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ABSTRACT
I

The torsion flutter and forced response of tuned and Inistuned

cascades is examined using a standing wave approach, as opposed

to the traditional traveling wave approach used in cascades aerodynamic

models. The motion of the blades and the corresponding cascade aero-

dynamic loads are expressed in terms of standing wave modes and arbitrary

transient motion, by fitting the sinusoidal force coefficients in terms

of ratios of polynomials in the Laplace transform variable, sometimes

referred to as Pad_ approximants. Whitehead's two dimensional, incom-

pressible aerodynamic model is expressed in this transient form and is

used to solve the flutter and forced response problems. Results obtained

with the transient, standing wave analysis for the flutter and forced

response are similar to those obtained by traveling wave analyses, but

they yield the transient decay rate associated with vibrations of the

blades, as opposed to the structural damping required for flutter obtained

by the traveling method. _'_ 'i

The standing wave analysis presented here may prove to be more _

versatile for dealing with certain applications such as mistuned rotors, _

"localized" blade flutter, low engine order excitation, translent impulses _ ,,,I

on the rotor, and coupling in with forced response and dynamic shaft prob- "

lems.

......... *. . ........................ T .:_,,_:_. -:.-_ e .... ,

UNTITLED-002



ACKNOWLEDGEMENTS I

The authors would also llke to acknowledge helpful

discussions with Professor Edward Crawley, Ken Hall, and

Dinkar Mokadam during the preparation of this thesis. This

_ work was supported by NASA Grant No. NAG3-214, with NASA :

Lewis Research Center. Dr. Robert E. Kielb was the Technical i

officer.

>
The present document constitutes for the most part, an M.S. i

thesis by the first author.

2

!

,| :

!

UNTITLEU-003



t

TABLE OF CONTENTS

Page

Nomenclature 5

I. Introduction i0

i 2. Transient Cascade Airforces 132.1 Standing Wave Representation 13

I 2.2 Application To Isolated A_rfoil 35

I:,.._ 3. Application to Torsion Flutter 40

_ 3.1 Isolated Airfoil 40

!! 3.2 Tuned Cascade 44
_ 3.3 Mistuned Cascade 50

3.4 Flutter Vibration Modes 59

!i 4. Application to Forced Response 63

_.: 4.1 Engine Order Excitation 63 .

4.2 Transient Response 73 ',

_': !

5. Miscellaneous Applications 75

5.1 Flexible Disk Rotors 75

5.2 Aerodynamic Influence Coefficients 77

6. Conclusions 80

References 82

AppendJx A. Fitting Aerodynamic Coefficients 84

Appendix B. Flutter Points of a Tuned Cascade 88

Appendix C. Standing Waves to Traveling Waves 93

Figures 97 ,

Tables 133

UNTITLED-OOL



5

NOMENCLATURE

A A _A8_ Ao _3 nondimensional traveling wave force coefficients

as they enter (2-40) and (2-41),

[ .

' = (AAR+iAAr), etc.

A_- nondimensional aerodynamic coefficients
|i.

associated with forward and backward

¢,_ +..+
traveling waves, = t_A_ I_AI), etc.

AK,At?A_TA _ defined by (2-10)

_ B matrices of first order form of equations of

motion, defined by (3-18) for the tuned

cascade, and by (3-33) for the mistuned !

cascade }

A)B)C.j_ coefficients of cubic equation, (3-8)

O- real part of eigenvalue ! :

CA_ elastic axis location in semichords aft of

midchord

_tBi__7_ coefficients of transient, standing wave

form of airloads

_ _, _o matrices of coefficients of transient, standing '

" wave form of airloads, defined by (2-38) for

i ! the tuned cascade, and by (2-42) for the

mistuned cascade

_ _ semichord

ii # ;i _ (._ _ [ force and moment coefficients as defined

UNTITLED-O05



by ' itehead [2]

C_k) Theodorsen _unction

C matrix defined by (3-17)

matrix defined by (3-31)

G imaginary part of Theodorsen Function I

_ vector of applied loads in first order form

of equations of motion

_;' San _$sn nondimensional coefficients associated with

'_ components of engine order excitation

i F real part of Theodo_seu Function

I @, __o _, coefficients of transient form of airloads :

" _, _o matri_e_ of coefficients of transient, standing

wave form of airloads, defined by (2-38) for ithe tuned cascade, and by (2-42) for the

mistuned cascade

displacement of blade i

magnitude of blade displacement ,

I identity matrix

_K mass moment of inertia

_A_ average mass moment of inertia

, reference mass moment of inertia

Iw,_I_l.w inertia associated with the high and low
frequency blades of a mistuned cascade,

respectively

blade number :_

k reduced frequency, _ / _ _::_

A._.,-_ ,' ,, _ • _-- .d ,mAll
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I _b=_ torsional stiffness of blade j

i "_t ] Laplace transfo_ :!

P

, _ lift on section of isolated airfoil

! _ aerodynamic moment acting on section of

isolated airfoil

ir mj aerodynamic moment acting on section of
t,.

: blade j

,.' _j disturbance moment acting on blade j

__ m_ _" nondimensioual disturbance moment acting on
_ blade j

_ ' N number of blades

i: n engine order

, p transformation matrix of blade coordinates i

and multiblade coordinates I

!

nondimensional eigenvalue, = _ !_6 + [Lo/,.do

multiblade coordinates

.[ vector of multiblade coordinates i

eigenvector of multiblade coordinates

F" mode number, number of nodal diameters

Laplace transform variable

! _ radius of rotor to section of blade under

consideration

.i m matrix defined by (4-7)

i _ time

velocity at blade

reduced velocity, I1/_0o_

L ......................................... f-':J ..... _T,_, ,,,0 . elDe -:r,,,_.....a,- m. _ ...,v...... .... ..
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_ vector of modal coordinates of first order il

form of equations of motion
1I

Yc_ Y_e coordinates associated with augmented

equation of standing wave form of airloads

vector of coordinates, Yc_, Y_v-

ro_ation of isolated airfoil

o_ rotation of blade j

complex magnitude of torsional vibration

_ modal coordinate associated with traveling

wave having interblade phase angle

_ magnitude of torsional vibration of

blade j

_ interblade phase angle, - 2_r/N

_ undamped natural frequency ratio, =_/a_ _ )i

frequency ratio of vibration, =_/_o

_rn Kronecker delta

structural damping

_A aerodynamic damping

elastic axis location in % chord aft of

leading edge

e_ position J with respect to fixed,
of blade

non-rotating axes

_, position of blade J with respect to axes

fixed to disk i
I
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inertia ratio ! d

T stagger angle _i

density of air
_5 nondimensional time

_ phase angle of vibration of blade J

y K_ssner Function

cO frequency of vibration

_J_ natural torsional frequency of vibration

of blade j

_|_ __Jo_ natural frequencies of high and low frequency
blades of a mistuned cascade

_o reference frequency, average frequency

angular velocity of rotor _ I,

7
]

• ii ,

Subscripts ]

( ) a/dr

0

blade number
J
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I. Introduction

Most work involving the aeroelastic stability and response of

cascades makes use of cascade aerodynamic models which assume that all

blade motions are sinueoidal. Modes of motion a_e represented by waves

traveling around the circumference of the rotor. Dugundji [I] has shown

that _he traveling wave modes can be expressed in terms of standing wave

modes, which are traditionally used in solving the fixed wing flu_ter

problem. One advantage of this method is that the equations of motion for

rotating str.ctures and "static" structures can be easily joined.

Eventually, problems of blade-disk coupling and shaft motions can be more

easily handled by this method. The casting of the cascade traveling wave

airloads into standing wave form is detailed in Chapter 2.

Whitehead [2] gives a good history of the early development of

cascade aerodynamic models. His model for a two-dimensional,

_i incompressible fluid with flat plate airfoils is used in this work. Smith

[3] has extended to subsonic compressible flow, and Adamczyck and _

Goldsteln [4], among others, to the supersonic cascade with subsonic axial

flow. More recently, computational fluid dynamics has been used by

Whitehead [5] to obtain the airforces for the two-dimensional high

deflection cascade with subsonic axial flow. In each of these models, the

force coefficients can be expressed as a complex number depending on the

i
frequency of vibration and other flight and geometric parameters. Using •

these methods to generate airload coefficients requires a lengthy i

computation for each frequency of vibration desired. To solve the flutter

I problem the V-g method is used, whereby the structural damping requiredl

UNTITLED-OIO
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for flutter is obtained.

When control and aeroelastic interactions of fixed wing aircraft are

being examined, the airloads must be in a form suitable for general

motions of the airfoil. Edwards, Ashley and Breakwell [6] have shown that

through the use of Laplace Transforms, the complete unsteady airloads

acting on an isolated airfoil can be approximated by a ratio of

i, polynomials, and that a transient form of the airloads can be expressed.
iP*

Li The present work extends these ideas to cascade aerodynamics, expressing

. the airloads in a transient form so that the airlcads due to general

motions of the airfoils can be determined. In s_ving the flutter

L problem, it is no longer necessary to know the frequency of vibration when

computing coefficients. In addition, the actual transient decay of the

motion is obtained. In Chapter 3, the transient form of the airloads is

applied to solving the torsion flutter problem. The isolated airfoil

stability is compared to the tuned cascade stability, and the effect of _ _i

mistuning is introduced.

Nistuning, or differences in natural frequencies, stiffnesse_, and

inertias between blades is being studied as a possible passive control of

turbomachinery flutter and forced response. Srinivaean [7] has

demonstrated the beneficial effect of mistuning on torsion flutter and

Kasa and Kielb [8] have shown that uietuaing often has a beneficial effect

on the bending-torsion flutter s_eed and an adverse effect on the forced

response of the cascade. The present work duplicates these results for

the torsion degree of freedom using airforces expressed in a transient,

standing wave form.

UNTITLED-01'
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Th_ ez'fects of mistuning on the forced response are discussed in

: Chapter 4. The fact that the airloads are expressed in terms of general
; i_

motion allows a quick solution of the response problem. If the airloads

! _ere expressed in terms of traveling waves, then the airloads must be

recalculated for eech frequency. To demonstrate the transient form of the

i.. airloads, the response of a cascade to an impulsive loading of one blade

_. is calculated.
_°

._ Chapter 5 deals with the extensions of these standing wave methods _!

_._ to deal with flexible disk rotors. Also these methods are applied to

i give the cascade aerodynamic influence coefficients, that is, the effect

of the motions of one blade on the forces produced at another blade.

! i
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k 2. Transient Cascade Airforces

Unsteady cascade aerodynamic theories have been under development

i since the early 1950's. Each of these theories makes the assumption that

the airfoil motion is sinusoidal. Edwards st. al. [6], and Vepa [9]

[, give a method for obtaining airloads due to general motions of an airfoil

i using the Theodorsen function. This method was developed to study active

l control of aeroelastic structures, and is based on the approximation of
L

the unsteady air loads by ratios of polynomials _n the Laplace transformvariable, sometimes refered to as Pad_ approximants.

2.1 Standing Wave Representation

I The cascade aerodynamic theories were developed for ha1_monic

vibrations that can be represented by traveling waves moving around the

ci-cumference of the disk. For a tuned rotor, each of the blades will ._'
i

have the same amplitude and interblade phase angle for a given mode of

vibration. The torsional amplitude, _, of each blade in such a cascade , I_'

tcan be written in terms of a traveling wave mode as,

o¢j.- e (z-,)t_

_ ; where

__r = 2_r , interblade phase angleN

i

L ........ ,,, ,, .................................. .. :.:_,.._._._..,.. _ ...a__.__.,_a_.,.._._. _ - --_...... . .............. ......... . , " _ ,.
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j = blade number

N = number of blades

r = mode number, number of nodal

diameters

;; _. " modal amplitude

See figure I.
t-

• The airforces corresponding to such a vibration can be expressed as,?

i

_, •

Here the aerodynamic moment per unit span due to pitching motion, m_, of ._,

each blade is given in terms of a traveling wave mode, where the

nondimensional complex aerodynamic coefficient (AR+iA_) is associated

with the interblade phase angle _i'" For _=,mistuned cascade, the blades
!

no longer vibrate with the same amplitude or constant interblade phase

angle. In order to specify the N magnitudes and N phase angles of the

motion of each blade of an arbitrarily mlstuned N-bladed rotor, the

solution must contain 2xN constants. To obtain solutions, then, one sums

over all nodal diameter traveling wave modes,

iI.
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_ f_l_

i ,t

Here, there are N modal amplitudes, _r' and N modal phase angles, _,.. -

!.• When summed, the blade amplitudes and blade phase angles are

reconstructed. The corresponding airforces are summed also as follows,

K
I.

I'_ t'lqj-Z.'lrpLZ"/gz,__ (AR r _r e " (?_-4)

L
An alternative, based on standing wave modes is discussed by Dugundji

[I]. The use of standing wave analysis is traditional when studying the

flutter of aircraft wings. In the present analysis, deflections are

represented by standing wave modes of the form

' where _e is a generalized coordinate, and is in general a function of
,

_: time. For example, if _ = 0 the motion represented would be the

"umbrella" mode, where all blades move in unison. To show that the
i

"_ traveling wave representation and the standing wave representation are

equivalent, add two traveling waves of the form (2-I), traveling in

opposite directions (+J and -J) with equal amplitudes _r' and take the

real part,

L '

UNTITLED-015
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8xpanding and combining terms leaves

which is of the form (2-5) for _c_t)=_cos_%. The form of the standing

wave airforces can be determined in a similar manner. Adding the

traveling wave airforces associated with �€-j directions gives,

with the tram'sling wave having an interblade phase angle _r' while the

coefficient (_+iA_)is associated with the traveling wave having an

interblade phase angle -_¢, or (360-_r). By examining the motion

i associated with these traveling waves, the direction of the wave can be

determined. Interblade phase angles between _e= 0 degrees and _r = 180

i degrees are associated with forward (in the direction of rotation) !
I

i traveling waves, while interblade phase angles between _- -180 degrees I
! :

and - 0 degrees are associated with backward traveling waves. _t

i Expanding (2-8), taking only the real part and combining terms, yields

i

UNTITLED-016
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i "'"

T ") "T 2._ r_-

Z
i

[ "

_ (z-9)
..

where
r

_ I 4-_ _.(A_+A_:)
X.-_.CA_.-A-_) i

' i
1

As has already been shown, by comparing (2-7) and (2-5) the expression for

the torsional displacement of blade j can be written in terms of an

arbitrary function of time and a standing wave mode as, _ :

The corresponding standing wave form of the moment acting on blade j can

..,_ be written as,

.... _"_, ; ....... "_lllJ_

-- ...... ---._-- _1_ " __ if" _._ "I. _, _ •
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e,

t4.

!.

![ Here the aerodynamic moment is given as a function of the displacement and

;; velocity of the generalized coordinate, _c.,; By assuming the solution

.i _ os_ot, and comparing (2-9) and (2-12), one can see that the

_I standing wave coefficents B,, Bo, Bi, Bo, are related to the traveling

_.! wave coefficients , [_, l_, , by the following relations:

_t B=A,r O _ i

i i = t
., kB, i

f 1

Since the traveling wave coefficients AE' _' "_' and _: vary with

[1 reduced frequency _ " _._b/U, the standing wave coefficients B, B_,, _B"_,

and B_ can be used to fit the traveling wave data over a range of

1 frequencies. Equations (2-13) can be solved for the standing wave

coefficients. The general motion form of the standing wave aerodynamic

moment (2-12) contains information about how the moment would vary for
i

different frequencies of sinusoidal motion, as well as for any arbitrary

........................................ V|_

- ._ ..... ,. , ,. ........ ,...... _,_; ..... _..,,,_...._,.. ,,.,,,_-.:_.,,..,,,..._ . ._-,..... ........ .........-_L --_,"
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i motion. The generalized coordinate " an arbitrary function of time.
_. _ iS
_ .o
!, Again, the standing wave coefficients are in general a function of the

, interblade phase angle, _r' gap-to-chord ratio, s/c, and stagger angle,

! _ . As an example, coefficients from Whitehead's [2] incompressible,

' two-dimensional theory were fit using this simple approximation. The
i
r

approximation to the Whitehead moment using (2-12) is shown by the dashed

line in figure 2. In this example, the stagger angle is zero degrees and

_. the forward and backward traveling wave coefficients are identical. Thus,

AR, and A_ are each equal to zero. The remaining standing wave

coefficients are related to the Whitehead coefficient _e_ by

J

J
i

As can be seen in figure 2 this fit (2-13) might be acceptable for low

values of reduced frequency, but is poor at higher reduced frequencies.

For a more accurate fit of the data the moment acting on blade j can be
i

more generally expressed as,

. . -_ _ . e_m,b" _.ll_D...-iw*_I. -.",_'"" _' _ .....-......•....., "

.....- -
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I

This representation .as motivated by the complete unsteady airforces

• _ O_
acting on an isolated airfoil (see [IO]) If the coefficient GI

then B_ represents a virtual modal mass, B, a modal aerodynamic

damping, and Bo a modal aerodynamic stiffness. The coefficient G!

represents the unsteady aerodynamic effect, or the amount of aerodynamic

lag, since by solving (2-16) for Ycr one obtains

For a value of _ at time "_, where T is any time back to O, the
6

effect on the moment (2-15) increases as t is taken closer and closer to

. Inthet_itast-_ ,thete_ GoY,(t)reducesto G_,_t)' i"
another term of the form of an aerodynamic stiffness. That is, the

o

farther in the past the motion _cr occurred, the less effect there is on

the aerodynamic moment. Hence, an aerodynamic "memory" or "lag" effect, iJ
A'

In general, G, and _, contribute to the stiffness and damping, so that

Bt and Bo alone do not represent the level of modal aerodynamic

damping and stiffness, respectively. Note that only one augmented

equation is used. Another possible augmented equation for Y._ with _ is

neglected. This does not result in a significant error and it reduces the

number of equations describing the moment acting on the blades. Thus for

each second order equation expressing the aerodynamic moment for general

motions of the airfoil, there is only one first order augmented equation.

Solving (2-16) by Laplace transform and substituting into (2-15) gives

UNTITLED-020
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I,
i-" (z-,e)
r

i

It.._, where s = e'b/u, and s' is the Laplace transform variable corresponding

l. to time, t. The unsteady effect is contained in the Pad_ approximants,

G,s/s+.%and_,a/s+3," .
!'

To obtain the relations between the standing wave coefficients B_,

! B,, Bo, G,, _o' . , B, , ,and , and tilegiven aerodynamict

coefficients _L' TLZ, _,,and A_j_,in terms of reduced frequency,k,

solve (2-16) by substitutiug Ycr=Y¢ cos_0t + Y sin_t. Then solve for

_ Y_r and Y_sr and sabstitute back into (2-15). Use the solution ii

,_,_rcosot in (2-15) and compare terms with (2-9) to give the new

relations between the standing wave coefficients and the traveling wave

coefficieuts as follows,

J

UNTITLED-02'
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- +t5 o + G, = A_ ,_ik= -

k"+O:

"- 7-k2"BF. '+ .Bo_ = - "r

, k Z_+ k:}oC-, = A_ (z-,_)

There are many methods to obtain fits to the traveling wave

coefficients using the nine standing wave coefficients B, B,, Bo, G,,

_o' Bz' BI' Bo, and G,. Since reduced frequencies at which flutter

usually occurs are in the range k = 0 to k = I, that was the range chosen

as the one over which to fit the data. To obtain the standing wave

coefficients, the traveling wave coefficients A_, _, _, and _I, were _
fit at k = O, k = O.I, and k = I, and (2-19) was used to solve for the

standing tare coefficients. Appendix A has a more complete description of

the fitting process. Relations (2-19) give a much better approximation to
/

the Whitehead coefficients than the simpler relations (2-13). (See figure

2.) The coefficients _' _I' _K' and _ are related to the forward

" and backward traveling wave coefficients by the relations (2-I0).

The solution for mlstuned rotors requires a suaaing over all the

e4b _ I.

UNTITLED-022
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t.
[ nodal diameter modes. In addition to the cos(J_¢) modes, the standing ._

i ,, wave modes ein(j_ r) must also be represented for a complete solution. The

standing wave deflection for sin(j_r ) can be obtained similarly by

subtracting the two traveling waves that were added to give (2-7).

Reducing leaves,

3#" (z-zo)
,.1 r

which is just a special case o£ the standing wave deflection pattern,

The representation of deflections as a pair of waves traveling in opposite

direction has been shown equivalent to a pair of standing waves.

Corresponding airforces give results of the forn (2-15), (2-16), and

(2-19). i

Summarizing, to represent arbitrary motion and corresponding

airforces for a cascade using standing wave modes, the deflections and

corresponding airforces can be expressed in the following form,

- UNTITLED-02



where B_, B,, B., GI, _, B_, '_, B_, and _,, are constants

obtained by £itting the given sinusoidal traveling wave coefficients by

_"

_ The above procedure can be extended to both bending and torsional

! motion of the airfoils by expressing the traveling wave deflections, h_ ,

and rotations, o_ , and the corresponding traveling wave lift, _, and

moment, m_ , as,

'_.....,.......:_ ..............._.=,;......__-_,,_..."____ .__,,'___"- .._, ., ,, ,-,

- -- - UNTITLED-024
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where h_- and c_ r are generalized coordinates associated with the

traveling wave mode r, and A_, AS, _, and k_ are nondimensional

aerodynamic coefficients for lift due to deflection, lift due to rotation,

etc. The coefficient AA refers to either _ A +iA_) or (AA_+iAA.:)

(depending on the direction of the traveling wave), as they appeared in

(2-8). The sign conventions are defined at the leading edge as in figure

3. The relations between the traveling wave coefficients defined above

and Whitehead traveling wave coefficients are as follows,

it
A. = ; kCF_
A = C6 - " F_

A c =-g;k C_1

A_ = ZC.. (2-s7)
I

The transient form of the deflections and the corresponding lift and

moment acting on blade J for a single pair of standing waw m_es can be

,m _-_-- -_'_ _ _ _ "

UNTITLED-025
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!i
6. 0

F S_' t_
it.
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(l, '_.r 1,1_y- c_'

f

0

0

0

u

,l

t,,

L..

The form of m_/b is similar to the form of _. By replacing all the

iii B.-A by B_C, and all BiB by B_, one can obtain the expression for

_" moment m_/b from the expression for lift, _. There is one augmented

_, equation (2-30) for each of the four coordinates, he, _, _r' and o(_ .

I The equations for lift and moment can be written more compactly in matrix

' : form as follows,

.I
" i
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m/_ '" ' '
.)

_o<1+ _,Y _

where the matrices have been defined as

Cz-33)

o _<>_SA-o ";<'J#,"

II #
I

i, '1.................................... ,,,
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m

I '
o 0 e o i

0

d

o _o io o ::!
o o I_]o o 1

o o to 3o

2

?.

The matrices B_, Bo, and Ql are similar to Ba.

This work involves only the torsion degree of freedom, and only the

coefficient A_ is used directly. The constants required above were

- ' "' "" UNTITLED-030
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i. obtained u_!ng ._hit_head's [2] two-dimensional, incompressible

aerodynamics. Equations (2-19)) were used to solve for the standing wave

coefficients, and their values are listed in Tables I and 2 for stagger

i angles of _ ffi0 degrees and _ = 45 degrees and gap-to-chord ratio,

s/c = 1. The values listed in the table refer to an axis system located

at the leading edge. Figures 4 and 5 show the fits of the Whitehead

traveling wave coefficients at the leading edge. Tables 3 and 4 list the

L
exact values of the Whitehead coefficients versus the approximate values.f

J

To transfer information to any axis, located a distance °7 per cent

chord behind the leading edge, one finds the following relations. (See

figure 3. )

b

(A,)_: (A,/. •

(A,)_- (A,)o �z_(a,)
° Cz-3+) '_

(A,)_: (A,/°+zn (A,)o

' (AJ_-(Aol.+Zn[(AJ+(A°lJ+_'(.,_. :,.

where ( )o represents a quantity evaluated at the leading edge. The

same transformations are used when tt'ansfe=ing standing wave coeff_cienta

, _,0any axis 1_ . By substituting Bg_, _C' etc. luto the above for

................. =..... ....... - ............. UNTITLED 031= I|I F ...... -
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A_, Ac, etc. one can obtain the appropriate transferred coefficients.

i

Returning to the cascade torsion problem, expressions (2-22), (2-23),

(2-24), and (2-25) can be written more compactly in matrix form as follows

where the matrices have been defined as

i
(

!

B , Bo, and G, are similar to Bz, and all the entriesThe matrices _' _. .,.

of all the matrices depend on the interblade phase angle. To represent

mistuned cascade a_rodynamics it is necessary to include all nodal _,,

li Ir .............................. T ...................................................... _ = - - ' ...... I ---- ' _'
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j
diameter standing wave modes from r = 0 to r = (N-I)/2. Now the

deflections and corresponding moments can be represented by !i

L'

;; u.i_j " e

q where the new matrices have been defined
i l :

_,1 . e' 1 r

1 •

• Y, CZ-' z) ,

}

) ~o _,._(,'.,-_z_t,) o o -
1

o (.,1 e_ ,_ . o - . -
: 0 o ".. :.

• .. _ _,-._'_-_o(• 0 0 .... _.p_ _/ )

ii ii fl •
iiii •

||1
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where, for r = O, there is no contribution from the sinj_ mode, and so

it is neglected. Since the standing waves appear in pairs and the sinj_r

mode is a non-mode, odd numbers of blades are easier to handle. To model

an even number of blades, an extra set of modes would be required. The

mode number r would be N/2 , and the sinj#r mode is always zero, since

N is an even number. Only one mode, the cosJ_ r mode, representing 180

degrees of phase separation of the motion of adjacent blades, is added.

For simplicity, only odd numbers of blades are used in this work. The

matrices B,, _, and G,, are similar to Bz.

/

2.2 Application to Isolated Airfoil

For comparison, the complete unsteady airforces acting on a typical

section of an isolated airfoil have been expressed in terms of the general

_otion of standing wave modes, and the standing wave coeffioie_ts Bt,

B,, Bo, G,, and _ , have been determined. These air_orces are

given by

!

- ...................... ut tt.=u' '"'-"'-'--'-'-'-"" =
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!.

t- l

: where C(k) is the Theodorsen function (derived in terms of sinusoidal
i

" motion), and a is the elastic axis location in semichords aft of

, midchord. See reference [10]. To obtain the traveling wave coefficients

in the proper form, assume solutions of the form

J

NOWthe airforcss (2-4_) and (2-44) can be represented by

i

UINIIILI_U uoo
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L;

i:

X = 2-¢YpL4--z_A A g + _b_D _ e.. (Z-¢b)

J 1

' i

I

where for these isolated airforces the nondimensional aerodynamic i
I
J

coefficients have been defined as follows,

If the Theodorsen function is written C(k)-F(k)+iG(k), then we find the _

 ilfollowing

A,_= z,..k_'+k @

AAZ = -kF

Aa_= _'_k"+ F- (z=-=C)k@

A_= __* ?.* (._-,) kF (z-+V)
A¢,=_ =k=', C_ *h��kC,-

A_.z=-C=_,_=)kr

A=,-_L=(.ez+,') k'_+(_,_) F_(___,)kG.
Ao==-_C_-.)k*C._-_,)_*_,-o')kf' i

¢

............ ,. , . -......... _.....,.,...,_._._-:_ .'_-.,,",_,,,_..,,,,-_. . .._ .......
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i NOw these coefficients can be fit using the first two equations Of (2-19)
L,
b

[ t as the Theddorsen functidn C(k) - F + iG is a known function Of reduced

frequency. The transient coefflaients can be solved for from (2-19) as

i , shdwn in Appendix A. The values Of the transient coefficients are shown

in Table 5 for a - -I (elastic axis at the leading edge). For the

isolated airfoil, the modal displacements are equal tO the blade

_ displacements, and (2-28) becomes,

)

5o)- (Z-

i_ The corresponding transient lift and moment are Obtained from (2-29) as

fOllOws,

&'

whore the mo(_Ja_ oross-oo_lp_in_ ts_s _o n(:_t a_eer for the isolated i_

................................ '-U'NTITLED03
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; airfoil case. The approximate aerO_yr.amic coefficients are compared to I_
Jl

the Whitehead values in figure 8, and their numerical values for several

reduced frequencies are compared in table 6.

NOtice that the fits to the isolated airfoil aerodynamic coefficients

are not quite as accurate as the fits to the cascade aerodynamic _
i

coefficients. ROck and DeBra [11] have shown that for an isolated airfoil

:i in a wind tunnel, the accuracy Of the approximation depends on the ratio

of the wal_ spacing tO the semichord of the airfoil. They have indicated

that tO keep the same level Of accuracy the order of the approximation

must be increased as the wall-spacing-td-semichOrd ratio increases. This

implies that for a given order of apprOximatiOn, the aerodynamics for a

cascade with a gap-tO-chord ratio of one will be more accurately

represented than those Of an isolated airfoil, which has an effective !

gap-to-chOrd ratio Of infinity.

'iJ ;

A_
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! 3. Application to Torsion Flutter

_ ,'

I 3.1 Isolated Airfoil
E

i_ For an isolated airfoil, the torsional equation of motion can be

: written

: I_'+Z_I_ +_:I._ = _ ˆ�pC_-')
e.

;i where m is the ael.odynamic moment and m_ is a disturbance moment acting

on a section of the airfoil. Sign conventions at the leading edge are

shown in figure 3. From the fitting of the isolated airfoil unsteady

airforces, the moment m can be expressed in the fo_ of (2-15) and (2-16)

as p

,i &4 = LA

where the standing wave aoeffioients shown in Table _ have been

transferred to the midchord are as follows,

....... _....., .-4 _ _ r_._ --

m ........................... UNTITLED-04C



I

_ 41 ORIGI_!ALPAGE .+_ I

, OF POOR QUALPrY

i ...

[ =,f
r

i 0 Bi+ •

Since there is only one degree of freedom, there is a single multiblade
P, .

coordinate which is equal to the rotation of the airfoil (i.e., _cr= o().

By placing (3-2) into (3-I) and dividing by Tr'f_$a_", the nondimensional
, equation of motion can be obtained

+ -=' _g_g i

+ ++ _9.Y = _< (_-+-5)
i

Fi where the following nondimensional quantities have been defined,

UNTITLED-04]



_. : 42

ORIGINALPAGE |_

_- OF POOR QUALITY

, • 0

,. :r_, _,o.___ -_C_-( ) ()=(,/
:_ "v:-o-fs'_ _ - , , :,

_

To look at the flutter problem, m has been set to zero. The subscript

_" D, denoting a moment coefficient due to blade angle of attack, will be

dropped at this time.

" To study the aeroelastic stability, assume a solution of the form

i

where

Substituting (3-7) into (3-5), solving for Y, substituting for Y in
; •

' (3-4), and rearranging gives a cubic eqaation in p "

.- A_ + g_ -_C_ + D =o (3-s)
i

where

w

.... --'--':'"'"--_ ".... UNTITLED-04:
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O

The cubic equation is solved for the roots _ = a,/_t i _ , and a_/e_.

• Flutter occurs when _ = 2i_ and a_ _ O. The roots of this equation are

shown by the dashed line in figure 7. Only the upper half-plane is shown.

The plot shows the roots associated with increasing values of reduced

velocity _, for a structural damping ratio S = O, and frequency ratio

: _= 1. Using data for NASA Test Rotor 12, the value of the inertia ratio i
!

_ = 86.2, for the elastic axes of the blades at their midchords. The I

addition of an augmented state produces a pole with a high decay rate.
i

This pole stays on the negative real axis as the reduced velocity is _ i:_

increased, and is not plotted. _ _i

As can be seen in figure 7, the isolated airfoil does not flutter for

L this set of parameters. At a reduced speed of zero the free vibration

response is obtained. Since there is no structural damping, the free

vibration is an undamped sinusoidal vibration. As the reduced velocity,

_ , is increased, the exponential decay rate (the magnitude of which is

given by the real part of the eigenvalue) of the motion increases due to

aerodynamic damping only. Finally, as the frequency (the imaginary part

of the eigenvalue) drops to zero, the airfoil becomes overdamped and no

ii
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1 '
; vibratory response is possible. Note that the root locus is shown only up _

to _ = 4 , at which speed the response is still a damped vibration.

After the root locus touches the real axis, it moves in the direction of

the positive real axis. The point of divergence is reached when the root

is at the origin. Increasing the reduced velocity further brings the root

into the unstable right half-plane.

ro

3.2 Tuned Cascade

?

For a tuned cascade the equation of motion for any blade is identical

to the equation of motion for any other blade. Here we look at the case

!' of a tuned cascade, where by definition no structural coupling of the

blades is allowed. This is also the case of blades on a rotor with a

massive, rigid disk. R"ne equation for each blade can be written -_
i

' (3-m)
,.F

'_ ', By substituting for the aerodynamic moment as obtained in the pzevious

_ chapter (2-36), and dividing by _ _ to , one can obtain the

,. nondimensional equations of motion:

;

,_ ...._...........,............. ,............... . ...T,--.L.. ,,....

U I_l/l/Lr- U u"t"t



oo

• _" O0

L

; Y i 3 '.. ~ + g._o = (_-Iz "
i

where the nondimensional disturbance moment acting on the blade is,

%= =%-- .
' t

and the matrices are defined by (2-.38). Next, express the blade rotations

on the right hand side of (3-I1) in terms of multiblade coordinates of
" mode r as,

[
| .

- _ (z-zg) ,
.,'t

i Premultiplying by _T yields,

i

IF-

........................... • *' ",:-__=':_-'-':-_"_.-..,_ .......... - .... T'. . _ ..... ..
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Rearranging yields,

+ ('_-16)
_ •

where

i :

i

i

! tI

+ +i
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This set of two second order equations (3-15), and two first order

augmented equations (3-16) can be cast into six first order equations of

motion for th,_tuned cascade as follows, ' :

13_ F (:8)"" = 3-I

where

b _r _'_ _ _ '_ _

UNTITLED-047



i_ 48
,_ ORIGINALPAGEIg

_: _'_ OF POORQUALITY
iq

i

i ,..

_" -K -C -& '_'$r,

o I -_H
f.

i.

. To look at the flutter problem, let F - 0 and assume solution_ of the

which give, upon substitution into (3-18) and rearranging, the standard

eigenvalue problem

,

The real and imaginary part of the eigenvaluee _- a/_,__ i_ are plotted

in figure 7 for the case of a nine-bladed cascade. Flutter occurs when

the real part of the eigenvalue, a/_ , is zero, corresponding to a

solution of the form,

i'

W
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r:

i X= e.

i This is an undamped sinusoidal motion that characterizes flutter. If the

frequency ratio, _ , drops to zero before the exponential damping rate, :

i_i a/_, the phenomenon of divergence is observed, as the damping rate

crosses the imaginary axis. The solution in that case grows

_,. exponentially,

Y X
i-

) ,.

_ - The system shown in figure 7 is a nine-bladed rotor with a stagger angle

, _ = 45 degrees, gap-to-chord ratio of I, zero structural damping, an

inertia ratio _ = 86.2, and the elastic axis at midchord, _ = 0.5. The

plot shows the eigenvalues associated with each interblade phase angle

mode. For each interblade pha_e angle there are two roots, one _
corresponding to a forward traveling wave, the other corresponding _o a

backward traveling wave. The three modes that flutter are forward

, traveling waves. There will be more about the flutter modes in a

_" following section. For a tuned cascade with nine blades and a stagger

angle of 45 degrees, the flutter reduced speeds associated with an

.-: interblade phase angle mode are shown in figure 7. These were verified by
ii

i comparing with the sinusoidal solution results using Whitehead

I =oefficients directly. Sec Appen_i= B. A comparison of the structural

lazping requircd for flutter, and the actual damping for a given reSucod

velocity are shown in figure 8. The difference between the slnueoidal

P

k
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solution curve and the curve _ = 0 is proportional to the amount of

i! structural damping required to obtain flutter. The curve obtained by

solutions of the form _e _ shows the decay rate associated with

i vibration in that mode for a given reduced velocity. Since there is no

structural damping, the decay rate indicates the level of aerodynamic
i

i_ damping present. The value of reduced frequency k = _Ob/u at which

: _A 0 is the flutter reduced frequency. The two dampings, although

_. essentially different in origin, are approximately equal. For the

important region below the flutter point the two values are hardly

¢.

distinguishable.

L;

1

3.3 Mistuned Cascade

Mistuning refers to small differences between the natural

frequencies, stiffnesses, and inertias of the blades of a cascade. Since

it is easiest to measure blade frequencies in an actual rotor, the

undamped natural frequencies of the blades are the quantities to be

mistuned. For any blade J the natural frequency is defined as,r

where --_ refers to the torsional spring stiffness of the blade and _

is the momen_ of inertia of the blade about the elastic axis. A reference

UNTITLED-050



frequency is defined as the average natural frequency of the blades as

follows,

[ If one blade is to have a 5% higher frequency than the remaining blades,

i. the frequency of the blades must be given by,

h

: or, _olving the above to give the blade frequencies,

1,e_N uOa _ = ___Q

Which yields, for a nine-bladed rotor, N = 9, with one blade at a 5% '_

higher frequency than the remaining eight,
./

J

_: To achieve these frequencies one must mistune the blade stiffnesees and/or

I the blade inertias. If frequency is to be mistuned by varying the inertia I

! alone, then the stiffness is constant and (3-22) can be used _c solve for I

the Inertiaa

i e

"' .................... UNTITLED-051
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This means that the average inertia is not equal to the reference inertia,

:< -- k._.,9,;+ Cn-O "
!

" For a nine-bladed cascade with one blade of 5% higher frequency than the i,

i

, remaining blades, the difference between the reference inertia and the i

Ii average inertia is slig:,t, I^_/. I o" |.001(; ',
< ,

For alternately mistuned blades, the difference between adjacent

blades is set to, say, 5%. To find the high and low frequency for an I

average (reference) frequency of 1,

. = 1,05
C l,w,

or, solving for the frequencies,

.2,1 N _o 2.N(,Oo.

UNTITLED-052
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i "-" I, 022 _o _l_.,,_

i" The corresponding average inertia, la_ t.O0 |3 I o

_ For a mistuned cascade the equation of motion of each blade is as for

i_. the tuned cascade (3-10). To express the motion of each blade of a

i mistuned cascade, the modal coordinates are summed as follows,

h
h

b" '

" _-p% ;

' This allows for N different blade amplitudes and N different blade :

phase angles. The moment acting on a mistuned cascade (3-15), (3-16), was

developed in the previous chapter. By substituting for the blade

amplitudes and moment into (3-10), and rearranging as was done for the ;

tuned cascade, similar equations of motion are defined as follows, ; i



_ .... ' ' . _ ' _,_, "-. l_I I_J_mm _ /

i _" ......
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., new, N-by-N matrices have been defined as follows,
F
r
_:.

i'

t. _2. 1"

: ' G= - Z_.;'-Prf G,
_..

H= _._o

All the matrices needed above are defined b." (2-42). By making use of the _

orthoganality of the standing rave modes, one obtains,



I
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t

be reduced to a very simple form, ]!
" ' •

- Jl

, =D D= N

%
_IzL.

-! I "r 0 .,
P D-P

where the first entry is N because it represents the sum

i

N-I

i
Casting (3-27) and (3-28) into first order form yields j

AX - BX = F c3-_) _ I

where the matrices of the 3N order system have been defined as, !

UNTITLED-055
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A flutter mode will now consist of a linear combination of all interblade i
!

phase angle modes. Setting the disturbance vector _F=O, the 6-by-6 i

standard eigenvalue problem (3-21), now becomes a 3N-by-3N eigenvalue

problem: i '_

-, _ (

Because of the form of the 3N-bE-3N matrix A, only the N-by-N matrix M

must be inverted to set up the eigenvalue problem.

A computer program was written to s6t up and solve the eigenvalue

problem for the tuned (3-21), or mistuned (3-_4) cascade. See Appendix C.

The root locus associated with the system with one blade of a nlne-bladed ,

rotor being mistuned 5% in frequency by varying the mass is shown in __

J

"" -'--:' "--'- .:'.:.:_--.z.: ,;r.*","., ,.. ,............................ • , , ., : ...... m.....
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figure 9. Each of the root loci of the mistuned system approach the root

loci of the tuned system for sufficiently large values of reduced

velocity, _t • The relationship between reduced frequency, k, and

reduced velocity is,

All roots on the plot with a value of _ greater than about I are within

the range of'the original approximation to the unsteady airloads, k = O

to k = I. Note the effect on the flutter speed. For the case of one

blade mistuned 5%, the flutter reduced speed increased 19%. The flutter !

I
reduced frequency decreased by 18%. The magnitude of this effect

decreases with an increasing number of blades. The one mistuned blade

becomes a smaller part of the system and localized behavior is observed. _
1

To show that this is the case, a similar five-bladed cascade gained 33% in ii

flutter reduced speed, and lost 26% in flutter reduced frequency over the I

tuned case. For a realistic number of blades, one can expect that the

flutter speed will not be increased greatly.

The eigenvalues associated with the alternately mistuned system are
0

shown in figure 10. The eigenvalues are plotted in the complex plane, for

increasing values of reduced velocity, _ . Again, for high values of

reduced velocity the individual mistuned root loci approach the tuned root

locl. A measure of the effectiveness of this type of mistuning is the 61%

increase in flu_ter reduced velocity corresponding to a 40% decrease in

the flutter reduced frequency.

----" ,,, ,,,............. ---.--'-:...................... "y.'_-;,_;,"_IE _.-',____.._...... -... _ _ _ _" ........ ; .. _--_._--_:-__-'_",'_'_,_
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!

The effect on the eigenvalues of mistuning one blade at a given
I I

reduced speed is shown in figure 11. At this value of reduced speed two

of the tuned eigenvalues are in the unstable right half-plane. Mistuning

just one blade shifts all of the eigenvalues. There is now one high

frequency eigenvalue, and the remaining eigenvalues have shifted towards

each other. This shifting together _s beneficial in that the unstable

: eigenvalues have been made more stable. The shifting has also resulted in
i,e

_: less damping for the most stable eigenvalues, a problem which can have a

I.i

adverse effect on the forced response of the system, as will be seen inl..!

i;i the next chapter. See reference [8].

"Alternate" mistuning has a much greater effect on the eigenvalues

(See figure 11). Now there is a high frequency group and a low frequency

group of eigenvalues. All the eigenvalues of the mistuned system are in

the stable left half-plane. Again, the least stable eigenvalues are made

more stable, but the most stable eigenvalues are made less stable. The _effect that the level of alternate mistuning has on the flutter reduced

speed is shown in figure 12. Starting with a tuned rotor (alternate .,

mistuning of 0%), the level of mistuning was increased gradually to 10%.

There is a significant effect on flutter speed, as was shown in [8]. The

example is a nine-bladed rotor, with a stagger angle of 45 degrees,

gap-to-chord ratio of 1.0, no structural damping, and with the elastic i

axis of the blades at the midchord.

i

t
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3.4 Flutter Vibration Modes
.I

The information in the preceding sections was obtained entirely from
I

the eigenvalues of tuned and mistuned cascades. To study the flutter
s

vibration modes of the blades, it is necessary to examine the eigenvectors

associated with the eigenvalue of the form _= _ i_. Solutions at the

_.. flutter point are of the form
d

• e_z ( b) '

where _ is the complex eigenvector denoting the motion of the modal i,
_°

coordinates at the flutter point. To examine the motion of the blades use

(2-39) to obtain,

•
I

where _ is the eigenvector of complex amplitudes of the blades. Motion

of the type (3-37) can also be represented in terms of amplitude and phase

as follows,

where the amplitude MI and phase ¢ of each blade are given by

m
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To examine the actual motion of each blade, take the real part of (3-58)

to obtain,

If adjacent blades have a different phase, then the blade with a larger _

value of phase is the blade that leads the motion. Figure 13 shows the

amplitude and phase of each blade, fcr a tuned cascade, and the amplitude _ i_

i and phase for the two types of mistuning discussed in this chapter. For

the tuned cascade all the blades have the same amplitude and the same "

interblade phase angle. Plotted as straight lines are the phases each

r
_- blade would have with respect to blade zero for flutter in pure _r = &O

degrees and _r = 80 degrees interblade phase angle traveling wave modes.

The actual tuned cascade fluttered in a pure _T = 40 degrees forward

traveling wave mode, in the same direction as the rotation of the rotor.

To an observer on the disk, the traveling wave speed is _o/r, where

is the frequency of vibration. To an observer away from the disk, the

J

D !",,'.......... 2-_ '_-; '_;_"-_, ._ _. _ -.._, _ ,..... _2_ _ -- --
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wave would appear to be traveling with a speed (24+ _/r), greater than the
J

speed of rotation, _.

It can be seen in figure 13 that mistuning one blade creates a "dead

spot" in the area of the mistuned blade. The mistuned blade and the

blades immediately after it (those numbered higher) do not participate in

the flutter mode as much as those farther along. The blade immediately

before the mistuned blade vibrates with the greatest amplitude. It is

interesting to note that the dominant interblade phase angle of the

flutter motion is now 80 degrees, whereas the flutter interblade phase

angle of the tuned cascade was 40 degrees. This can be seen in figure 9

where it appears that the root locus associated primarily with the _r = 80

degrees interblade phase angle mode is the first to go unstable. A

similar case was examined in which the one mistuned blade had a 5% lower i
!

frequency than the remaining blades. There was no significant change in

flutter speed between the two mistuned systems, and the mistuned blade i

created a dead spot just as the mistuning with one high frequency blade i_

had.

In the alternately mistuned cascade, the high frequency blades

vibrate with _he greatest amplitude. Pairs of blades vibrate in phase,

with the low frequency blades lagging slightly behind the high frequency -

blades. The dominant interblade phase angle is the same as for the tuned

cascade, namely, 40 degrees. The results are similar to those of

reference [8]. _i!

The a_plitudes of the complex modal eigenvectors give _:. indication _
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of the amounts of each standing wave mode present in the flutter

vibration. Table 8 shows the amounts of each mode present in the flutter

mode for the tuned and two mistuned cases studied. Again, the tuned and

alternately mistuned flutter modes vibrate predominantly with an

[, interblade phase angle of 40 degrees (one nodal diameter traveling wave),
_ .

_ while the interblade phase angle for the mistuning of a single blade is

predominantly 80 degrees (two nodal diameter traveling wave).

r,

_ .
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i 4. Application to Forced Response

F:

4.1 Engine Order Excitation

i
_z

!' Consider the case of a typical section of a single blade of the

: obstructed rotor shown in figure 14. Due to the obstruction, the blade is

:_, subjected to a sinusoidal variation in velocity of n = 2 cycles per :

revolution, where u is sometimes refered to as the engine order of the :

_i excitation. The velocity at which the blade approaches the sinusoidal
g

_ gusts is .D_R, where R is the radius from the center of the rotor to the

section of the blade under consideration, and _I'L is the speed of rotation

of the rotor, in radians/sec. For a stagger angle _ = 45 degrees,

uq.R= U_;, I. See figure I.

In order to assume quasi-steady conditions, the cyclic velocity

variations must be slow enough to allow the moment acting On the blade to

reach most of its steady-state value. If, instead of a sinusoidal

variation in velocity there is a step change in velocity causing a step

, change in angle of attack, the moment acting on the blade about the

midchord can be written

w

p

i where _(s) is the K_ssner gust function, and s=Ut/b is the distance the

blade travels in semichords. See [I0], for example. The K_ssne_ function

i

o

.................................z......:.._....__,. _ "._.,_____L._'__:' _.L__ .__-T_.... _ .........._=_ _i_L'_-_.....L.LE_
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moment acting on the airfoil to reach most of its steady-state value. If

)i this unsteady effect is ignored, the error in the moment produced by a

;t step change in velocity (angle of attack) will be negligible at the end of

iI 20 semichords of travel.

: Now, if the sinusoidal gusts are broken up into step changes in

!I velocity, and the airfoil is allowed to travel 20 semichords after each

_i step change, the quasi-steady moment and the unsteady moment will be

approximately equal. Ignoring the time lag between the moment and the

_! velocity will not introduce significant errors. See figure 15. For

nearly siuusoidal velocity variations, the error between the unsteady and

quasi-steady moments will be less than that for the step changes

considered above. For accuracy, any blade should travel 20 semichords for

each half-cycle of velocity variation,

"'" _k
.9-R x - z o b ( &•"0�4�'

r[

R .._ Zo n

b --

.1

.!
!

For the quasi-steady assumption to be valid, the ratio of the radius of

I the rotor to the semichord of a blade must be greater than a number which

!
is proportional to the engine order of the disturbance. For the typical

i
_.L ._: . _- ..... "u.___.LIT_:_;..-._._._._'-,--_,.._ - ' _:;____---; -- - -.._'_"-- . ,. ..... " _
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section model used here, the reference radius is at the three-quarters

span of the blade. Using data for the NASA Test Rotor 12, R/b is

approximately 11. Using (4-2) the minimum accepteble R/b is 6.4 for a one

engine order excitation, and 12.7 for an n = 2 engine order. The work !-¢

L f
that follows makes use of the quasi-steady assumption, necessarily!,

,.._;" limiting itself, to low engine order excitations, examples of which are '

ili inlet distortion or the presence of struts or supports. Whitehead [2] has

a provision for the unsteady effect of slnusoidal upstream disturbances,but they are not used in this work. To study the effect of higher engine

_! be°rderincluded.disturbances'the corresponding Whitehead coefficients would have to

i To incorporate an engine order forcing into the equations of motion

ii already developed, assume that the nondimensional moment acting on blade

j due to inlet velocity distortion can be expressed as, i

See [1]. Here, n represents the engine order and O_ represents the

position of blade J with respect to axes fixed in space, .s shown in

figure 14. The position of blade j with respect to fixed axes can be

represented in terms of the rotation rate and an angle that gives the

position of the blades in the rotating frame as follows, i

- oj (4- �;
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where e_ = j217/N, is the position of blade j with respect to an axis

system fixed to the disk. Substituting (4-4) into (4-3), making the

trigonometric expansion, and cearranging yields the force on blade j due

to engine order n,

Writing the force on each blade in matrix form yields

where i

2-_r0 s;_ nT : c_sn N

"'_ cosn-_ I _,__ "-_
q11

e •
11 0,

/

1

1
E,iaation (4-6) can be further reduced by making use Of the fact thatt
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!,

Now the forcing on the blades due to an engine order disturbance can be

written in matrix form as,

= T e

Substituting (4-9) into (3-27) gives an equation of motion for sinusoidal !

forcing as follows, i

where _.hematrices M, C, K, 0, _I, , and Y have been defined in
.V O0 *B 6)

(_-29) and (2-42), Since the probl,m is linear, solutions for different

' i

L '
........................ ......_.,2.......=_,, _.-.____£__=I.@.-.--_...-...-.,_..... .... ,_..----.
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engine orders can be superposed. I. is only necessary _ uolve for a

single engine order response at a time. Later, constructing the response

to any engine order forcing pattern is a matter of superposing the

responses to the different engine orders.

Next, examine the form of the matrix product r].. For engine

i orders n up to the maximum structural mode (here, (N-1)/2), the

:;. trigonometric relations (3-30) can be used to obtain

- . _ 0 _"

UNTITLED-068



ORIGINALPAG'E
69

OF POORQUALITY

where _ is the Kronecker delta, and n is the engine order chosen,.
r_

So, in a tuned rotor, forcing in engine order n will excite only the

n = r structural modes for harmonics r less than N/2. In a mistuned

4, rotor, the cross-coupling of the structural modes generally leads to an
L_

_i excitation of all structural modes, even though a single engine order isi,

_i being forced. In reality, engine orders higher than the number of
i;
_! structural modes used often are of interest. In these cases the relations

i (3-30) can no longer be applied. Use instead _he following to determine ;
TTT,

!

r

i! See [12]. Now it can be seen that the r = 0 structural mode is excited

not only by the n = 0 engine order but also the n = N, 2N, 5N, etc.
_ engine o_ders. Whenever the sum or difference of the engine order =_d the

!L u, .............................. , --_ ,_ . 4k=._ ,%,_,_.=,., ._.. . _,_ .- ....... "_,

. ".... - . ._._,..,_,_..=_iuumr_ _als_mamimaaam=_ ........... L .-
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i structural mode number equals a multiple of the number of blades, there

_" will be an excitation of that structural mode by that engine order. As an

example, the engine orders and the structural modes of vibration they will
!:

[ excite in a tuned rotor are listed in Table 9.

To find the response of the blades to engine order excitations, start

with the mistuned cascade equations of motion (3-32), where the

disturbance momentfor the engine order chosen has been defined above,

! = = I
m

?

The steady-state solution to forcing that has a time variation of the form

e _. can be expressed as,

_ Substituting into (3-32) and solving for _ yields,

e-,

P

•v ¢," Vt ,i

0 :

rt
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obtained by extracting the modal eigenvector _ from ._, and using (3-26)
w

to obtain,

For a tuned rotor, A, B, F, and fare as in (3-19), where m_" is

given by (4-5). A computer program was written to set up and solve the

_' forced response problem associated with tuned and mistuned cascades. See
r!

Appendix C. Shown in figure 16 is the frequency response of the blades of

a tuned rotor to an n = I engine order excitation. It is typical of the

response of a single degree of freedom system.

A comparison can be made of the damping obtained by solving the

flutter problem in transient form with the damping ratio obtained from the

half-power points of the response curve. The relationships required are i

where a/_ is the real part of the eigenvalue associated with interblade

, phase angle mode being forced. In this case the backward traveling wave :'

is being forced. _ne damping ratio using the flutter data is _A = 0.0079

! for the backward traveling wave mode. See figure 7. From the half-power

i points of the response curve, the damping ratio _ = 0.0086. Remember

_i that there is no structural damping, so these numbers represent levels of

} aerodynamic damping.

B.
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• _lso plotted in figure 16 are the responses of the rotor mistuned by

letting blade zero have a 5% higher frequency than the remaining blades.

Now the n = 1 engine order excitation forces all the interblade phase

angle modes, resulting in different levels of response for each blade.

For clarity only the responses of the mistuned blade and the blades

adjacent to it are shown in the amplitude plot. The forced response of

adjacent blades is similar to the response of a two degree of freedom

,_ system. See, for example, [13]. The 40 degree interblade phase angle

- representing the backward traveling wave of the forcing function is
t.

, apparent in the phase p%,_t, kt resonances the mistuned blade, blade O, is
?

: vibrating in phase with the adjacent blade, blade 8. Instead of lagging

the motion of blade 8 as in the tuned case, the motion of blade 0
%
A

leads the motion of blade 8, for frequencies between their respective !

resonance frequencies. Far away from resonances the tuned and mistuned 1

systems show essentially the same response.

The forced r_sponse of the mistunsd system is worse than the response

of the tuned system. To explain this, examine the shifting of the ..

eigenvalues of the two systems, shown in figure 17. The damping ratio I I

associated with the mode being forced decreases when the rotor is

i ,,istuned, hence the worsening of the forced response for this particular
case. Although the structural mode being forced is not a pure _ = 40

degrees mode (because of mistuning), that mode will still have the largest

response, as will be shown for the case of the alternately mistuned

_I cascade. For forcing frequencies away from resonance, the phase between

i adjacent blades is -40 degrees, showing that the forcing is of the form of

I

U I_/I/L,-- t.,I ur_



a backward traveling wave, which is to be expected.

The frequency response for the "alternately" mistuned rotor is shown

in figures 18 and 19. Again, the mistuned response is worse for the

mistuned cascade than for the tuned cascade. The eigenvalue of the

! mistuned system associated most closely with the type of forcing has been

li shifted to the right due to mistuning, resulting in lower levels of
damping for that mode. (See figure 17.) Note that at resonances, pairs of

high and low frequency blades vibrate in phase, while between resonances,

the high frequency blade leads the low frequency blade in the motion. Far

below resonance, the motion of all blades is in phase with the engine

i order forcing.

The modal response of the tuned and mistuned systems is shown in

i
figures 20-22. Only the amplitudes are shown. To reconstruct the blade

L amplitudes from the modal amplitudes, information about the relative

phasing of the blades is required. For the tuned system, the only modal

response is in the mode that is being forced, as was stated earlier. For

the mistuned cascade, all modes are excited, the largest response still

being in the mode being forced. Note that the mode associated with the

engine order forcing has a smaller mistuned response.

i_ The flutter and forced response of cascades can be examined using

either traveling wave analysis or standing wave analysis. However, the
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! important problem of the transient response of cascades can not be
_'.

[ .., examined using traveling wave analysis. One way to examine the transient

behavior of cascades is by expressing the motion of the blades and
f

[ corresponding airloads in terms of standing wave modes.

By casting the cascade airloads into a general form, (2-40) and
i,

_ (2-42), the transient response of the cascade can be calculated. The

response of a tuned cascade to an impulsive motion of blade zero is shown

it,

_ in figure 23. These results were obtained by a computer program developed

by the Joint Computer Facility, at M.I.T. The program DYSYS (Dynamic

i System Simulation) uses a fourth order Runge-Kutta integration in time.

_ Blade zero underwent an impulsive motion and the subsequent "ringing down"

_- of the rotor was observed. Only the envelope of the responses is shown in

t

, the lower half of figure 23. Remember that the only coupling between the

blades is through the aerodynamics.

With this standing wave analysis, the response of a cascade to .'

i
impacts can be examined. Current transient dynamic analyses do not allow

for aerodynamic loads to influence the motion of the blades. The

technique described in this work could be applied to study the effect of

<F aerodynamic loads on the transient response of rotors.
e- :

i,,: ,

L_

• ,._--- ,,6 - _ .-a_,D.,.._,,"s-, _ .';_..... _,-_.
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5. Miscellaneous Applications

I._i 1

11

5.1 Flexible Disk Ro_:ors

The present analysis dealt with a rotor whose blades were mounted

on a rigid disk. In ma_y rotors, the blades would be mounted on a flex-

v ible disk so that structural coupling between the blades would be present.

To analyze these flexible disk rotors, one generally obtains the vibration

modes of the coupled blade--disk system by a Rayleigh-Ritz or a finite
I

element method, and then one expresses the torsion angle _ at, s_y, the

• 80% blade span section in terms of a superpositlon of k normal coordinates :

(t) as, _

i In the above, _ is an N _ k _trix relating the torsion angle _ at each_ _ i
of the N blades for each of the k vibration modes assumed in the analysis.

_. For tuned rotors, the vibration modes generally occur in pairs for each

nodal diameter r, corresponding to the CoS i_r and $I_ _ _modes, used i

earlier for the rigid disk, (2-22), (2-35). The standing wave analysis ::

i then expresses the rotor equations of motion in the uncoupled normal form

I as,

where the generalized forces _ -- _T _Y_ • TO express

the aerodynamic moment _ of (2-40) and (2-41) and the subsequent general-

ized forces F-I in terms of the normal coordinates , one notes

from (2-39) and (5-1) that,

,t

C

" I
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' I " Multiplying this by the Inverse of P as given by (3-31) gives,

which can be substituted into _ and then into _ to obtain the general-l%o

ized force,

where,

Eo= ~ g _° .. (r-7)

while _B, _B, _. _, Z. y are as defined (2-42). F.quations(5-5) ; ::_'"1

and (5-6) can be readily incorporated into the flutter and forced I

vibration of tuned and mistuned flexible bladed-dlsk rotors (5-1) "

and (5-2).
_,

r

r"
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5.2 Aerodynamic Influence Coefficients

For interest, it is sometimes useful to express the transient

cascade aerodynamic influence coefficients, that is, how the motion of

blade j influences the forces on another blade i in the cascade. This

._ is _eadily done by inverting (2-39) to give _

t then placing the above into the aerodynamic forces m of (2-40) and (2-41)

"_ to glve,

> -C~ ~,_ ~ _~ (2--'°#

Ji' J2 are defined in (5-7), but without iwhere the matrices E2 , 11, E0, _
T

the_or_matrlces present. Allowing o:,lymotion of the jth blade 0(jand
r

ii setting all other blade motions equal to zero, gives the forces on the

t_blad e
L as, _ '

k£ + Soy~ = _g&j_, (.s-,,)-- ~ Cs-,_-)
where Y still represents a column matrix, while _ now represents the

,_ .+_

row of the previous square matrix _j_and _&the _ column of the pre-

vious square matrix _. The above cascade aerodynamic influence coefficients

are valid provided the number of blades _ is large enough for cascade

influences to die out.
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The influence coefficients representation given by (5-11) and

" (5-12) can be written in more familiar form by solving for the aug-

mented state variables Yfrom (5-12) and placing into (5-1].)to obtain,

# b

I;

k.--o
r"

The convolution integrals above represent a form of aerodynamic "lag"

effect, as discussed previously, see Equation (2-17).

Cascade aerodynamic influence coefficients were determined numeri-

cally for the N = _ j S/C. ----"_ j _ --"--_-Se_
t _ case

considered previously in most of the torsional flutter and forced response

calculations. Table I0 gives values of the basic P matrix defined in

(2-39) and (2-42) for a nine bladed rotor, N = 9. Table ii shows the

transient Whitehead coefficients used for all the torsional flutter analyses
J,

here, that is, type D, N = 9_ S/C = i, _ = 450, and _= .5 cases.

These values were interpolated from the general Tablt 2vfor pitching about

the mldchord (__-,_) and N =9. Finally, Table 12 gives the aerodynamic

influence coefficients for the moment on blade i due to the motion of

blade j = 0. For this case, (5-13) can be expressed as,

•Z(H.),°IY a,,}
-., " (s--,,)

Because of the cyclic symmetry of the El. matrices, it can easily be shown

that the _I due to (_o is the same as _Ldue to O(I _ _$due to _. ) t1_o i
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due to _$, etc. Hence, the coefficients given in Table 12 can be

used to assess the forces on any blade due to the motion of any other

blade. For comparison, the isolated blade (Theodorsen) forces are also

'_ given in Table 12. These, of course, can only express the forces on

a blade due to the motion of the same blade.
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6. Conclusions

!

The present report has given a unified standing wave approach to
F

the flutter and forced response of turbine engine rotors. Both tuned
E

,_ and mistuned rotors can be readily accomodated

[ The traditional traveling wave cascade airforces have been recast

I: into standing wave, arbitrary motion form, by making use of Pad_ approx-

imants. Some standing wave coefficients are given for Whitehead's 2-

;• dimensional incompressible cascade theory.T

Flutter analyses were conducted using standard constant coefficient,

linear systems techniques. The analyses give true damping decay rates

i " rather than damping margins. Typical examples for tuned and mistuned

rotors are given.
q

The forced response of the rotor to periodic engine order excitation '

of all the blades, and to the transient impulsive excitation of a single

blade is obtained using the same aerodynamic damping as for the flutter

cases. Typical examples for tuned and mistuned rotors are given.

Extensions of the procedure here is indicated for the case of

_ flexible disk rotors, where structural as well as aerodynamlc couplingexists between the blades. Also, the aerodynamic influence coefficients

r
for the effect of one blade's motion on the forces produced at another

_" blade is given.

The standing wave analysis methods given here can be extended to

other flow regimes [3], [4], [5], by similar fitting of the sinusoidal
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['_*_ methods"_ may prove to be more versatile for dealing w_th certain appli _ '

traveling wave coefficients. Also, they can be extended b .

_ cations, such as coupling flutter with forced response and dynamic

i shaft problems, transient impulses on the rotor, low engine order ex-

citation, bearing motions, and mlstunlng effects in rotors.

..

&

¢.
_ 6

'i
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Appendix A. Fitting Aerodynamic Coefficients

The first step in the fitting process is to express the traveling

wave aerodynamic forces in the form

where the nondimensional complex coefficients AA, k_, Ac, k_, are

functions of reduced frequency k, interblade phase angle _r' and other

geometric and flight parameters. The relations between these coefficients

and the tabulated data of Whitehead are given by (2-27). Traveling waves

with interblade phase angles _r between 0 degrees and 180 degrees are

refered to as forward traveling waves (in the direction of rotation), and _i

those with interblade phase angles _c between 180 degrees and 360 degrees

are referred to as backward traveling waves. Backward traveling waves

have an interblade phase angle of -_r or (360 -?t). In this way the

coefficients defined by (2-10) can be generated. A_ refers to the real

part of a traveling wave aerodynamic force or moment which has the form

., + ,:.(_.l:+7/_,.')
4:- tA' )

refers to the real part of a traveling wave aerodynamic force or
-i

moment which has the form

_ w '_.1 i Jtill -- Z " II II - _C '1 I II I
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Once A_, _, _, and A£, are formed, (2-19)can be used to solve for

the standing wave coefficients B_, B,, B_, etc. Since Whitehead has

tabulated values of the traveling wave coefficients only for k = O,

k = .I, k = .25, k = .5, and k = I, the coefficients A , AI' A_, and

_ _X' were fit at k = O, k = .I, and k = I and the values at k = .25 and

i k = .5 were used to gauge the fit. This is a very simple way of

_ determining the standing wave coefficients, and as it turns out, gives

_' very good results. So, there are 12 equations: A_(k = O, .I, I),

• _(k = O, .I, I), _(k = O, .I, I), _(k = O, .I, I), and 10 unknowns,

BZ, Bt, BO, G,, _o' ' Bi' BO' Gl, and _c " In order to avoid

using two augmented equations (2-16) for each mode, and requiring two

coefficients _ , _ ; _ was set to some intermediate value, and the

coefficient _ was set to zero. Some trial-and-error was involved in

picking zhe final value of _ • There was a minor effect on the accuracy

of the fits due to the elimination of an augmented state. The first two _

equations of (2-19) are solved for B_, B, , B_, Gl, and _, at k = O, _i

k = .I, and k = I, Since the second equation of (2-19) is automatically

satisfied for k = O, there are 5 equations in 5 unknowns:

UNTITLED-085



i,

86

• ORIGINAI PAG'_

OF POORQUALITY

Subtracting (AT) from (A6) gives

! _ _ I

,:+,) a
r Subtracting (A9) from (A8) gives
./

! _ I _
_.(,_: (|�4�_:-_.,)

i Setting (AIO) equal to (A11) and solving for _ gives
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1oo_,_(.t)- 79_,_(,) - _(.0
|

Adding (A6) and (A7) and solving for B yields

i

I5_=- Ioo_R(.i) - _o,_(o). N,_(,_ '
"i

(, ,)?.%+I

Adding (A8) and (A9) and solving for BI yields

The standing wave coefficients BO, _0, G,,. Bz, BI, can be obtained ! iI from equetions (AS), (A12), (A11), (A13), and (A14) respectively. To find

the coefficients B=, B , , G, replace by and A_ by _

in the above equations. The coefficients for Whitehead [2] aerodynamics

are shown in Tables I and 2 for stagger angle _= 0 degrees and _ = 45

degrees, respectively.
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Appendix B. Flutter Points of a Tuned Cascade

Starting with the equation of motion of any blade in a tuned cascade

where the moment _. can be written in terms of the Whitehead traveling

wave coeffieuts as,

hl.

Here the coefficient _ is in general a function of reduced frequency,

I;_ interblade phase angle, gap-to-chord ratio, stagger angle, and elastic

I axis location. See if there is a traveling wave flutter solution of theform

e :i

Substituting (BI) and (B2) into (3-I) yields

.+! Dividing by _ and casting the equation into nondimensional form

yields,

t

! i,>

' _

Jlllh .... "'= - .........
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Where _. "u. and "_ are defined by (3-6) and _'=_/t_c.. For (S2) to be

,... _ [
rt

3 - The real eq,_ation shows the difference between the undamped natural
r

! frequency ratio _ =_0 /_J, and the frequency ratio of vibration

_ =_O/_Do. Since the inertia ratio 0 is large for rotor blades in

general, the flutter frequency is generally close to the undamped natural ,_

frequency, _ _ • The imaginary part of equation (B6), upon } ,
rearranging, gives the condition for instability as,

< o Cs7)
;,.-"

where

%

1 is the aerodynamic damping. Since :_"_,
l

• --,_ .,,_ _ ,_lm,__' ':11_" _ _- _ "_'" • " _ - _ _ _-_:'-'--:"._'_..LtZ L',."_& _,

-- i, , ..... , .............. i i k i_I i irii_i_i_O_l _

UI'_I/IILI-L; UO_



ORIGINALPAGE 1t 90 i,

, OF POOR QUALITY.

Setting the structural damping _ = 0 , yields the new condition for

instability,

•

,

See reference [I]. The values of CM_ are tabulated by Whitehead for

k = O, .I, .25, .5, and I. The approximation to the traveling _ave C_

. can be reconstructed from the standing wave coefficients as follows. For

traveling wave interblade phsJe angles pr = 0 degrees to _r = 180 degrees

! ..i]

For interblade phase angles _= 180 degrees to _r = 360 degrees il
,!

A comparison of exact Whitehead values of "_A with reconstructed values

of _ is shown in Table 9, for an inertia ratio _ = 86.2. The

example is a nine-bladed roto_ with a 45 degree stagger an_le, pitching

about midchord. Only the 3 least stable interblade phase angle modes are

shown. Since Whitehead tabulated valups of coefficients at interblade "

e4b _
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phase angles which are multiples of 36 degrees, the Whitehead and the

standing wave coefficients were liaearly interpolated to find values of

the coefficients at 40, 80 and 120 degrees.

These results can be compared with the eigenvalues obtained from the

transient formulation. Since the tuned cascade flutter problem results in

uncoupled equations, it is easy to look at the flutter of an individual

mode. The uncoupled problem is third order, resulting in eigenvalues of

" the form _ =_,_L_ and _/_ Since a is always negative and large

_ compared to a,, any response associated with a_ will be short-lived.

i! The steady-state problem can be considered second order and the complex
conjugate eigenvalues _/_t_ can be represented as

+_

I

See [13], for example. For the tuned cascade, this means that the real

part of the eigenvalue is equal to the amount of aerodynamic damping

present,

f _ :

y.

Remember that there is no structural damping, and that for _he tuned case

i _o t_( "NOw the actual aerodynamic damping obtained from the transient
!

i decay can be compared with the structural damping required for flutter.

i' Th_ only point whore there must be agreement is the flutter point. At the

_'i f_utte_ _-_int, zero structural damping is required, and the real part of
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the eigenvalue is zero. Figure 8 shows the variation of the aerodynamic

damping computed by both methods.

,'/

__ L. •ii_i_..
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Appendix C. Standing Waves to Traveling Waves

The standing wave deflections and correspondingair forces

are given by (2-22), (2-23), (2-24) and (2-25) as,

'1

To reduce to traveling wave representation, one assumes harmonic

motion of the form,
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90° out of phase wlth one another. Placlng the above into (c-l) gives,

= O_r_ t

= _ e (c-_)

This gives the traveling wave deflection indicated by (2-1).

Placing (c-5) into the augmented state equations (c-3)

and (c-4)jand assuming harmonic motion for Yet and y_p gives,

-- _ _(tk _o) z
_ _,, .,_ (c-7)

(tk+1.)Y,,e= i k _._,e,

Placing (c-5) and the Ycp and ySp from (c-7) into the moment

equation (c-2) gives, _,_



Csmparing the above expression with the coefficients AR _A,, _R j_ X

defined by (2-19), one can rewrite (c-8) as,

C -9)
;' %_t

- = )

Then, noting the definitions of A_ , AI } _R, _K in

(2-I0), the above reduces to, ii

which is the same aerodynamic force indicated by (2-2).

Similarly, if one assumes harmonic motion of the form,
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and goes through the same reduction, one will obtain

.(,t-_e.,) (c-,_)
0_._= _r e..

!.

": : u'_" " e'°'__t''_

.

' I

A
?

_L ......... __,.__.* -,-- _--' " " ' "

..-......,.............. ............ UNTITLED-OgE



FigureI. Rotor Geometry
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Figure 5a. Approximate _ttehead Yorce Ooefftctents ii__yp.X.,,.Ii. _ _,greee,,/o. _, _. o
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Figure 5h. Approximate Whitehead _orce Coefficients
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Figure 8_ Comparison of _he Damping Required for

._ _lutter _£th the Transien_ Decay Ra_e
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Yigure 12. Effeot of Alternate Mistuning on Flutter

Reduoed Speed _,
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: Figure 16. Frequency Response of Tuned Cascade and
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i'

i ,8,. B, Bo G, S. §, g,

0° A -0.366 -0.305 0.000 0.000 0.000 0.000 0.000 0.000 0.000
B 0.366 0.860 0.305 0.000 0.000 0.000 0.000 0.000 0.000
0 " 0.366 0.110 0.000 0.000 0.000 0.000 0.000 0.000 0.000
D -0.432 -0.788 -0.110 0.000 0.000 0.000 0.000 0.000 0.000

36O A -0.435 -0.410 0.000 -0.055 0.140 0.000 0.000 0.000 0.000
B 0.435 I.O68 0.800 -0.303 O.140 O.OOO 0.000 O.OO0 0.OOO

_ C 0.435 O.184 0.OOO 0.025 O.140 O.OO0 O.0OO O.000 O.O00
D -O.498 -O.964 -O.360 O.138 O.140 0.0OO O.0OO O.000 0.O00

i_ 72O A -0,496 -O.510 0.OOO -O.116 0.235 O.000 0.O00 O.000 O.O00k
i! B 0.496 1.258 1.OO5 -O.319 0.235 O.OO0 O.0OO O.000 0.O00

C O.496 O.256 O.OO0 O.O59 O.235 0,OOO O.0OO O.000 0.O00
_ D -0.560 -1.128 -0.506 0.162 0.235 0.000 0.000 0.000 0.000

108O A -0.545 -0.590 0.000 -0.175 0.300 0.000 0.000 0.000 0.000

B 0.545 1.410 1.173 -0.327 0.300 O.OOO O.OO0 O.000 O.OOO
C 0.545 O.316 0.OO0 0.094 0.300 O.O00 0.OOO O.000 0.OO0
D -0.610 -1.262 -0.628 0.174 0.300 0.000 0.000 0.000 0.000

@

144 A -0.575 -O.643 0.OO0 -O.214 0.335 O.OOO O.0OO O.000 0.OO0
B O.575 I.506 1.283 -0.328 0.335 O.OOO O.OOO O.0OO O.O00
C 0.575 0.354 0.0OO 0.118 0.335 O.OOO 0.OO0 O.OO0 0.OO0
D -0.638 -1.348 -0.706 O.182 0.335 0.000 0.0001 0.000 0.000 !

"
180 A -O.586 -O.661 0.OOO -O.231 0.350 O.OOO O.0OO O.000 0.O00

8 O.586 1.540 1.321 -0.329 O.350 O.0OO O.000 0.000 0.O00 _

C O.5B6 O.366 0.OOO 0.129 O.350 O.OOO 0.0OO O.0OO O.O00D -0.648 -1.378 -0.734 0.186 0.350 0.000 0.000 0.000 0.000
I

r_
,w

i.i
J

i Tabl_ 1. Transient Whitehead Coefficients
p
I 6
p

_-_...... _- 0 de_z'ees,slc- I, rt-0 ......... ii
c ,, ...................... _ _ .... _ _ ,.._."_.i._'r'_ '_-_ "_:: _ .......... _, = ::u_:
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Type B, B. Q,

0 k -0.455 -0.427 O.000 0.O00 0.OOO 0.000 O.000 0.000 0.000
B 0.455 1.119 O.427 O.000 0.000 O.O00 O.OO0 0.000 0.000
C 0.455 0.182 0.O00 0.OO0 O.O00 0.000 0.000 0.000 O.000
D -0.524 -1.O08 -0.184 0.000 0.O00 0.0OO! 0.000 0.000 0.000

36 A -0.471 -0.445 0.0OO -0.038 0.175 0.000 -O.O10 0.000 0.067
B 0.471 1.159 0.660 -O.156 0.175 0.000 -O.013 -0.370 0.275
C 0.471 0.202 O.000 O.O21 0.175 0.000 0.034 0.O00 -0.034
D -0.534 -1.O44 -0.322 0.090 0.175 O.OO0 -O.O26 0.128 -0.116

O

72 A -0.493 -0.493 0.000 -0.110 0.295 0.000 -0.014 0.000 0.095
B 0.493 1.236 0.867 -0.216 0.295 0.0OO .-0.O18 -0.308 0.176
C 0.493 0.242 0.000 0.062 0.295 0.000 0.048 0.000 -0.048
D -0.556 -1.112 -O.452i 0.118 0.295 0.0OO -O.O34 0.088 -0.068

@

108 A !-0.517 -0.541 0.000 -O.188 0.375 0.000 -0.014 0.000 0.089
B 0.517 1.314 1.041 -0.234 0.375 0.0OO -0.O15-0.222 O.095
C 0.517 0.282 0.000 0.105 0.375 0.0OO 0.045 0.O00 -0.045
D -0.580 -1.180 -0.562 0.128 0.375 0.000 -0.O30 0.054 -0.036

O

144 k -0.536 -0.571 0.000 -0.247 0.420 0.000 -0.007 0.000 0.052
B 0.536 1.368 1.158 -0.234 0.420 0.000 -0.008 -0.116 0.040
C 0.536 0.312 O.000 0.136 0.420 0.000 0.025 0.000-0.025

D -0.596 -I.230-0.636 0.128 0.420 0.000 -O.018 0.026 -0.014m

180" k -0.542 -0.582 0.000 -0.268 0.435 0.000 0.000 0.000 O.000

B 0.542 1.387 1.198 -0.234 O.435 0.000 0.OO0 0.000 0.000
C 0.542 0.322 0.000 O.148 0.435 O.000 O.000 0.O00 0.000

D -0.602 -1.246 -O.662 0.128 0.435 O.0OO O.000 0.000 O.000 i

Table 2. Transient Whitehead Coefficients

" 45 degrees, s/c " I, _ " 0

i
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k _A- exact _A- approx _A- exact 7 a- appvox

•0 O.O00*iO.O00 O.O00+iO.O00 O.O00+iO.O00 O.OOO+iO.OOC
•I 0-004-i0.030 0.004-i0.031 -0.014-i0.067-0.014-i0.067 i
•25 O.023-i0.076 O.023-I0.076 -0.014-i0.126 -0.015-i0.126

: .5 0.091-i0.152 0.092-i0.1531 0.059-i0.220 0.058-i0.219
, I•0 O.366-i0.301 O.366-i0.305 O.381-iO.417 O.381-iO.418

'_ /3r : 7Z= : 8 °/3. Io ,t

I- k _,- exact _A" approx %- exact _a- approx

•0 O.O00+iO.000 O.O00+iO.000 O.O00+iO.000 O.O00+iO,000
•I -0.013-i0.093 -0.013-i0.093 -0.012-i0.111 -0.012-i0.112

I .25 -0.051-iO.186 -0.031-iO.185 -0.038-iO.233 -0.038-iO.254
•5 0.029-i0.300 0.029-i0.300 0.008-i0.372 0.008-i0.372

I.0 O.385-i0.536 O.386-i0.556 O.385-i0.638 O.384-i0.638

= m �p,= Jso"

k _- exact _- approx _- exact _- approx ,
i

•0 O.O00+iO.000 O.000+iO.000 0•000+iO.000 O.000+iO•000
•I -0.012-i0.125 -0.012-i0.123-0.012-i0.127 -0.012-i0.127
•25 -0.041-iO.264 -0.041-iO.263 -0.042-i0.274 -0.041-iO.275
•5 -0.004-i0.421 !-0.004-i0.420-0.008-i0.438-0.009-i0.439

I.0 O.383-i0.707 O.385-i0.707 O.382-i0.732 O.580-i0.733

J _

Table 3a. Exact Whitehead Coefficieuta versus

Approximate Values, Type AA

- o dqrses,,Is I, _ o !i
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k AS- exact _,- approx _- exact _,- appro_

•0 - - 0•305+i0.000 0.801+i0.000 0.800+i0.000

! .I 0.301+i0.086 0.301+i0.086 0.691-i0.038 0.693-i0.037
25 0.282+10.216 0.282+i0.215 0.540+i0.139 0.542+i0.138

'_ .5 0.213+i0.431 0.214+i0.430 0.409+i0.458 0.410+i0.455
_ I.0 -0 •063+i0. 860 -0.061 +iO.860 O.068+ii •028 O.068+ii. 026

i;;_ /3, •_2" /3,= io8°
i " ' " '"' '

k _$-exact Te- approx _S- exact %- approx

_ •0 1.005+i0.000 1.005+i0.000 I•173+i0.000 1.173+i0.000

•I 0.951+i0.010 0.951+i0.011 1.134+i0.042 1.135+i0.043

,25 0•803+i0.155 0.805+I0.155 1.004+i0•192 1.005+i0.192
i ! 0.619+10.507 0.620+i0.506 0.796+i0.561 0.796+i0.561
_' I[0 0.207+i1•187 0•207+ii.187 0.329+ii.320 0.328+ii.320

: _ /3,= j4+" p_- , = 18,0

! .0 1•238+i0•000 1.283+I0.000 1.321+i0•000 1.321+i0.000 ._

•I 1.250+I0.060 I.250+i0.061 I.290+i0.066 I.290+I0.067
•25 1.129+i0.219 1.130+i0.219 1.172+i0.229 1.173+i0.229
•5 0.912+i0.601 0.913+i0.601 0.952+i0.616 0.954+i0.615

1.0 0.412+ii.408 0.413+ii.407 0.441+ii.438 0.442+11.437

Table 3b. Ezaot Whitehead Coefficients versus l

Approximate Values, Type AB i!

-Odqree,, ,/o- I, _ -o
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' t
' o_poo_qugLn'_ !

....... 1
. i k _¢- exact _©- appro_ X¢- exact X_- approx _ I

i, .... !I
•0 O.O00+iO.O00 O.O00+iO.O00! O.O00+iO.O00 O.O00+iO.O00 ;

•I -0.004+i0.011 -0.004+i0.011 0.004+i0.050 0.004+i0.030
•25 -0.t}-_3+iO-027 -0.023+i0.028 -0.008+i0.056 -0•008+i0.057
•5 -0.092 +iO. 054 -0.092"i0.055 -0.086 +iO. 099 -0.086 +iO. 098

1.0 -0.307+i0.108 -0.366+i0.t!0 -0.413+i0.188 -0.410+i0.187
o

._. ,. 7z _S,= joe,°

_ k %; .xact A-app,ox Xo-exact A-,-app,,ox
,,;. .0 O.O00+iO.O00 O.O00_iO.O00 O.O00+iO.O00 O.O00+iO.O00

•I O.004+i0.047 O.004+i0.047 O.004+i0.060 O.004+i0.060
•25 0.000+i0.095 0.000+i0.093 0.004+i0.125 0.004+i0.125
• 5 -0.076+i0.151 -0.076+ iO. 151 -0.068+ t0.199 -0.067+i0.199

1.0 -0.442+i0.270 i-0.440+t0.269 -0.460+,t0.341 -0.459+i O. 342

p, = a_. e,.= .so"

k _- exact _¢- approx A¢- exact _e" approx
I i i J| . m,i i i | ,

•0 0.000+i0,000 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00
•I 0.004+i0.068 0.004+i0.068 0.004+i0,071 0.004+i0,071

• 25 0.006+i0.145 0.006+i0.145 0.007+10.152 0.007+i0,153
• 5 -0.062"i0. 232 -0.062+i0. 232 -0.061 +t0. 244 -0.060+i0. 244
I•0 -0.469+I0.390 -0.469+i0•390 -0,472+I0.40"f-0.471+iO.406 !

t

- !

Table 3o. Bxaot Whitehead Coefficients versus !

kpproximato Values, Type AC 1

I_ - 0 de6re,,, 8/0 - 1, _- 0
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J

ORIGINALPAGEiSl

OF POOR QUALITY

o o J!
: _, - 0 /5,-- _, _

.0 - - -0.1I0+i0.000 -0.561+iO.O00 -0.560+i0.000

.I -0.I06-i0.079 -0.I06-i0.079 -0.509-i0.031 -0.508-i0.051
•25 -0.083-i0.197 -0.085-i0.197 -0.225-i0.184 -0.224-i0.1 82
•5 -0.002-i0.394 -0.002-i0.594 -0.I09-i0.448 -0.I08-i0.446 !

! 1.0 0.521-i0.787 0.322-i0.788 0.272-i0.946 0.273-i0.945 i
o

: 7z /3,: °
k ],-exact _- approx %)- exact _- approx

•0 -0.506+i0•000 -0.506+10. 000 -0.627+iO.000 -0.628+i0. 000
•I -0.476-i0. 055 -0.476-i0. 054 -0•603-i0. 073 -0.605-i0. 074
•25 -0.585-i0. 202 -0.585-i0. 201 -0.517-i0. 229 -0.519-i0. 230

i -5 -0.254-i0.50_ -0.253-i0. 502 -0. 546-i0. 554 -0.548-i0. 554
: 1.0 0.206-ii•093 0.208-ii•092 0.141-ii•214 0.142-ii.214

t

k _- exact _- approx _- exact _,- approx

.0 -0.707+iO.000 -0.706+i0.000 -0.735+i0.000 -0.754+i0.000

• 1 -0.686-i0•0_5 -0.685-i0.085 -0.714-!0.089 -0.715-i0.089
•25 -0.602-i0. 250 -0.601 -iO.250 -0.651-iO.257 -0.631-iO. 257
•5 -0.422-i0. 590 -0.421 -iO.590 -0.449-i0. 605 -0.447-i0. 602 !

1.0 0.096-ii.295 0.096-ii.295 0.079-iI.520_ 0.080-ii.520 _ ,

i

Table 5d. Exact Whitehead Coefficients versus

Approximate Values, Type A_

= 0 degrees, s/c " 1, _ - 0
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'!. pAGE
" _ OF POOR QUALITY

=o °
Li :

L ' =

", ' k ]_- exact ]_,- approx A.- exact i.- approx

•0 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00

[ .I O.004-i0.043 O.005-i0.043 O.O00+iO. 000 O.O00+iO. 000
i .25 0.028-i0.I07 0.028-i0.I07 O.O00+iO.O00 O.O00+iO.O00

[ -5 0.113-i0.213 0.114-i0.214 O.O00+iO.O00 O.O00+iO.O00
I.0 O.455-i0.423 O.455-i0.427 O.O00+iO. (DO O.O00+iO. 000

• /3. --36° - 36"
" = m

k AA- exact Aa- approx AA- exact A_- approx
_. :

: •0 O.000 +iO.000 O.000+ iO.000 O.000+iO •000 O.000+ iO•000

.I !-0.005-i0.060-0.005-i0.061 0.028-i0.016 0[028-i0.016• .25 0.005-i0.128 0.004-i0.129 0.030-i0.046 029-i0.045
r.

;_ ; -5 0.085-i0.235 0.084-i0.234 0.017-i0.061 0.016-i0.060
1.0 0.433-i0.453 0.434-i0.451 0.002-i0.063 0.001-i0.065

_ : /3r = 7Z ° /_,-=7Z °

_'_ k AA- exact AA- approx _A- exact I_- approx ,

•0 O.O00+iO. 000 O.O00+iO. 000 O.O00+iO. 000 O.O00 ��€�000
•I -0.006=i0. 083 -0•006-i0. 083 O.028-i0.010 O.027-i0.010
•25 i-0.015- iO. 177 -0 • 01 5- iO • 178 O. 045- iO. 040 0.043- iO. 040

•5 O.042-i0. 294 O.042-i0. 295 O.036-i0. 072 O.035-i0. 070
1.0 0.392-i0.522 0.392-i0.523 0.012-i0.086 0.012-i0.087

i Table 4a. Exact Whitehead Coefficients versus

Approximate Values, Type AA

: _ = 45 de_rees, s/c = I, _ - 0

Ir
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i.i om(_,uu-PAQ_.P_,.. OF pOUR QUALITY

#

o

:" k AS- exact _- approx _b- exact A- approx

•0 O.000+ i0.000 O.000+ iO.000 O.O00+iO. O(X) O.O00+iO. 000
•I -0.007-i0.101 -0.007-i0. 101 0.021-i0.006 0.021-i0.006

•25 -0.026-10. 221 -0.026-i0. 222 O.038-i0_027 O.038-i0. 027

•5 0.009-i0.359 0.009-i0.361 0.037-i0.057 0.036-i0.057 :

,; 1.0 0.353-i0.600 0.352-i0.603 0.015-i0.075 0.015-i0.078 _

i. :_, = l++o _ = i++o

k i s- exact I s- approx _- exact _S- approx

' .0 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00
- •I -0.008-i0. II5 -0.008-i0. I13 O.OlI-iO.005 O.Ol I-iO.003

•25 -0.031-i0.251 -0.031-i0.251 0.021-i0.014 0.021-i0.014
; .5 -0.011-i0.406 -0.011-i0.407 0.022-i0.031 0.022-i0.030

;_. 1.0 0.327-i0. 658 0.326-i0. 659 0.010-i0. 043 0.012-10.044

#.= 18o" _ = i_o° '

k A_- exact _- approx AB- exact _B- approx

•0 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00
•I -0,008-i0.117 -0.008-i0.117 O.O00+iO. 000 0.O00+iO. 000

•25 -0.053-i0.261 -0.033-i0.261 O.O00+i0. 000 0.O00+iO. 000
•5 -0.017-i0. 423 I-0.017-i0.424 O.O00+iO.O00 O.O00+iO.O00

I.0 0.518-10.680 0.317-i0.680 O.O00+iO.O00 O.O00+iO.O00

,,- ,|

.i ]
t
,(

Table 4b. Exact Whitehead Coefflcients versus

Approximate Values, Type A8

"4_desrees,s/o-I, _-o
I

w
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ORIGINALPAGEIS
OF POORQUALITY

o

k A,- exact A,- approx %- exact %- approx
i]

•0 - - 0.427+10.000 O.O00+iO.O00 0.000+i0.000
•I 0.423+i0.112 O.422+i0.112 O.O00+iO. 000 O.O00+iO. 000
•25 O.399+i0. 281 O.599 +iO.280 O.O00+iO. 000 O.O00+iO. 000

.5 0.314+i0.561 0.313+i0.560 O.O00+iO.O00 O.O00+iO.O00

I.0 -0.027+ii •119 -0.028+ii.119 O.O00+iO.O00 O.O00+iO.O00 I_

4! !

,._ k A_- exact - approx - exact - approx ,
!4

!_ .0 0.660+i0.000 0.660+i0.000 0.000+i0.370 0.000+10.370

.I 0.613+i0.047 0.617+i0.049 0.112+i0.309 0.117+i0.302
_ .25 0.520+i0.216 0.526+i0.216 0.127+i0.193 0.126+i0.185

Ii -5 0.400+I0.532 0.403+i0.531 0.082+10.127 0.079+i0.125
1.0 0.038+iI.133 0.038+iI.133 0.054+i0.093 0.034+i0. I03

/3,- 72° /_, = _z° :!

!i ':o o._7._o.oooo.8s7 ooo.ooo._o._o_o.ooo._o.3o8
• 1 O. 839 +i0 . 057 O. 840+10.058 O. 047+t0.293 O. 052+i0.290
-25 0.744+i0. 202 0.746+i0. 202 0.078+i0.242 0.082+i0. 234

i .5 0.582+i0.524 0.584+i0.523 0.068+i0.183 0.068+i0.177 :

ii 1.0 0.176+ii.178 0.175+11.177 0.030+i0.135 0.030+i0.146 '

I .

i :

Table 40. Exact Whitehead Coefficients versus !

Approximate Values, Type A_

I _t . 45 degrees, s/c - I, _" 0
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o_ PA_ t_
OF pOOR QUAL[I'Y

• . d

o o

.0 1.041+i0.000 I.041+i0.000 0.000+i0.222 0.000+i0.222

.1" 1.021+i0.073 1.020+i0.073 0.020+i0.217 0.022+i0.216

.25 O.937+i0. 220 O.937+i0. 221 O.038+i0. 196 O.040
•5 0.76q+i0.544 0.762+i0.545 0.038+i0.162 0.038 1; .

1.0 0.319+ii-237 0.319+ii.237 0.017+i0.124 0.016+i0.139 _i_

/3,. = I'_+ /3,- = 14"4"°
'" i

k _- exact _- approx _11- exact %- approx iZ
,,, ,--

•0 1.157+i0.000 1.158+i0.000 0.000+i0.116 0.000+i0.116
•I I•140*i0.084 I.140+i0.084 0.007+i0.114 O.(X)8*iO.114
•25 1.063+i0.239 1.063+i0.239 0.014+i0.107 0.016+i0.106

I.0 O.422+ii •284 O.425+ii •284 O.006+i0.075 O.006+i0. 082

k _Uj- exact _t;- approx _a- exact %- approx

.0 1.198+i0.000 1.198+i0.000 O.O00+iO.O00 O.O00+iO.O00

.1 1.181+i0.088 1.181+i0.088 O.O00+iO.O00 O.O00+iO.O00
•25 1.107 471.106 46O.O00+iO.O00 O.O00+iO.O00
•5 0.931 �X�€�”�0.929+I0.578O.O00+iO.O00 O.O00+iO.O00

I•0 O.460+ii •302 O.459+ii •301 O.O00+iO. 000 O.O00+iO. 000

I
i

Table 4d. Exact Whitehead Ooefficieute versus

Approximate Values, Type AB

T " 45 degrees, elo - I, q- 0

..... ............ UNII/LhL 142- -----'-"
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i OF POOR QUALITY
,_,. 0 ° 0 °

k _¢- exact _¢- approz _¢- exact %- approx :

•0 0.000+i0.000 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00
.1 -_.005+i0.018-0.005+i0.018O.O00+iO.O00O.O00+iO.O00
•25 -0.029+i0.046 -0.028+i0.046 O.O00+iO. 000 O.O00+iO. 000

L
•5 -0.115+i0.092 -0.114+i0.091 O.O00+iO.O00 O.O00+iO.O00

1.0 -0.459+i0-182 -0-455+i0.182 O.O00+iO.O00 O.O00+iO.O00

= [

k - exact _- approx A_- exact AL- approx

•0 O.000+iO.000 O.O00+iO. 000 O.000 _iO.000 O.O00+iO. 000
•I O.O00+iO. 029 O.O00+iO. 029 -0.009+i0. 007 -0.009+i0. 007
•25 -0.016+i0.060 -0.015+i0.060 -0. 006+i0. 020 -0.004+i0.020
•5 -0.I00+i0. I08 -0.099+i0.I08 0.007+i0.028 0.012+i0.027

I .0 -0.451+i0.206 -0.451+i0.206 0.026+i0.036 0.037+i0.029

k _- exact _,- approx Ac- exact At- approx

•0 O.O00+iO. 000 O.O00 ˜��€O.O00+iO. 000 O.O00+iO. 000

•I 0.001+i0.043i 0.001+i0.043 -0.008+i0.004 !-0.010+i0.005
•251-0.005+i0. 091 -0.005+i0.091 -0. 009+i0.017 -0.012+i0.020

5 -0.078+i0.148-0.077+i0.148 0.004+i0.033 0.003+i0.036I[ -0. 437+i0. 259 -0.436+i0. 259 O.033+i0.047 O.035+i0.044

.'3

f
Table 4e. Exact Whitehead Coefficients versus

Approximate Values, Type At

_ • 45 degrees, s/c • I, _ = 0!
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oi_el_Uu-pAOE1t
i oe pocmQU_LI_

I "C b

"

i k _- exact _e- approx A_- exact A,- approx

•0 O.O00+iO. 000 O.O00 ��€O.O00+iO. 000 O.O00+iO. 000
i •I O.002+i0. 054 O.002+i0. 054 -0.005+i0. 002 -0.007+iO.003

o

,251 0,000+i0,119 0,000+i0,119-0,007+i0.011-0,010+i0,014
i .5 -0.062*i0.1 91 -0.062*i0.1 91 -0.002+i0.026 -0.001 ,-iO. 029

• : : i H	\�k _- exact _- approx A_- exact &c- approx

r°

: •0 O.O00+iO. 000 O.O00+iO. 000 O.O00+iO. 000 O.O00+iO. 000
.I 0.002+i0.062 0.002+i0.062 -0,002+i0,001 I-0.003+i0.001

•25 0.002+i0.138 0.002+i0.138 -0.004+i0.006 !-0.005+i0.007e.

•5 -0.054+i0.222 -0,054+i0.223 0.001+i0.014 0.000+i0.015
1.0 -0.419+i0.359 -0.420+i0,361 0.016+i0.023 0.016+i0.021

i ,- 18o • = 15o

k _=- exact _r.- approx Ac- exact A=- approx

: .0 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00 O.O00+iO.O00

,1 0,002+i0,064 0,002+i0,0651 O.O00+iO,O00 O,O00+iO,O00
•25 0.005+i0.144 0.005+i0.144 O.O00+iO.O00 O.O00+iO.O00
•5 -0.051+i0.233-0.051+i0.234 O.O00+iO.O00 O.O00+iO.O00

I.0 -0,416+i0,375 -0.416+i0.376 O.O00+iO.O00 O.O00+iO.O00

t

i
Table 4f. _xact Whitehead Coefficients versus

I Approximate Values, Type At

i, _ • 45 degrees, s/c = I, q • 0
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", i ORIGINAL PAGE I1
_ ;- OF POOR QUALITY

_, o •

_... r=O ¢=O

_ =

k _- exact Am- approx _- exact I_- approx

; .0 - - -0.184+ i0.000 O.O00+iO. 000 O. 000+ i0.000
; .I -0.179-i0.I01 -0.179-i0.I01 O.O00+iO.O00 O.O00*iO.O00
:,. .25 -0.151-i0.253 -0.151-i0.252 O.O00+iO.O00 O.O00+iO.O00

•5 -0.053-i0.505 -0.053-i0.504 O.O00+iO.000 O.O00+iO.000

"" 1.0 0.339-ii.009 0:540-i!,008 O.O00+iO.O00 O.O00+iO.O00

:: k _._- e,act TL.- approx A;p-exact _,- approx
a , , ,, ,

- .0 -0.322 0.522+i0.0000.000-i0.129 0.000-i0.128

I -0.294-i0,066 -0.295-i0.066 -0.050-i0.103 -0.053-i0.099
25 ' -0. 228-i0. 220' -0. 228-i0.21 91 -0.061 -iO. 055 -0.061 -iO. 050

'_ ! 5 [ -0. 109-i0. 495 -0. 108-i0. 494 ! -0. 050-i0. 028 -0. 049-i0. 025
_ 1.0 0.299-il .029 0.299-il .029 -0.045-i0.016 -0.046-i0.015

¢) D ;

:' _= 7Z /3r : 7Z .:

k N- exact T_- approx %- exact _- approx

i "jj.•0 -0.451+i0.000;-0.452 i0.000 0.000-i0.089 0.000-i0.088
•I -0,433-I0,075 -0,434-I0,075 -0,023-i0,083 -0,024-I0,081 i
•25 -0.366-i0.219 -0.368-i0.220 -0.042-i0.063 -0.042-10.060
•5 -0.223-i0.504 -0.225-i0.504 -0.048-i0.040 -0.047-i0.058

1.0 0.215-i1.080 0.213-i1.080 -0.054-i0.024 -0.052-i0.025

!

'i

;
i

:l

Table 4g. Bzaot _itebead Ooefficieuts versus

lpp_oxi=ate Values, Type &_

V "4__s,,se,,,/o- 1, _ - o !__
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i OF pO0_ QUALITV. 146

¢ .
t;: /3r - Io /_, - IO%

i I [_- approx " ": k _- exact _- exact A,- approx

_ .0 -0.561+i0•000 -0.562+i0•000 0.000-i0.055 0.000-i0.054
r .I" -0.547-i0.086 -0.548-i0.086 -0,011-iO.053 -0.012-i0.052

•25 -0.486-i0.236 -0.486-i0.236 -0.023-i0.045 -0.024-i0.043
! -5 -0.335-i0.528 -0.335-i0.529 -0.033-i0.033 -0.032-i0.031
;; I.0 O.130-ii•138 O.t30-i1•138 -0.044-i0.022 -0.042-i0.022

,-,.

., k A_- exact _:p-approx A_- exact ,_- approx
ro ,,

.0 -0.635+i0.000 -0.636+i0.000 0.000-i0.026 0.000-i0.026
". .I -0.622-i0.094 -0.62_-i0.094 -0.005-i0.025 -0.005-i0.025
_ •25 -0.565-i0.251 -0.565-i0.251 -0.010-iO.023 -0.011-iO.022

i_ .5 -0.411-i0.551 -0.412-i0.5521-0.017-i0.018 -0.016-i0.018
_ I.0 0.070-ii.183 0.069-ii.184 -0•024-i0.012 -0.023-i0.014

_ _, = I_o '_ /I3,.=lg, O

: k _- exact _- approx A_- exact _- approx

•0 -0.661+iO.000' -0•662+i0.000 O.O00+iO.000 O.O00+iO.000
•I -0.649-i0.097 -0.650-i0.097 O.O00+iO.000 O.O00+iO.000
•25 -0.592-i0.256 -0.593-i0.256 O.O00+iO.O00i O.O00+iO.O00
•5 -0.438-i0.559-0.439-i0.560 O.O00 0O.O00+iO.O00

I.0 0.048-ii•200 0.048-ii.199 O.O00+iO.O00 O.O00+iO.O00

1

_ ! .

i'

'i

Table 4h. _xact Whitehead Coefficients versus 1
I

Approximate Values, Type A_

! _'-45 degrees, s/c-1, _-0

• ,, _...... _.......................... _ __:,,..... _,-.,,,[n_.__ - _ .-_,D.._ -,-
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•_ ORIGINALPAGE
OF POORQUALITY

typel B_ B, B0 G, _b

A -0.470 -0.526 0.000 -0.072 0.130

: B 0.565 1.229 1.000 -0.244 0.130

C 0.485 0.263 0.000 0.036 0.130

f" O -0.595 -1.114 -0.500 0.122 0.130

i

Moments taken about the leading edge, _ .0.0, or a ,= I -1 !

_ q

: I

: Alternate coeffLclents can also " ootalned using the known theoretical i

two dimensional coefflclents together wlth a rough approximation to

the Theodorsen function as C(p) = (.55 p + .15)/(p + .15). This

would result in the alternate coefficients,

type B2 B1 ]_O Gs _o i!• A -0.500 -0.550 0.000 -0.068 0.150 ,

i B 0.,500 1.325 1.000 -0.349 0.150

! C 0.500 O. 275 0. 000 O.034 0.150

D -0.563 -1.163 -0. 500 0.174 0.150

P,

?

_ Table 5. Transient Theo4oreen Coefficients _ = 0.0 •
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Amount of Mode Present at Flutter Polar

_r _ode Tuned Blade "0" "Alter_ate"

Kistuned Mistuuing

,,, ,,..

F
@

0 cos_,O. O.O0 O.15 O.14

I ,

4o" cosjp, 1.o0 o.59 1.o0

sinip, 1. O0 O. 52 O. 91

I :
i
4

80 cos_l_& O.O0 O.86 O.32 A
J

sinj_= O. O0 1. O0 O. 15 ' '

t
6 '

12o coeiO, 0.00 0.40 0.31

sl.ip, 0.00 0.32 0.16

160 coe3/54 0.00 0.30 0.62

sl,nio+ 0.oo 0.08 0.30

1

a

Table 7. _ultlblade Modes ?resent at Flutter

N • 9, _= 45 degrees, s/o • 1, 1_ = 0.5
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N=9

I,, The engine order n will excite the structuralP

:_ modes sinJ_ r and cos_pe as follows:

h

_ n r
i,

_ 0, 9, 18, 27, ....... 0
1,8,10,17,19,26,28, ....... 1

i i
!_ 3,6,12,15,21 , 24,30, ........ 3

4,5,13,14,22,23,31, ....... 4 !

i

Table 8. Struotural Modes Res_nding to Eaglne o_er

koitatAon - Tuned Rotor, N - 9

""---.....-........-........................:":"-:-_":::_;_"_-__'_"-'__ " - "" UNTITLED-15C
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i

r _

['

:; k: 1/k /t_r " 40 degrees /tltt. - 80 degrees iPr" 120 4egrees

exact approx exact approx exact a_prox
• T

i !

": .1 10 -0.1682 -0.1722 -0.1561 -0.i588 -0.0886 -0,0889 i
!

i • 25 4 -0. 0078 -0.0083 -0o0084 -0. 0082 O. 0008 0.0008
i :
_ • 5 2 O.0011 O. 0009 O. 0013 O. 0013 O.0034 O.0032 i

1.0 1 0.0011 0.0010 0.0012 0.0011 0.0015 0.0015 !

' i
"_--+s° "/_: I ,_=B_,z vt=o._ t

ii
4

, I
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1 1 0 ,1 0 1 0 1 0

1 .7660 .6428 .1736 .9848 -.5000 .8660 -.9397 .3420

1 .1736 .9848 -.9397 .3420 -.5000 -.8660 .7660 -.6428

p _-- 1 --.5000 8660 -.5000 -.8660 I 0 -.5000 8660
i

.- 1 -.9397 •3420 .7660 -.6428 -.5000 .8660 .1736 -.9848

L

- 1 -.9397 -.3420 .7660 .6428 -.5000 -.q660 .1736 .9848

!_ 1 -.5000 -.8660 -.5000 •8660 i 0 -.5000 -.8660

i 1 .1736 -.9848 -.9397 -.3420 -.5000 .8660 .7661 .6428

_' 1 .7660 -.6428 .1736 -.9848 -.5000 -.8660 -.9397 -.3420
4

I[ !

i.

See aquations (2-39) and (2-42)

Tab].ei0. Values of Basic P Matrix for N = 9

t

F..................................................................................................................................................... ,_._, =._:_,._.,_.._ _......_ ,-_,l,,,_ .-..... --"- , -. I I- _ -l_",

UNTITLED-152



I
153

ORIGINALPAGEII
• OF POORQUALITY

t

0_ -.069 -.134 .243 0 0 0 0 0 0

40 ° -.063 -.128 .346 -.090 .188 0 -.015 -.240 .188

i 80_ -.063 -.127 .429 -.155 .313 0 -.017 -.209 .144

!-
! 120o -.062 -.124 .493 -.198 .390 0 -.012 -.142 .087

It 160 -.060 -.120 .528 -.221 .427 0 ".005 -.050 .030
t-

_L' . Isoiated -.015 -.148 .500 -.158 .130 0 0 0 0 _
airfoil

i

Values interpolated from general Table 2 for pitching about mldchord I_

(_= .5) and for N = 9 " It

,1

Q

i

': Table ii. Transient Whitehead Coefficients for Torsional Flutter

il. Analysis. Type D, N = 9, _- 450 , s/c ffii, _= .5
k

;-_ ............. ........ ,............... t:-. ..... t ___'_. =,_ :[C ,,'_ ,, ."0....... -, ,IBm.__-:&,AID., -,m-. _ .... _'.: .. __ .... _ .. ..... -.._._;_ _., _,,.
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