the transient

behavior of cascades is by expressing the motion of the blades and

corresponding airloads in terms of standing wave modes.

By casting the cascade airloads into

(2-42),

1
,
E;

a general form, (2-40) and ‘

the +{ransient response of the cascade can be calculated. The

D LA

response of a tuned cascade to an impulsive motion of blade zero is shown

in figure 23. These results were obtained by a computer program developed

LT e

by the Joint Computer Facility, at M.I.T. The program DYSYS (Dynamic

Systen Simulation) uses a fourth order Runge-Kutta integration in time.

SR DT Y

Blade zero underwent an impulsive motion and the subsequent "ringing down"

of the rotor was observed. Only the envelope of the responses is shown in

1

|

1

L

the lower half of figure 23. Remember that the only coupling between the : 1
l

blades is through the aerodynamics.

With thig standing wave analysis,

:
the response of a cascade to *g
impacts can be aoxamined. !

Current transient dynamic analyses do not allow

for aerodynamic 1loads to influence the motion of the blades. The

technique described in this work could be applied to study the effect of

.
——

i.\ aerodynamic loads on the transient response of rotors.
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5. Miscellaneous Applications

5.1 Flexible Disk Roiors

The present analysis dealt with a rotor whose blades were mounted

on a rigid disk. In many rotors, the blades would be mounted on a flex-

ible disk so that structural coupling between the blades would be present.
To analyze these flexible disk rotors, one generally obtains the vibration
modes of the éoupled blade--disk system by a Rayleigh-Ritz or a finite
element method, and then one expresses the torsion angle O at, say, the

807% blade span section in terms of a superposition of k normal coordinates

£ (t) as,
) 2z S

& X =
' A
E In the above, § is an N x k matrix relating the torsion angle p| at each
>

of the N blades for each of the k vibration modes assumed in the analysis.
For tuned rotors, the vibration modes generally occur in pairs for each
L nodal diameter r, corresponding to the Cos'jﬁr and Sin 1 (SV‘ modes, used
earlier for the rigid disk, (2-22), (2-35).

The standing wave analysis

li then expresses the rotor equations of motion in the uncoupled normal form

as,
(L] ° v N Lo |
+ + w = = S-2
M3+ 2numi « Mupg = = G
[ T
where the generalized forces - = éE 132) . To express
A s A,

the aerodynamic moment !B of (2-40) and (2-41) and the subsequent general-

-
ized forces =y 1in terms of the normal coordinates ; » One notes
~ ~r

from (2-39) and (5-1) that,

| = Pg = 23 (-3)

e 3 SN b et e s
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Multiplying this by the inverse ofl?as given by (3-31) gives,

<% = l?r'ig EE = !?‘\E?T'Eg }? | (§T;A+>

~s

' —
which can be substituted into Mand then into 5 to obtain the general-
la%d e

ized force,

s,

g :2."..?“2-51?51 "-E +E|%_%+ EO; + 3—11

(% Nt A

T
o
L

;. Loy v o b3 _
L XX s Lgd (5-¢)
3

o where,

E--? 2 = ég’ E? ~2 ;2. fi ‘ii ) SZ; = ég-fh'rv

. -t -

f’ £ =2RBYPE |, L=7F%
:

i
[
09

L

2194
0
s

while B, B, B, G, o, Y are as defined (2-42). Equations (5-5)
N A N A A
and (5-6) can be readily incorporated into the flutter and forced

vibration of tuned and mistuned flexible bladed-disk rotors, (5-1)

and (5-2).

Il

A
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5.2  Aerodynamic Influence Coefficients

For interest, it is sometimes useful to express the transient

ciscade aerodynamic influence coefficients, that is, how the motion of

blade j influences the forces on another blade i in the cascade. This

is readily done by inverting (2-39) to give

9 =D P« E-8)

A A A~
~

theu placing the above into the aerodynamic forces m of (2-40) and (2-41)

to give,
L v b 3 ‘
= 2 8 4+ —A + E, ® +
!!! zrrrg’tl b { EE}’ A JE;' L‘:S ~° ~ ;?3 }:'}
b\ b & (s-9)
" f ?fI AU (5-10)
where the matrices E2 , El’ EO’ Ji’ J2 are defined in (5-7), but without
~ la ™ A A Ay

T .th i
the forfmatrices present. Allowing only motion of the j blade 0‘3 and '

setting all other blade motions equal to zero, gives the forces on the

Lﬂyblade as,

= ZTrg uzh" {(E:)‘;_ g_;(; f(E,)cj%&j + (E'ch«i"' ’3:‘ \i } .

5 _ .. §-1)
I + Q]X - 3;';-%0() é“'“—)

still represents a column matrix, while 5 now represents the

m;
b
(73

where Y
A’

t

oh
row of the previous square matrix gl’andlgithe J column of the pre-

vious square matrix 33. The above cascade aerodynamic influence coefficients

are valid provided the number of blades N is large enough for cascade

influences to die out.




8 ORIGINAL PAGE 1g

OF POOR QUALITY

The influence coefficients representation given by (5-11) and

(5~12) can be written in more familiar form by solving for the aug-

mented state variables‘*from (5-12) and placing into (5-11) to obtain,
N
21
—_ + s &
Zw?ub{(t—:)w 5+(E). «, (E,,)U&x,

v (), ), [ P g a]
k<o (5-13)

The convolution integrals above represent a form of aerodynamic "lag"

effect, as discussed previously, see Equation (2-17).

Cascade aerodynamic influence coefficients were determined numeri-
cally for the N=9 , s/e=1L, '% =4—S°) ’q=.5 case
considered previously in most of the torsional flutter and forced response
calculations. Table 10 gives values of the basicl?nmtrix defined in
(2-39) and (2-42) for a nine bladed rotor, N = 9. Table 11 shows the
transient Whitehead coefficients used for all the torsional flutter analyses
here, that is, type D, N= 9. §/C =1, ; = 450, and M = .5 cases.

These values were interpolated from the general Table %,for pitching about
the midchord (7=u5) and N =9. Finally, Table 12 gives the aerodynamic
influence coefficients for the moment on blade 1 due to the motion of

blade j = 0. For this case, (5-13) can be expressed as,
E N % E
Zﬂ.?u h {(El)bo ul- q + (E )‘p -‘Iq + ( o)".O uo

~(3)m -—(t t') .
+ - Lt) (tt
7 ()i | e Fioon

Because of the cyclic symmetry of the E} matrices, it can easily be shown
~

that the m, due to &, is the same as M,due to &, , Mydue to oAy R m,

Bt e




A AL

79

? due to %y, etc. Hence, the coefficients given in Table 12 can be
f 8

4

!

used to assess the forces on any blade due to the motion of any other

blade. For comparison, the isolated blade (Theodorsen) forces are also

: given in Table 12. These, of course, can only express the forces on
]

a blade due to the motion of the same blade. :

. Bl -t e - e R

Mo

L e
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6. Conclusions

The present report has given a unified standing wave approach to
the flutter and forced response of turbine engine rotors. Both tuned

and mistuned rotors can be readily accomodated. !

The traditional traveling wave cascade airforces have been recast
into standing wave, arbitrary motion form, by making use of Padé approx-
imants. Some standing wave coefficients are given for Whitehead's 2-

dimensional incompressible cascade theory.

Flutter analyses were conducted using standar? constant coefficient,
linear systems techniques. The analyses glve true damping decay rates
rather than damping margins. Typical examples for tuned and mistuned

rotors are given.

The forced response of the rotor to periodic engine order excitation
of all the blades, and to the transient impulsive excitation of a single
blade is obtained using the same aerodynamic damping as for the flutter

cases. Typical examples for tuned and mistuned rotors are given.

Extensions of the procedure here is indicated for the case of
flexible disk rotors, where structural as well as aerodynamic coupling
exists between the blades. Also, the aerodynamic influence coefficients
for the effect of one blade's motion on the forces produced at another

blade is given.

The standing wave analysis methods given here can be extended to

other flow regimes [3], [4], [5], by similar fitting of the sinusoidal

Ay
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traveling wave coefficients. Also, they can be extended to flexible

disk rotors as indicated Previously in Chapter 5. These standing wave

methods may prove to be more versatile for dealing with certain appli-
cations, such as coupling flutter with forced response and dynamic
shaft problems, transient impulses on the rotor, low engine order ex-

citation, bearing motions,

and mistuning effects in rotors.

o e ey
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Appendix A. Fitting Aerodynamic Coefficients

The first step in the fitting process is to express the traveling i

wave aerodynamic forces in the form '

X=z—n—j; u’b[AA%-*-AB&'] ez(“?t+3‘ﬂr) (A\)

76 t2mpllb[Ac § +aR] TR

where the nondimensional complex coefficients AA’ B’ A},

functions of reduced frequency k, interblade phase angle /i_, and other

A A are

)
geometric and flight parameters. The relations between these coefficients
and the tabulated data of Whitehead are given by (2-27). Traveling waves
with interblade phase angles /2. between O degrees and 180 degrees are
refered to as forward traveling waves (in the direction of rotation), and
those with interblade phase angles f& between 180 degrees and 360 degrees
are referred to as backward traveling waves. Backward traveling waves
have an interblade phase angle of 1/% or (360 -/ﬁ?)° In this way the
coefficients defined by (2-10) can be generated. K;_ refers to the real

part of a traveling wave aerodynamic force or moment which has the form 4

+ C(wt+ 4 ,
= (A.;+£AI)°<°eL(w *38.) (A3)

Ag refers to the real part of a traveling wave aerocdynamic force or

moment which has the form

- - c(wt-4
f- (Ag + (AL ), & (wE=g8r) (A4)
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Once Zg' K&, i&, and II’ are formed, (2-19) can be used to solve for

the standing wave coefficients B,, B‘, B,» etc. Since Whitehead has

tabulated values of the traveling wave coefficients only for k = 0,

AR' and

k=.1, k=.25 k=.5 andk-= 1, the coefficients Ka' ‘AI,

AI’ were fit at k = 0, k = «1, and k = 1 and the values at k = .25 and
k = .5 were used to gauge the fit. This is a very simple way‘of
determining the standing wave coefficients, and as it turns out, gives
very good results. So, there are 12 equations: Iﬁ(k =0, .1, 1),

Lk =0, .1, 1), Aelk =0, .1, 1), K(k =0, .1, 1), and 10 unknowns,
“~ Py ~ Ead

A
By» G, ﬂo’ Bz’ B', Bo’ G, and 3c « In order to avoid

v
using two augmented equations (2-16) for each mode, and requiring two
coefficients 3» ’ ?L H 30 was set to some intermediate value, and the
coefficient ?L was set to zero. Some trial-and-error was involved in
picking the final value of 3»' There was a minor effect on the accuracy

of the fits due to the elimination of an augmented state. The first two

equations of (2-19) are solved for B, B, B

! G , and 30 y at k =0,

o? 1
k =.1, and k = 1. Since the second equation of (2-19) is automatically

satisfied for k = 0, there are 5 equations in 5 unknowns:
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Ax () = B, Y
* :oo[A (.1)- & (o)]——B +3i’ . (A6)
.. LR (N =K e)) = -B, 3,“ (A1)
oA ()= B, + 39:+ ~ (Ag)
Ap(n) =B + iii' (A9)

Subtracting (A7) from (A6) gives

Gl= !OOZR(.I)—99,&R(0)-—AR(\) (A\D\
' - |
(3:""0' 90 + 1 )
f Subtracting (A9) from (A8) gives

, ¢ = 10Az (1) -A; ()
- { ) |
- 3°(jf+.ol - 9% + | )

Setting (A10) equal to (A11) and solving for j gives
&

(A1)
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g,= —Lo Az (1) =Az (1)

i€ = — (A12)
100 Ag (1)~ S9R () - R (1)

Adding (A6) and (A7) and solving for B, yields

B, = -%{ 100A_(.1) =101 A, (o) + Ae (1)
| ~ | | (A13)
6|(3}+,ol * 97+ | >}

Adding (A8) and (A9) and solving for B, yields

§t°A§)+A (1)- 39( ot 331,>} (A1)

The standing wave coefficients B . G, B

0 : ,» B,, can be obtained

from equstions (A5), (A12), (A11), (A13), and (A14) respectively. To find

~ A K - -— -
the coefficients QL, B', Bo, G, , replace AK by 'AI and Ar by

=i

R
in the above equations. The coefficients for Whitehead [2] aerodynamics

ure shown in Tables 1 and 2 for stagger angle ? = 0 degrees and ‘? = 45

degrees, respectively.
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Appendix B. Flutter Points of a Tuned Cascade

Starting with the equation of motion of any blade in a tuned cascade

To % +235.w X+l I o =m, (3-1)
575 T AT Tl Ty = my

where the moment mj can be written in terms of the Whitehead traveling

wave coeffients as,
71— (wteqf,
m3.=a«rfu"bz[z(cm,)q]°< glteifn) (B1)

Here the coefficient C:M* is in general a function of reduced frequency,

o interblade phase angle, gap-to-chord ratio, stagger angle, and elastic

axis location. See if there is a traveling wave flutter solution of the

form

x = = eC(wt""J/sr) (BZ.)

Substituting (B1) and (B2) into (3-1) yields

—w" I‘( +2'§w°<£w +I°( UU; =2'U'fu2b2 [Z(CN")Q_] (Bg)

Dividing by uf'I“ and casting the equation into nondimensional form

yields,
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Wrrizsy of - 2 [20cn),] (B4)

Where 4, U, and b-/( are defined by (3-6) and ‘(=u0/u>‘,. For (B2) to be

the solution, the real and imaginary parts of (B4) must be true

r X

Re 'L-Yz = %E—[ZRei(CM.),ﬁ] (BS)
Im: 23y = sl Imﬁ(cm)qﬂ (B)

The real equation shows the difference between the undamped natural
frequency ratio ?fo‘ =£Oq /\Oe and the frequency ratio of vibration
‘6 =C\)/u)°. Since the inertia ratio \) is 1large for rotor blades in
general, the flutter frequency is generally close to the undamped natural
frequency, ¥ = k° The imaginary part of equation (B6), upon

rearranging, gives the condition for instability as,

T‘+~5A<O (37)

where
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55 I a(cm);1 j

Setting the structural damping 'g =0, yields the new condition for

instability,

s, <o

See reference [1]. The values of qﬂ« are tabulated by Whitehead for
k=0, .1, .25, .5, and 1. The approximation toc the traveling wave Crvx

can be reconstructed from the standing wave coefficicnts as follows. for

traveling wave interblade phsse angles /2_= 0 degrees to ﬁ%ﬁ 180 degrees

gl ~ k9,655 = k 1 7 ‘
jAz K {BWL—Bw-‘_ \(L+3j j’l (82)

For interblade phase angles /6,= 180 degrees to ﬁr= 360 degrees

kge’@r.b'i' kz'@m
kf 4-3:' 3?

S =-\-§-‘—:- B,k +]§0_D+ (Bio)

A

A comparison of exact Whitehead values of 752 with reconstructed values
of fi; is shown in Table 9, for an inertia ratic < = 86.2. The

example is a nine-bladed rotur with a 45 degree stagger angle, vitching

about midchord. Only the 3 least stable interblade phase angle modes are

shown. Since Whitehead tabulated values of coefficients at interblade
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phase angles which are multiples of 36 degrees, the Whitehead and the
standing wave coefficients were linearly interpolated to find values of

the coefficients at 40, 80 and 120 degrees.

These results can be compared with the eigenvalues obtained from the
transient formulation. Since the tuned cascade flutter problem results in
- uncoupled equations, it is easy to look at the flutter of an individual
; mode. The uncoupled problem is third order, resulting in eigenvalues of

the form 9 =ﬂ,h§ii¥ and az/bp. Since a, is always negative and large

compared to a

,+ 8auy response asscciated with a, will be short-lived.
The steady-state problem can be considered second order and the complex

conjugate eigenvalues cﬁh%til can be represented as

—-f{,\)‘* t Z(Uo( ’l__?'ll

bl ’

E See [13], for example. For the tuned cascade, this means that the real
! part of the eigenvalue is equal to the amcunt of aerodynamic damping
E present,

E

F W, A

Remember that there is no structural damping, and that for the tuned case

A A
- -

W, -o%k.Now the actual aerodynamic damping obtained from the transient

|

decay can be compared with the structural damping required for flutter.

e A e

The only point whore there must be agreement is the flutter point. At the

: % flutter pcint, zero structural damping is required, and the real part of

R Nt s s AS Mo it W e (e e e

|. | , R T i ol R U i
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the eigenvalue is zero. Figure 8 shows the variation of the aercdynamic

damping computed by both methods.
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Appendix C. Standing Waves to Traveling Waves

The standing wave deflections and corresponding air forces

are given by (2-22), (2-23), (2-24) and (2-25) as,
0(3(1;) = %cr(‘k) Co‘Q.jFr + %sr(t)AA'mjpr <C‘|)

Z . .
m, = 2moU{[B L4, +BEf, * By, ta X,

~ L e g » Ar ~ .
—sza';_%sr - B %3“_ Bo% sr“ GoYSr] mjpr

(c-2)

To reduce to traveling wave representation, one assumes harmonic

motion of the form,

. wt
%“(t) = o € ((_-5')

%sr(t) = “&r €

el e %, o e
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This implies the two standing wave coordinates %cr(*') and %Sr(" are

90° out of phase with one another. Placing the above into (c-1) gives,

Lot .- LWt
O(J LO(Y.C Mjpf

"
Q
<
o
;
;\D
+

]

Q
<

®

L t+f]5..
re(w. ) (c-0)

n
R

This gives the traveling wave deflection indicated by (2-1).

Placing (c-5) into the augmented state equations (c-3)

and (c-é}’and assuming harmonic motion for *;r and Y;r glves,

- Wt . . Wt
itk + ,,)Y"e =
(ik+g . (c-7)

K
(ik+ g, e = ik ide

Placing (c-5) and the \zr and Y;,. from (¢c-7) into the moment

equation (c-2) gives,

L2 . kG T = Lwt
=2mpUb {[-sz‘_*' tkB, + B, * m] X.€ cou]by
r Ying L g L k.egu N e;Jﬁ:;‘L. e;

.L wt

+[-K'B, +1kB + B, +°;‘i:"]ua e ainiB,
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Comparing the above expression with the coefficients ZKR /\ /\

defined by (2-19), one can rewrite (c-8) as,

wt ’1
m; 211'90(5 {(A +cAr)q e coeb,
wt .
+(A "‘LA )bo\ € cowgfy .
wt (C—Q)

(AR*‘LA )w( e awniB,
= wt

(KL*LAR)O( e Mjﬂr}

220~ B .z 1iB. = 3B, T iiB _ lut
= Zvrfutf{ARe.J "~ .,A]te:1 "y ARe"1 “iAe 1 e

Then, noting the definitions of AR ) AI > AR ) AI in

(2~10), the above reduces to,
m. = 2n9ub(A + i A,_.) " (c-oo)

J

which is the same aerndynamic force indicated by (2-2).

Similarly, if one assumes harmonic motion of the form,
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- twt
Jer(t) = &, e (c-1)
twt
%sr(t) - = Q(re

and goes through the same reduction, one will obtain

' - 3(“”:"“3") C-12

T, o - t(wt-4B,
mi = Zﬂ?ub(AR"'iAI)are(w ! )
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Figure Z. Fitting Whitehead Coefficients
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Figure 3. Force Notation
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(AA.R"'AAJ"'L(A“"' An)’ l'.!(CF; ,
2.6 T T T T T T T T T 4
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T APPROXIMATION |
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Figure 4a. Approximate Whitehead Force Coefficients
Type A,, 'g- O degrees, s/c=1,N=0
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A = (r = ' '1

(ﬁsg"’ABR) + L(A;:r. + Aaz) =z - Cr:q : “

1.6 Y T T T T Y T — T : : y

: 4

5 f
-
1.4 F
X Exact Whitehead i |
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2.8
B @.6
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g.2
2.0
-2.2 ) L ) L ' L ) , . i ’
2,0 2,2 2.4 2.6 2.8 1.9 K
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Reduced Frequency k t
ABR= A5'£= 0 {
i
Figure 4b. Approximate Whitehead Force Coefficients A
i

Type Ag» ‘? = 0 degrees, s/c =1, n=0
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Figure 4c. Approximate Whitehead Force Coefficients

Type A, % = 0 degrees, s/c =1, q- 0
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‘ 1
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Figure 4d. Approximate Whitehead Force Coefficients

Type Ay, ‘§ = 0 degrees, s/c =1, R0
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Pigure 5a.  Approximate Whitehead Force Coefficients

Type Aa, ’g = 45 degrees, s/c =1, n=0
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Figure 5b.  Approximate Whitehead Force Coefficients
Type KA, 'g- 45 degrees, s/c =1, rl- 0
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Figure 5c.  Approximats Whitehead Force Coefficients

Type Ka. '§ = 45 degrees, s/c = 1, rl- 0
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Figure 5d. Approximate Whitehead Porce Coefficients

Type ’{5. 'g' 45 degrees, s/c =1, 7- 0
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Figure Se. Approximate Whitehead Force Coefficients
Tyve Id "$ = 45 degrees, s/c =1, rl- 0
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Pigure 5f. Approximate Whitehead Porce Coefficients
'l‘ypef. 'g' 45 degrees, s/c = 1,7-0
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Figure 5g. Approximate Whitehead Force Coefficients

Type Xb; "g' 45 degrees, s/c =1, rl- 0
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Figure 5h. Approximate Whitehead Force Coefficients

Type i;, }g = 45 degrees, s/c =1, Yl- 0
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Figure 6b. Approximate Theodorsen Force Coefficients
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Type| B, | B, | B, G, % | & B, B, g, ;
A [-0.366|-0.305] 0.000 0.000| 0.000 ! 0.000| 0.000| 0.000 | 0.000
B | 0.366] 0.860| 0.305| 0.000| 0.000| 0.000| 0.000]| 0.000 | 0.000
B c | 0.366] 0.110| 0.000{ 0.000| 0.000 | 0.000| 0.000| 0.000 { 0.000
= D |-0.432|-0.788]-0.110| 0.000 | 0.000 | 0.000| 0.000! 0.000 | 0.000
- 36| A 1-0.435 -0.410| 0.000|-0.055| 0.140 | 0.000| 0.000| 0.000 { 0.000
i B | 0.435] 1.068| 0.800{-0.303 | 0.140 | 0.000)} 0.000} 0.000 | 0.000
3 c 0.435 0.184] 0.000| 0.025| 0.140 | 0.000| 0.000| 0.000 | 0.000
3 D |-0.498[-0.964|-0.360| 0.138 | 0.140 | 0.000| 0.000}| 0.000 ! 0.000
£ 27| o |-0.496 -0.510| 0.000]|-0.116 | 0.235 | 0.000| 0.000] 0.000 | 0.000
3 B | 0.496( 1.258] 1.005(-0.319| 0.235 { 0.000{ 0.000{ 0.000 | 0.000
2 D |-0.560{-1.128]-0.506| 0.162 ] 0.235 | 0.000{ 0.000| 0.000 | 0.000
108'| o |-0.545/-0.590] 0.000 -0.175 | 0.300 { 0.000{ 0.000| 0.000 | 0.000 ‘
- B | 0.545{ 1.410]| 1.173|-0.327 | 0.300 | 0.000{ 0.000| 0.000 | 0.000
- c 0.545| 0.316| 0.000| 0.094 | 0.300 | 0.000| 0.000{ 0.000 | 0.000
. D |-0.610f-1.262|-0.628| 0.174 | 0.300 | 0.000{ 0.000| 0.000 | 0.000
2 °
- 144 | A |-0.575|-0.643! 0.000|-0.214 | 0.335 | 0.000| 0.000] 0.000 | 0.000
; B | 0.575} 1.506| 1.283|-0.328 | 0.335 | 0.000{ 0.000| 0.000 | 0.000
. c 0.575| 0.354]| 0.000{ 0.118 | 0.335 | 0.000| 0.000} 0.000 { 0.000
. D |-0.638|-1.348]-0.706{ 0.182 | 0.335 | 0.000{ 0.0C0| 0.000 | 0.000
k 180. A -00586 "0.661 0.000 -00231 00350 0.000 0.000 0.000 0-000
B | 0.586] 1.540| 1.321}-0.329 | 0.350 | 0.000] 0.000! 0.000 | 0.000
c 0.586] 0.366] 0.000| 0.129 | 0.350 | 0.000{ 0.000| 0.000 | 0.000
D |-0.648|-1.378|-0.734| 0.186 | 0.350 | 0.000| 0.000| 0.000 | 0.000
3
—1
i
-

Tabla 1. Transient Whitehead Coefficients

T" O degrees, s/c =1, n =0
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B, |Tyeel B, B, B, G, 9, B, B, B, g,

[ ]

0| A |-0.455] -0.427] 0.000| 0.000| 0.000 | 0.000| 0.000! 0.000| 0.000

B 0.455 1.119] 0.427} 0.000| 0.000 | 0.000| 0.000| 0.000| 0.000

c 0.455] 0.182] 0.000| 0.000| 0.000 | 0.000| 0.000{ 0.000| 0.000

D }-0.524] -1.008| -0.134| 0.000| 0.000 | 0.000{ 0.000| 0.000| 0.000

36 | A -0.471| -0.445| 0.000| -0.038| 0.175 | 0.000|-0.010| 0.000 0.067

B 0.471] 1.159] 0.660|-0.156] 0.175 | 0.000|-0.013|-0.%370| 0.275

c 0.471} 0.202] 0.000| C.021| 0.175 | 0.000| 0.0%4| 0.000| -0.034

D |-0.5%4] -1.044|-0.322] 0.090! 0.175 | 0.000{-0.026| 0.128| -0.116

72| A |-0.493| -0.493| 0.000{-0.110] 0.295 | 0.000|-0.014| 0.000| 0.095

B 0.493] 1.236| 0.867|-0.216| 0.295 | 0.000|-0.018{-0.308| 0.176

c 0.493| 0.242] 0.000( 0.062| 0.295 | 0.000| 0.048| 0.000] -0.048

D [-0.556|-1.112]-0.452] 0.118]| 0.295 | 0.000|-0.0%34| 0.088| -0.068
o

108 | A {-0.517|-0.541| 0.000]|-0.188| 0.375 | 0.000|-0.014]| 0.000| 0.089

B 0.517| 1.314| 1.041]-0.23%4] 0.375 | 0.000{-0.015|-0.222| 0.095

c 0.517| 0.282| 0.000| 0.105| 0.375 [0.000( 0.045| 0.000|-0.045

D |[-0.580|-1.180{-0.562| 0.128 0.375 |0.000|-0.030| 0.054|-0.036

144 & |-0.536|-0.571] 0.000|-0.247 0.420 |0.000|-0.007| 0.000! 0.052

B 0-536 1-368 10158 -0-234 0-420 0-000 "0-008 -0-116 00040

¢ 0.536| 0.312} 0.000| 0.136 | 0.420 |0.000| 0.025| 0.000]-0.025

D |-0.596|-1.2%0|-0.63%6| 0.128 | 0.420 [0.000[-0.018| 0.026{-0.014

180 | A |-0.542|-0.582| 0.000|-0.268 | 0.435 |0.000| 0.000| 0.000] 0.000

B 0.542] 1.387] 1.198(-0.23%4 | 0.435 |0.000| 0.000| 0.000| 0.000

c 0.542] 0.322{ 0.000| 0.148 | 0.435 [0.000| 0.000| 0.000| 0.000

D "0-602 -10246 -01662 0-128 00435 OQOOO 0-000 0-000 0.000

Table 2. Transient Whitehead Coefficients

3 = 45 degrees, s/c = 1, n=o
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R =0 Br 2 %6
k RA' exact | K, - approx A,- exact | A, approx
.0 | 0.000+10.000| 0.000+10.000| 0.000+i0.000| 0.009+1i0.000
.1 0.004-10.030| 0.004-10.031|-0.014-10.067 |-0.014-10.067
.25| 0.023-10.076| 0.023-10.076|-0.014-10.126 |-0.015-10.126
05 0-091 "10-152 00092"100153 01059-100220 0l058-100219
1 .0 0- 366-100 301 00366-100305 00381 -iOo 417 0-381 -10041 8
° 4 °
B, = 72 /3, = 108
k z;- exact Z;- approx ;;- exact IA’ AppProx
.0 | 0.000+10.000| 0.000+10.00C | 0.000+1i0.000| 0.000+i0.000
-1 1-0.013-10.093 |-0.013-10.093 [-0.012-10.111 |-0.012-10.112
+25(-0.031-10.186 |-0.0%1-10.185 |-0.038-10.233 ~0.038-10.23%4
«5 | 0.029-10.300| 0.029-10.300| 0.008-10.372 - 0.008-10.372
1.0 | 0.385-10.5%6| 0.386-10.536 | 0.385-10.638 0.384-10.638
° o
ﬁr = 144 pr = 180
k T.A- exact KA- approx T‘A' exact KA— approx
.0 | 0.000+i0.000 | 0.000+10.000 | 0.000+10.000 | 0.000+10.000
-1 1-0.012-10.123 |-0.012-10.123 |-0.012-10.127 }-0.012-10.127
-25|-0.041-10.264 |-0.041-10.263 |-0.042-10.274 -0.041-10.275
«5 |-0.004-10.421 |-0.004-10.420 |-0.008-1i0.438 -0.009-10.439
1.0 § 0.383-10.707 | 0.383-10.707 | 0.382-10.732 0.380-10.733
Table 3a. Exact Whitehead Coefficieuts versus

Approxima

te Valuas, Type A,

" = 0 degrees, s/c = 1, n=o

i
¥
{
‘
}
s
i
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! . o
E : Br =0 Re= 306 b
E 5 k KB- exact I;- approx El- exact i,— approx
& .0 - - | 0.305+10.000 | 0.801+i0.000 | 0.800+10.000
? 1 1 0.301+i0.086] 0.301+10.086 | 0.691-10.038 | 0.693-10.037
ﬁ . «25| 0.282+10.216| 0.282+i0.215 0.540+10.1%9 | 0.542+10.138
3 «5 | 0.213+10.431| 0.214+10.430 | 0.409+10.458 0.410+10.455
4 1.0 1-0.063+10.860]-0.061+:0.860 | 0.068+1i1.028 0.068+i1.026
' N o
- R,=12 [Pr=108 |
i k '1‘-_exact K - approx hg- exact is- approx é
i !
- .0 | 1.005+10.000] 1.005+i0.000 1.173+10.000 | 1.173+i0.000
~ o 0.951+10.010| 0.951+10.011 |1.134+1i0.042 1.135+10.043
o +251 0.803+i0.155| 0.805+10.155 |1.004+i0.192 [1.005+10.192
;) «5 | 0.619+10.507] 0.620+10.506 | 0.796+10.561 0.796+10.561
E 5 1.0 | 0.207+11.187| 0.207+i1.187 0.329+11.320 | 0.328+i1.320
.- ) o
fﬁ k I’- exact K;- approx K’- exact K;- approx
; .0 | 1.238+10.000| 1.283+10.000 |1.321+10.000 1.321+10.000

o1 1.250+10.060| 1.250+10.061 [1.290+i0.066 1.290+10.067

+25| 1.129+10.219| 1.130+10.219 1.172+410.229 |1.173+10.229

«5 | 0.912+10.601 | 0.913+10.601 [0.952+10.616 0.954+10.615

1.0 | 0.412+11.408| 0.413+11.407 0.441+11.438 | 0.442+11.437
r
g
Table 3b. Exact Whitehead Coefficients versus

Approximate Values,

Type Ag

‘? = 0 degrees, s/c = 1, n-=o
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B, =0" Br= 36"

k.- exact K;— approx A, - exact A - approx

0.000+10.000 0.000+10.000 0.000+10.000 0.000+10.000

-0.004+10.01 ~0.004+10.011 0.004+10.030 0.004+10.030
51=0.023+10.027 -0.023+10.028 -0.008+10.056 -0.008+i0.057
=0.092+10.054 -0-092*10.055 ~0.086+10.099 -0.086+10.098
-0.307+10.108 -0.366+10.§10 -0.413+i0.188 -0.410+10.187
°

Br=72 -1

A - exact A - approx A - exact A - approx

0.000+10.000 0.000+10.000 0.000+10.000 0.000+10.000
0.004+10.047 0.004+10.047 0.004+10.060 0.004+10.060
0.000+10.093 0.000+10.093 0.004+10.125 0.004+10.125
-0.076+10.151 -0.076+10.151 -0.068+10.199 -0.067+10.199
=0.442+10.270 =0.440+10.269 -0.460+10. 341 =0.459+i0.342
(]

B, = 144 B8, =180

- -

A, - exact Zc- approx Kc.' exact Ac- approx

0.000+10.000 0.000+10.000 0.000+10.000 0.000+10.000
0.004+10.068 0.004+10.068 0.004+i0.071 0.004+10.071
0.006+10.145 0.006+10.145 0.007+i0.152 0.007+10.157
-0.062+i0.232 -0.062+10, 232 ~0.061+10.244 -0.060+10, 244
~0.469+10.390 ~0.469+10.390 =0.472+10.407 -0.471+10.406

e e v amy m

Table 3c. Bxact Whitehead Coefficients versus
Approximate Values, Type Ae
‘f = 0 degrees, s/c = 1, Tt- 0
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OF POOR QUALITY

Approximate Values,

Type Ap

$ = 0 degrees, s/c =1, N =0

.0 °
Be = 0 Br= 36
k Kn‘ exact Ay~ approx K,- exact I,— approx
.0 - - |-0.110+10.000|-0.361+i0.000] ~0.360+1i0.000
.1 1-0.106-10.079| -0.106-10.079{-0.309-i0.031| -0.308-10.031
-251-0.083-10.197{ -0.083-10.197}-0.225-10.184| -0.224-10.182
-5 1-0.002-10.394{ -0.002-10.394|-0.109-i0.448| -0.108-10.446
1.0 | 0.321-i0.787| 1.322-i0.788| 0.272-i0.946| 0.273-10.945
[ °
Ber =12 Be= 108
k X,- exact K‘n' approx -\"- exact K.,- approx
.0 |-0.506+i0.000} -0.506+10.000|-0.627+i0.000| -0.628+i0.000
01 _00476"i00055 ‘00476"10-054 -0'603-5.0-073 —0-605-:10-074
.251-0.385-10.202| -0.385-10.201 [ -0.517-i0.229} -0.519-10.230
05 ‘00234-100505 "00233-100502 -00346-i01554 -00348’10.554
1.0 | 0.206-i1.093| 0.208-i1.092| 0.141-i1.214]| 0.142-11.214
° D
Pe= 144 B¢ = 10
Kk A,- exact A, - approx K,- exact | A,- approx
.0 }-0.707+10.000; ~C.T706+10.000{-0.755+10.000{ -0.734+1i0.000
.1 1-0.686-10.035|-0.685-10.085|-0.714-10.089]-0.713-10.089
+25(-0.602-10.250] -0.601-10.250 |~0.631-10.257|-0.631-10.257
-5 -0.422-i00 590 -0-421 "i.OO 590 “0-449"]‘.00603 ‘00447-]..0'602
1.0 | 0.096-i1.293] 0.096-i1.293]| 0.079-i1.320| 0.080-i1.320
|
t
Table 3d. Exact Whitehead Cvefficients versus
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ORIGINAL PAGE 19
OF POOR QUALITY
o |24
6r =0 /‘_‘," =0
k KAm exact IA- approx AA- exact A,- approx
.0 | 0.000+i0.000 | 0.000+i0.000| 0.000+i0.000 | 0.000+i0.000
.1 0.004-10.043 | 0.005-10.043| 0.000+i0.000 | 0.000+i0.000
.25] 0.028-i10.107 | 0.028-i10.107| 0.000+i0.000 | 0.000+i0.000
5 | 0.113-10.213 0.114-10.214| 0.000+i0.000 | 0.000+i0.000
1.0 | 0.455-10.423 | 0.455-i10.427] 0.000+i0.000 | 0.000+i0.000
(-] ®
pr =36 pf = -56
k KA- exact -A"— approx iA- exact :A— approx
.0 [ 0.000+i0.000 | 0.000+i0.000| 0.000+i0.000 | 0.000+i0.000
-1 1-0.005-i0.060 |-0.005-10.061 | 0.028-i0.016 | 0.028-i0.016
+25] 0.005-i0.128 | 0.004-10.129 | 0.030-i0.046 | 0.029-10.045
+5 | 0.085-i0.235 | 0.084-i0.234 | 0.017-10.061 | 0.016-i0.060
1.0 | 0.433-i0.45% | 0.434-10.451 | 0.002-i0.063% 0.001-i0.06%
o
Be= 72° Br=T2
Tk A, - exact iA— approx K- exact KA- approx
.0 | 0.000+i0.000 | 0.000+10.000 | 0.000+i0.000 | 0.000+i0.000
-1 [-0.006-10.083 |-0.006-i0.083 | 0.028-i0.010 | 0.027-i0.010
+251-0.015-10.177 |-0.015-i0,.178 | 0.045-10.040 | 0.043-10.040
+5 | 0.042-i0.294 | 0.042-10.295 | 0.036-10.072 | 0.035-i0.070
1.0 | 0.392-i0.522 | 0.392-10.523 | 0.012-i0.086 0.012-10.087
Table 4a. Exact Whitehead Coefficients versus

Approximate Values,

Type A,
? = 45 degrees, s/c =1, n=o

[

e




140
ORIGINAL PAGE ™
¥ .
.. g °
'! . ﬁr = '08 pr = IOG
& k Kb- exact Xs' approx ib- exact iu’ approx
: -0 1 0.000+i0.000{ 0.000+i0.000 | 0.000+i0.000 | 0.000+10.000
f -1 [-0.007-10.101 |-0.007-10.101 | 0.021-i0.006 | 0.021-10.006
i -251-0,026-i0.221 |-0.026-10.222 | 0.038-10.027 0.038-i0.027
2 -5 | 0.009-10.359| 0.009-10.361 | 0.037-i0.057 0.036-i0.057
: 1.0 ] 0.353-30.600] 0.352-i0.60% | 0.015-i0.075 0.015-i0.078
- - o °
Le = 144 ,B, = |44
k Ay~ exact K,- approx Ib- exact 15' approx
y -0 1 0.000+i0.000 | 0.000+i0.000 | 0.000+i0.000 | 0.000+i0.000
T -1 1-0.008-i0.113 [-0.008-i0.113 | 0.011-i0.003 0.011-10.003
. +251-0.031-10.251 |-0.031-10.251 | 0.021-10.014 0.021-i0.014
;- +5 |-0.011-10.406 {-0.011-10.407 | 0.022-10.0%1 0.022-10.030
{‘ 1.0 } 0.327-i0.658] 0.326-i0.659 | 0.010-10.043 0.012-i0.044
: °
:: P =180 B = 1806°
k AB- exact AB- approx A - exact AB- approx
0 | 0.000+i0.000{ 0.000+10.000| 0.000+1i0.000 | 0.000+1i0.000
01 "00008"10-117 -00008-]..0011? 0.000"'10.000 0-000+i0-000
+251-0.033-10.261 [-0.033-10.261 | 0.000+1i0.000 | 0.000+i0.000
+5 [-0.017-i0.423{-0.017-10.424 | 0.000+i0.000 | 0.000+i0.000
1.0 | 0.318-10.680( 0.317-i0.680| 0.000+i0.000 0.000+10.000
‘.
'i
! Table 4b. Exact Whitehead Coefficients versus

Approximate Values,

Type Ag

$ = 45 degrees, s/c = 1, 7 =0
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ORIGINAL PAGE IS
OF POOR QUALITY
!
(-] ‘
Br=o B = Oo ‘
k Rg- exact Ag- approx 'i,- exact T.- approx E
H .0 - - 00427+10-000 0.000"‘10-000 0.000"’10.000 ;
«1 ] 0.423+10.112 | 0.422+i0.112 | 0.000+10.000| 0.000+1i0.000 :
| 25| 0.399+i0.281 |0.399+10.280 | 0.000+i0.000| 0.000+i0.000 {
3 -5 | 0.314+30.561 |0.313+10.560 | 0.000+10.000{ 0.000+i0.000 :
3 1.0 |-0.027+i1.119 }0.028+i1.119 | 0.000+i0.000| 0.000+i0.000 i
: ° ° :
: Pr= 36 Ber =36
3 _ — : _
ﬁ k A,r exact AB' approx T!r exact :;- approx § |
¥ - : |
5 -0 | 0.660+i0.000 {0.660+i0.000 | 0.000+i0.370 0.000+10.370 g 4
% -1 10.613+i0.047 | 0.617+i0.049 | 0.112+i0.309 0.117+i10.302 : |
i +25) 0.520+i0.216 [0.526+i0.216 | 0.127+10.193 0.126+i0.185 | ;
E «5 | 0.400+10.532 |N.403+i0.531 | 0.082+1i0.127 0.079+i0.125 ;
E 1.0 ] 0.038+i1.133 |0.038+i1.133 | 0.034+10.093 0.034+i10.103 : j
1 ° ) : a’
B, = 12 L Be=12 P
4 : :
: — - - < 3
E k A,- exact A.f approx Ay- exact A‘- approx l
3
! -0 } 0.867+10.000 {0.867+10.000 | 0.000+i0.308 0.000+1i0.308 1
: -1 10.839+10.057 |0.840+i0.058 | 0.047+10.293 0.052+10.290 |
B +25] 0.744+i0.202 [0.746+10.202 | 0.078+i0.242 0.082+10.23%4 |
b +5 | 0.582+10.524 |0.584+10.523 | 0.068+10.183 0.068+10.177
| 1.0 10.176+i1.178 |0.175+11.177 | 0.030+i0.135 0.030+i0.146
!
]
1
A,
i
|
d
Table 4c. Exact Whitehead Coefficients versus
Approximate Values, Type Ay

T = 45 degrees,

s/e=1, N=0




:

¥ = 45 degrees, s/c = 1, 'l-O

OF POOR QUALlTY
° o
ﬁr =109 pf = |08
k K,- exact Kz" approx T'- exact “Z’— approx
-0 [1.041+10.000 | 1.041+i0.000 | 0.000+i0.222 | 0.000+i0.222
-17 11.021+i0.073 | 1.020+10.073 | 0.020+i0.217 | 0.022+i0.216
+25 10.937+10.220 | 0.937+i0.221 0.038+i0.196 | 0.040+i0.193
<5 [0.767+i0.544 | 0.762+i0.545 | 0.038+i0.162 0.03%8+1i0.161
1.0 ]0.319+i1.237| 0.319+i1.237 | 0.017+i0.124 0.016+i0.139
[ g o
B = 144 LPer= 154
k K,— exact I,- approx i,— exact ’K.s- approx
.0 11.157+i0.000 1.158+10.000 | 0.000+i0.116 | 0.000+i0.116
o 1.140+10.084 | 1.140+i0.084 | 0.007+i0.114 0.008+i0.114
+25 [ 1.063+10.239 | 1.063+i0.239 { 0.014+i0.107 | 0.016+i0.106
«5 |0.887+i0.568 | 0.887+10.569 | 0.016+i0.092 0.016+i0.098
1.0 10.422+11.284 | 0.423+i1.284 | 0.006+i0.073 | 0.006+10.082
° °
ﬁf = IQO ﬂf = ‘ 80
k '13- exact Ka‘ approx i;- exact T;— approx
-0 |1.198+10.000] 1.198+i0.000 { 0.000+10.000 | 0.000+i0.000
, o 1.181+10.088| 1.181+10.088 | 0.000+i0.000 | 0.000+1i0.000
E +25 11.107+10.247 | 1.106+10.246 | 0.000+i0.000 | 0.000+i0.000
f -5 ]0.931+10.578 | 0.929+10.578 | 0.000+10.000 0.000+i0.000
5 1.0 ]0.460+i1.302| 0.459+i1.301 | 0.000+i0.000 | 0.000+i0.000
!
b
Table 4d. Exact Whitehead Coefficients versus
Approximate Values, Type Ag‘
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143 ORIGINAL
OF POOR QUALITY

PAGE IS

o 3
ﬁr =0 p', =0
k K‘,'- exact I‘,’- approx :c‘ exact .-K. . = approx
.0 | 0.000+i0.000} 0.000+i0.030| 0.000+i0.000 | 0.000+i0.000
.1 | -0.005+10.018]-0.005+i0.018] 0.000+i0.000 | 0.000+i0.000
25| -0.029+10.046-0.028+10.046 0.000+10.000 | 0.000+i0.000
5 }-0.115+i0.092{-0.114+10.091| 0.000+10.000 | 0.000+i0.000
1.0 ] -0.459+i10.182[-0.455+i0.182] 0.000+i0.000 | 0.000+i0.000
]
B, = 36 Br= 30
- - » =
k A - exact A.- approx A - exact A - approx
.0 | 0.000+i0.000| 0.000+i0.000| 0.000+i0.000 | 0.000+i0.000
-1 ] 0.000+i0.029| 0.000+i0.029}-0.009+i0.007 |-0.009+i0,007
25| -0.016+10.060|-0.015+10.060| -0.006+10.020 }-0.004+10.020
<5 1-0.100+i0.108}-0.099+i0.108| 0.007+i0.028 | 0.012+10.027
1.0 1-0.451+i0.206|~0.451+i0.206] 0.026+i0.036 | 0.037+i0.029 |
k-
B, = 72° Br =12
k K‘- exact K‘- approx 1;- exact i‘- approx
.0 | 0.000+i0.000| 0.000+i0.000{ 0.000+i0.000 | 0.000+i0.000
o1 0.001 *10.043 00001 "'10-043 —0-008"’10.004 -0.010*10.005
-25 -0. 005*10.091 "'00005*10.091 "0.009"’100017 "'0-01 2"’10.020
+5 |-0.078+i0.148]-0.077+i0.148| 0.004+i0.033 | 0.003+i0.036
1 .O "0- 437"‘100 259 -0-436"‘:10. 259 000334'].-0.047 0- 035+io-044
Table 4e. Exact Whitehead Coefficients versus

Approximate Values,

Type A

-; = 45 degrees, s/c = 1, =0
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Approximate Values,

Type A

1f = 45 degrees, s/c =1, N =0

144
NAL PAGE 1
OF POOR QUAL!
. o -}
B, = 108 Br =108
K‘- exact K‘- approx Kef exact K‘- approx
.0 | 0.000+i0.000| 0.000+i0.000] 0.000+i0.000| 0.000+1i0.000
.1 0.002+10.054| 0.002+i0.054| -0.005+10.002 -0.007+10.003
+25| 0.000+i0.119} 0.000+i0.119| -0.007+i0.011 -0.010+i0.014
+5 [-0.062+i0.191| -0.062+10.191| -0.002+1i0.026 -0.001+10.029
1.0 | -0.426+i0.317]| -0.425+i0.317] 0.028+i0.041 0.030+10.039
(] [ ]
B = 144 B = 44
k de exact 'Zc— approx K‘- exact Kc- approx
.0 | 0.000+i0.000f 0.000+i0.000| 0.000+i0.000| 0.000+i0.000
.4 0.002+10.062| 0.002+i0.062| ~-0.002+i0.001 |-0.003+1i0.001
025 0.%2"'100138 00002+i°0138 -0.004"'10.006 -00005+10c007
. 5 -0- 054+100 222 —0. 054*'10- 223 0.001 +io- 01 4 o. OOO+iOo 01 5
1.0 {-0.419+i0.359]-0.420+i0.361| 0.016+i0.023| 0.016+i0.021
® °
B, =180 Pr =180
k K;- exact K;' approx 1‘- exact K;- approx
.0 { 0.000+i0.000]| 0.000+10.000| 0.000+i0.000| 0.000+i0.000
o 0.002+10.064| 0.002+10.065] 0.000+i0.000| 0.000+i0.000
«25| 0.003+i0.144| 0.003+i0.144| 0.000+i0.000| 0.000+i0.000
«5 {-0.051+i0.233]-0.051+10.234]| 0.000+i0.000| 0.000+1i0.000
1.0 |-0.416+10.375|-0.416+i0.376| 0.000+10.000| 0.000+i0.000
Table 4f. Exact Whitehead Coefficients versus

e e et e

e O T

:
E
1
1
|
;
]
3
3
!
i
[
|




I St A T

145

] »
Be=o0 RBr=0
k Ep- exact K,- approx K,r exact z,- approx

E .0 - = |-0.184+i0.000| 0.000+i0.000 0.000+i0.000
{ «1 1-0.179-10.101 -0.179-i0.101 0.000+10.000 0.000+10.000
4 «251-0.151-10.25% -0.151-10.252 0.000+10.000 0.000+10.000
A +5 [-0.053%-10.505 ~0.053-10.504 0.000+10.000| 0.000+i0.000
g 1.0 | 0.339-i1.009 0.340-11.008] 0.000+i0.000 0.000+i0.000
?1 B = 1 Br=36"
i k K;- exéct Zs- approx z,- exact z,- approx
+Q | ~0.322+10.000/ -0.322+10.000| 0.000-10.129] 0.000-10. 108
* c1 -00294-100066 -o- 295_i0l066 —00050-i0-103 -0-053‘10.099
= +251-0.228-10.220 -0.228-i0.219 -0.061-i0.055 -0.061-10.050
;,} «5 [-0.109-i0.495 -0.108-10.494 |-0.050-10.028 -0.049-10.025
;f 1.0 | 0.299-i1.029 0.299-11.029-0.045-10.016 ~0.046-10.015
X Br=12° Ar=12°
' - -

k I.,- exact Ay~ approx T,- exact Ap- approx

-0 1-0.451+10.000 -0.452+10.000 0.000-10.089 0.000-10.088

-1 1-0.433-10.075 -0.434-10.075 -0.023-10.083 -0.024-10.081

+25(-0.366-10.219 -0.368-10.220 <0.042-i0.063 -0.042-10.060

«5 1-0.223-10.504 -0.225-10.504 -0.048-10.040 -0.047-10.038 | -

1.0 | 0.215-11.080 0.213-11.080 -0.054-10.024 -0.052-10.025
4
|
|
' Table 4g. PEract Whitehead Coefficients versus

Approximate Values, Type @D

}’ = 45 degrees, s/oc = 1, n=0
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B, = loB

B, =109

By~ exact

Ay~ approx

=
@,- exact

-
Ay- approx

.0
g
.25
<5

1.0

-0.561+10.000
-0.547-10.086
-0.486-10.236
-0.335-10.528

-0.562+10.000
-0.548-10.086
-0.486-10.236
-0.335-=10.529

0.130-i1.138

0.130-i1.138

Be= 14

4

0.000-~-10.055
-0.011-i0.053
-0.023-10.045
-0.033-10.033
=0.044-i0.022

0.000-10.054
-0.012-10.052
-0.024-10.043
-0.032-10.031

=0.042-0.022

Br= I4

4'0

By~ exact

t 4
Ay~ exact

i,- approx

.1
.25

1.0

-0.635+10.000
-0.622-10.094
-0.565-10.251
-0.411-10.551

-0.636+10.000
-0.623-10.094
-0.565-10. 251
-0.412-10.552

0.070-11.183

0.069-11.184

0.000-~10.026
-0.005~10.025
-0.010-i0.023
-0.017-10.018
-0.024-i0.012

0.000-10.026
-0.005-10.025
-0.011-10.022
-0.016-i0.018

-0.023-i0.014

A, =180°

()
/G,=\eo

]’— exact

K;- approx

K’- exact

=

Ay- approx

-0.661+10.000
-0.649-iC.097
-0.592-10.256
-0.438-10.559

0.048-11.200

-0.662+10.000
-0.650-10.097
-0.593-10.256
-0.439-10.560
0.048-11.199

0.000+10.,000
0.000+10.000
0.000+10.000
0.000+10.000
0.000+10.000

0.000+10.000
0.000+10.000
0.000+10.000
0.000+10.000
0.000+10.000

Table 4n.

Approximate Values,

Exact Whitehead Coefficients versus

Type Ay

'g’ = 45 degrees, s/c =1, N =0
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}
ORIGINAL PAGE 1S !
OF POOR QUALITY ;
type| B, B, B, G, 9,
A |-0.470] -0.526 | 0.000 |-0.072 | 0.130
B | 0.565| 1.229 | 1.000 |-0.244 | 0.130 ;
¢ | 0.485| 0.263 | 0.000 | 0.0% | 0.130 %
D [-0.595|-1.114 |{-0.500 | 0.122 | 0.130

Moments taken about the leading edge, Pl = 0.0, or a = -1

Alternate coefficients can also -

two dimensional coefficients together with a rough approximation to

the Theodorsen function as C(p) = (.55 p + .15)/(p + .15). This

votained using the known theoretical !

would result in the alternate coefficients,

—mmarar A
—— _-‘_l...._; A e e

P
type B, B1 By G, 9o '
A }1-0.500]| -0.550| 0.000 |-0.068 | 0.150 !
B 0.500 1.325| 1.000 | -0.349 | 0.150 i
c 0.500f 0.275) 0.000| 0.034 | 0.150 :
D |-0.563]| -1.163 | -0.500 | 0.174 | 0.150 :
Table 5. Transient Theodorsen Coefficients n-=o.0
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PAGE‘_::

k A - exact A, - approx A‘- exact A‘- approx
.0 | 0.000+10.000] 0.000+i0.000f 1.000+i0.000| 1.000+i0.000
.17 ]-0.012-10.083%]-0.022-10.087 0.853+10.003} 0.904+10.005
-25 -000%6-100168 -0-027-100161 0-737"100185 0.773*10-207
ns 00050'10-299 -00050"10-280 00586"'100548 00630+100555

1.0 | 0.400-i0.539 0.399-10.535] 0.190+i1.208 0.195+i1.198

k Ac— exact Ar_- approx A‘—‘exact A,- approx
00 00000"'1000’\/0 0-0%"'100000 -0-500"'10-000 "00500'.'100000
o 0.004+10.042| 0.008+i0.044 |-0.423-10.051 |-0.449-10.052
25| -0.006+10.084 [ -0.002+10.080 }-0.351-10.213 -0.367-10.229
-5 |-0.087+10.150{-0.088+i0.140 }-0.215-10.524 -0.23%7-10.527

1.0 -0I450+10|270 -0.450+100270 00218_110104 0021 5-i1 1098
: h 21 et
- 5y x]e
X-ZtrfU- biA*b AB
- Lwt
2 2 h a} e
m = Zfrfuf l’iACb + Ay
Table 6. Exact Theodorsen Coefficients versus

Approximate Values,

n= 0.0
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ORIGINAL PAGE 18
OF POOR QUALITY

Amount of Mode Present at Plutter Point

p'_ Mode Tuned Blade "O" "Alternate"

Mistuned Mistuning
0 | cosif 0.00 0.15 0.14
40" | cos3p, 1.00 0.59 1.00
sinyf, 1.00 0.52 0.91
80 | cosip, 0.00 5.86 0.32
sinjPy 0.00 1.00 0.15
120 | cosipy 0.00 0.40 0.1
sinjF, 0.00 0.32 0.16
160 | cosyps 0.00 0.30 0.62
siujp’ 0.00 0.08 0.30

Table 7. Multiblade Modes Present at Flutter

N=9, T=45 degrees, s/c=1, 7 =0.5

PN

RPN
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ORIGINAL PAGE 18 ,
OF POOR QUALITY '

* N=9 '
- i
Ef. The engine order n will excite the structural
3 modes sinjﬂr and cosle as follows: J
, - |
2, |
: !
~ n r :
B :
i 0, 9, 18, 27,-.-.00: 0 l
. |
! [
1,8,10,17,19,26,28,....... 1 '
? :
§ 2,7,11,16,20,25,29,....... 2 % !
3 o
; 3,6,12,15,21,24,%0,....... 3 3 |
' 4,5,13,14,22,23,31,....... 4 g ;
| i
1 .
x, |
. !
i !
\
|
\;J
%
Talle 8. Structural Modes Responding to Engine order §
Excitation - Tuned Rotor, N =g i
4 -
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ORIGINAL PAGE 19
OF POOR QUALITY

3
? k 1/k‘ /Sr = 40 degrees | S, = 80 degrees | 8 = 120 degrees
: exact | approx exact | approx exact | anprex
? oA 10 | -0.1682 | -0.1722 |-0.1561 | -0.1588 |-0.0886 |-0.0889
- 25| 4 | -0.0078|-0.0083 |-0.0084 | -0.0082 | 0.0008 | 0.0008
= 5 2 0.0011 | 0.0009 | 0.0013 | 0.0013 | 0.0034 | 0.0032
: 1.0 1 0.0011 | 92.0010 | 0.0012 ] 0.0011 | 0.0015 | 0.0015
° -
T=45 Y=1 1=862 n=o0.5
r

Table 9.

Exect Aercdynamic Damping versus Approximate Values
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ORIGINAL PAGE |9
OF POOR QUALMTY

.r_ —
1 1 0 1 0 1 0 1 0
1 -7660 .6428 .1736 .9848 -.5000 .8660 -.9397 .3420
1 -1736 .9848 -.9397 .3420 -.5000 -.8660 .7660 —.6428
1 --.5000 .8660 -.5000 -.8660 1 0 -.5000 .8660
1 -.9397 .3420 .7660 -.6428 -.5000 .8660 .1736 —.9848
1 -.9397 -.3420 .7660 6428 -.5000 -.3660 .1736 .9848
1 -.5000 -.8660 -.5000 .8660 1 0 -.5000 -.8660
1 1736 -.9848 ~.9397 -.3420 -.5000 .8660 .7661 .6428
J
1 7660 -.6428 .1736 -.9848 -.5000 -.8660 -.9397 -.3420 .

|

Hi | e
f
3

See 2quations (2-39) and (2-42)

Table 10. Values of Basic 2. Matrix for N = 9
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ORIGINAL PAGE 8
OF POOR QUALITY
~ ~ ~ ~
ﬁr By B, Bo G, 30 | By B, Bo G,
0° | -.069 |-.134 | .243| o 0 0 0 0 0
40° [ -.063 |-.128 | .346 |-.090 | .188 | 0 |[-.015|-.240| .188 ;
80° | -.063 |-.127 | .429 |-.155 | .313 | o |-.017 |-.209 144
120° | -.062 |-.124 | .493 |-.198 | .390 | o |-.012 |-.142 .087 ‘
o |
160 | -.060 |[-.120 | .528 |-.221 | .427 | o {=.005 |-.050 | .030 !
%
{
1
Isolated| -.015 |[-.148 | .500 [-.158 | .130 | o 0 0 0 {
airfoil ¥

Values interpolated from general Table 2 for pitching about midchord

(?l= .5) ahd for N =9

Table 11.

Transient Whitehead Coefficients for Torsional Flutter

Analysis. Type D, N = 9, }= 450, s/fe =1, N=.5
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