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Abstract

In this paper, a visco-hysteretic vibration absorber (VA) is proposed to increase the �utter speed of an airfoil and enhance 

damping in the pre- and post-�utter regimes. �e passive system consists of a parallel arrangement of a dashpot and a rate-

independent hysteretic element, represented by the Bouc-Wen di�erential model. �e equations of motion are obtained and 

various tools of linear and nonlinear dynamics are employed to study the e�ects of the visco-hysteretic VA in the pre- and post-

�utter ranges.
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1. Introduction

Flutter refers to a serious aeroelastic instability in both 

civil and military aircrafts. �e �utter phenomenon is 

characterized by limit-cycle oscillations (LCOs) of relatively 

high amplitude, exhibiting several harmonics. Modern 

�ghter airplanes often carry many types and combinations 

of external wing-mounted stores to satisfy multi-mission 

requirements. Such stores can reduce the �utter speed and 

thereby degrade the operational and mission e�ectiveness 

of combat airplanes. Due to the importance of �utter 

avoidance, considerable research has been conducted in the 

last decades to develop and assess the capabilities of various 

�utter control concepts (Marzocca et al., 2002; Njuguna, 

2007). In the general context of studies on semi-active/active 

methodologies, an important aspect is associated with the 

spatial optimization of actuator and sensor parameters to 

facilitate control of targeted modes while providing roll-o� 

of higher-order modes without the need for phase-inducing 

�lters. In contrast, the complexity inherent in semi-active/

active strategies for �utter control is dramatically reduced in 

passive systems such as VAs. Further, these systems exhibit 

desirable fault-tolerance characteristics.

A passive �utter control approach, known as the 

decoupler pylon, has been presented by Reed et al. (1980). 

�e decoupler pylon isolates dynamically the wing from the 

store pitch inertia e�ects by means of soft-spring/damper 

elements assisted by a low-frequency feedback-control 

system that minimizes static pitch de�ections of the store due 

to maneuvers and changing �ight conditions. Wind-tunnel 

tests and analyses show that this relatively simple pylon 

suspension system provides substantial increases in �utter 

speed and reduces the sensitivity of �utter to changes in 

store inertia and center of gravity. �e �utter characteristics 

of F-16 and F-17 �utter models equipped with decoupler 

pylon mounted stores are presented by Reed et al. (1980) 

and compared with results obtained on the same model 

con�gurations with active �utter control systems.

A semi-active �utter control strategy for high-aspect-

ratio wings has been presented by Hu and Zhou (2007), 

where multiple magneto-rheological dampers are proposed. 

In their work, the results of the semi-active approach are 

contrasted with those obtained by the passive �utter control 

methodology based on multiple visco-elastic vibration 

absorbers (VAs).

A design methodology for optimized �utter control 
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of an aeroelastic delta wing is presented by Richard and 

Clark (2003). � ese experiments, employing optimized 

piezoelectric transducers, show substantially increased 

� utter control authority over non-optimized systems. � ey 

also point out the importance of this spatial coupling as 

well as the transducer mass and sti� ness e� ects. Works 

related to semi-active techniques can be found in Schweiger 

et al. (1999), McGowan (1999), and Rocha et al. (2007), 

while Njuguna (2007) presents a good review of existing 

techniques.

In the last century, nonlinear VAs have been proposed by 

purposeful introduction of nonlinearities in either sti� ness 

or damping. � is nonlinearity can be associated with various 

aspects of the VA restoring force. For example, according to 

Lee et al. (2007a, b) the � utter and post-� utter control of a 

two-degree-of-freedom (two-dof) system is realized by a 

single-dof nonlinear energy sink (NES), which exhibits a 

nonlinear restoring force without the linear sti� ness term. 

� e bene� t of this kind of VA lies in its ability to enhance the 

� utter speed or stabilize the post-� utter LCOs, depending 

on the initial conditions, � ow speed, and mass ratio. � ree 

di� erent control phenomenologies can be seen in the NES, 

and these are related to the di� erent interactions of the 

NES with the pitch and heave modes of the two-dof airfoil. 

In the � rst case, intermittent action of the NES results in 

intermittent oscillations of the three-dof system, and thus 

� utter is not completely suppressed. In the second case, 

� utter is completely suppressed, while in the third case, 

stable LCOs arise in the post-� utter range. � e results of this 

study, corroborated by experiments, showed a maximum 

increase of the � utter speed by 26 per cent.

With regard to material nonlinearities in the VA, Carpineto 

et al. (2010, 2011) and Vestroni et al. (2011) exploit the 

hysteresis exhibited by short wire ropes under � exure to 

engineer a hysteretic VA for passive control of mechanical 

vibrations. In order to show the e� ectiveness of the proposed 

hysteretic VA, Carpineto et al. (2010, 2011) carry out a semi-

analytical/numerical and experimental study of a simply 

supported beam equipped with the hysteretic VA, subject to 

harmonic and white Gaussian noise base motions.

In this work, a visco-hysteretic VA is investigated for 

� utter control of a thin airfoil with a careful unfolding of its 

nonlinear features in the pre- and post-� utter regime. 

2. The Governing Equations of Motion

Studies of the � utter condition are often carried out 

considering a two-dof model of a wing treated as a lifting 

surface or a thin airfoil, accounting for the plunge and pitch 

degrees of freedom (Fig. 1). � e � utter control strategy of 

this model is based on incorporation of a VA, located at a 

distance ηb in the chord-wise direction, which can oscillate 

 
Fig. 1.  Lifting surface with the coordinate frame (top) and free-body diagram of the forces (bottom). The main system is augmented by the visco-

hysteretic vibration absorber shown in the enlarged box (left).
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by a displacement q normal to the chord-wise direction (Fig. 

1). Here, b represents half the chord length. From this, it 

can be seen that the augmented system is in fact a three-dof 

system. 

Let (e1, e2) be a � xed basis with e1 collinear with the chord-

wise direction in the wing’s stress-free con� guration, while 

(b1, b2) are body-� xed unit vectors rotated in the current 

con� guration by an angle denoted by α(t) (Fig. 1) so that 

the (counter-clockwise) angle α denotes the pitch degree 

of freedom. In the stress-free con� guration, the origin of 

the � xed frame is taken coincident with the elastic center 

CE, while the center of mass and the aerodynamic center 

are denoted by C and CA, respectively. � e position vector 

of a material point that occupies position x in the stress-

free con� guration of the surface is described in the current 

con� guration by r = rC+x̆ , where rC(t) = h(t) e2 − eb1(t) so 

that h(t) describes the plunge degree of freedom (see Fig. 1 

for the de� nition of e). � e position vector of the point that 

represents the VA is given by rd(t) = h(t) e2 − ηbb1(t) + qb2. In 

contrast, x̆  = x1b1 + x2b2 is the position vector of the material 

point in the current con� guration with respect to the center 

of mass.

Let bk = R(α)∙ek, where R indicates the orthogonal tensor 

that describes the rotation of the surface. Given the fact that 

in this case R describes e3 rotations, we can see that b1 = cos 

αe1 + sin α e2  and b2 = −sin αe1 + cos α e2. � e velocity and 

acceleration of the material points of the surface and those of 

the VA, respectively, are given by:

(1)

(2)

(3)

where ṙC = ḣe2 − eω×b1 and rC = he2 − eω(ω×b1)− eω̇×b1. 

� erefore, the time rates of change of linear momentum and 

angular momentum of the lifting surface are given by:

where ρJCω̇ = ρJC αe3 and ρJC the mass polar moment 

of inertia of the lifting surface about the center of mass 

C. Conversely, the time rate of change of the VA linear 

momentum is given by:

� us, the balance laws of linear and angular momentum 

of the augmented system become:

(4)

(5)

(6)

where rA is the position vector of the aerodynamic center 

in the current con� guration. � e components of the elastic 

restoring force n̂ and couple m̂ acting on the lifting surface 

can be expressed as N(t) = N (h) = kh + k3h3 and M(t) = M (α) = 

kαα + k3
Tα3. � e constitutive equation for the visco-hysteretic 

absorber, N d, can be written as a direct summation of an 

elastic part N d
E and a dissipative memory-dependent part 

N d
D according to N d = N d

E + N d
D, where N d

E = kdq + k3
dq3. � e 

dissipative part is, in turn, expressed as the summation of a 

linear viscous term and a purely hysteretic term z, N d
D = cdq̇ 

+ z, where the evolution of z is described by the Bouc-Wen 

� rst-order di� erential equation (Bouc, 1967; Lacarbonara 

and Vestroni, 2003; Wen, 1976).

(7)

In Eqs. (4) and (5), (f, c) refers to the external resultant 

force and moment with respect to the center of mass and 

(f L, cL) denote the aerodynamic resultant force (lift and drag 

resultants) and moment, with respect to the aerodynamic 

center CA.

Equations (4-6) are linearized, the incorporation of 

linear viscosity in the airfoil constitutive laws given by N (h, 

h ) = kh + chh  and M α, α̇ = kαα + cαα̇ . At the same time, full 

nonlinearity is kept in the visco-hysteretic constitutive law 

for the VA. � e ensuing equations are:

(8)

(9)

(10)
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(11)

where ρJE : = ρJC + ρAe2 and Jd
E : = md(ηb)2 denote the polar 

mass moment of inertia with respect to the elastic center CE 

of the wing and of the VA, respectively, while cE : = dfL + cL is 

the aerodynamic moment reduced to the elastic center.

According to Glauert’s theory of thin airfoils (Glauert, 

1947), to obtain the aerodynamic forces induced by a 

uniform airstream of velocity Ve1 (with zero initial angle of 

attack), the e� ective angle of attack is � rst expressed as:

(12)

� e lift force and aerodynamic moment, reduced to the 

aerodynamic center, are given by:

(13)

(14)

where s is the wing span, ρa is the � uid density, and CM
α = 0 

for symmetric airfoils.

� erefore, the equations of motion, as a result of 

neglecting other kinds of external forces and considering 

only the linearized parts of the inertial and aerodynamic 

forces, become:

(15)

(16)

(17)

(18)

� e dimensional constitutive parameters of the visco-

hysteretic VA are denoted by (kd, kz, cd, β, γ, n). 

� e next few paragraphs illustrate the non-dimensional 

form of the equations of motion of the augmented aeroelastic 

system. � is form can be arrived at by dividing the vertical 

coordinate h by b (i.e., the non-dimensional plunge degree 

of freedom becomes h
−

 : = h/b), the VA degree of freedom q 

by b (i.e., q
−

 : = q/b), the hysteretic variable z by z0 : = kdb, and 

introducing the characteristic time 1/ωα(i.e., ωα : = kα / ρJE  

denotes the torsional frequency of the airfoil). As a result 

of these steps, the following non-dimensional form of the 

equations of motion can be obtained:

(19)

(20)

(21)

ρ α α
α

⋅ = = =f e

αρ= = + +

ρ α =

ρ ρ α η α

αρ α

− + + − + + =

+ − −

&& && &&& &&&&

&& 한줄로

α αρ α ρ η η α α α

αρ α

− + − + + + =

+ + − −

&&&& && &&&

&& 한줄로

η α+ − + + + =&& &&&& &

γ β= − + & &&

β γ

=

= = αω

α αω ρ=

αμ ε μη α μ ζ ω ω α+ − + + + + = + − −
&&&& &&& &&

αμη α ε μη μη ζ α α

αα

+ − + − + + =

+ + − −

&&&& &&&

&& 한줄로

μ μ μηα μω δ δ ζ μ δω+ − + + − + =&& &&&& &

[1 ( sgn( )sgn( ) .nz q z z qγ β= − + & &&  (22)

where the overbar is dropped in respect to h and the 

dot over h indicates di� erentiation with respect to non-

dimensional time t
_

 : = tωα. � e most important non-

dimensional parameter in the design of the VA is the mass 

ratio μ : = ρA/md mμ:= md / ρA로 수식 수정해 주세요 between 

the VA mass and the wing mass. � is parameter is very 

important because it scales the control force exerted by the 

VA on the lifting surface. 

Given the fact that the plunge frequency is ωh = k / ρA  

and the frequency of the VA by itself is ωd = (kd + kz) / md , 

the following non-dimensional frequencies ratios arise from 

the non-dimensionalization: ω
_

h = ωh / ωα (non-dimensional 

plunge frequency) and ω
_

d = ωd / ωα (non-dimensional VA 

frequency). � e non-dimensional pitch frequency becomes 

1 in this case. � e mass and elastic distribution properties 

of the lifting surface are summarized by r : = ρJE / (ρAb2)  

and ε : = e/b. � e non-dimensional damping coe�  cients of 

the airfoil are given by: ζh : = ch / (2ρAωh), ζα : = cα / (2ρJEωα). 

In contrast, the remaining non-dimensional constitutive 

parameters of the visco-hysteretic VA (besides dω
) can be 

expressed as: ζd : = cd / 2md md / kd , γ
_
 : = γb(z0)n-1, β

_
 : = βb(z0)

n-1, and δ : = kd / (kd + kz).

� e non-dimensional velocity is V
_
 : = V(bωα) and the 

aerodynamic constant is given by ku : = ρsb2CL
0 / ρA.

3.  Design and Performance of the Aeroelas-
tic Visco-hysteretic VA

� e well-known Den Hartog visco-elastic VA (Den Hartog, 

1934; Frahm, 1911) is widely regarded as e� ective for vibration 

cosntrol of a mechanical system subject to a harmonic time-

varying force. � is e� ectiveness is attributed to the anti-

resonance phenomenon, which completely cancels the 

response when the system and the VA are undamped and 

the frequency of the VA is exactly tuned to the frequency of 
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the system driven to resonance. �ere is no exact resonance 

cancellation when the structure is damped, while the anti-

resonance phenomenon, accompanied by small amplitudes, 

is exhibited provided that the VA frequency is properly tuned 

to the frequency of the damped system.

Eight parameters must be determined to facilitate the 

design of a visco-hysteretic VA for �utter and post-�utter 

control. �ese parameters are the mass ratio μ, the position 

of the VA along the wing’s chord-wise direction η, the VA 

frequency ω
_

d, which arises from the tuning condition of 

the VA’s overall sti�ness, the VA damping ratio ζd, and the 

other constitutive parameters of the hysteretic part of the VA 

restoring force, namely, (δ, n, β
_

, γ
_

).

When the hysteretic part of the restoring force z is discarded, 

the (dimensional) frequency of the VA can be expressed as ωE 

= kd / md  = δ ωd. While ωd represents the linear frequency 

of the VA (i.e., at in�nitesimal oscillation amplitudes), the 

nonlinear sti�ness variations of the hysteretic VA during its 

�nite cycles are such that its (nonlinear) frequency scales 

with ωE, whose non-dimensional counterpart, ωE / ωd turns 

out to be δ ωd. During �utter, it is expected that the VA 

will oscillate together with the appropriately phased airfoil 

so as to introduce additional damping into the augmented 

system.

A rational design of the VA consists of requiring ωE to be 

equal to the �utter frequency. �is tuning condition serves 

as a good initial guess for the optimization process, which 

results in the optimum tuning. Once the �utter speed of 

the system without VA is calculated employing the Routh-

Hurwitz criterion (Meirovitch, 1970), the frequency of the 

�utter mode can be computed accordingly.

�e mass ratio μ and the VA position described by η must 

satisfy certain physical restrictions. �e weight limitation on 

the wing is such that the value of μ can be as high as 1/100 

(an upper bound for the VA mass), while placing the VA at 

three-quarters of the chord toward the trailing edge leads 

to η = 
1
2

−a. �ese restrictions represent limitations on the 

magnitude of the control force. �is force is greatly enhanced 

by higher mass ratios and by a position closer to the tip of the 

wing’s trailing edge, where the torsional couple exerted by 

the VA on the wing pro�le is maximized.

Table 2. Non-dimensional wing model parameters

ρ

α

α

ρ

−⋅

⋅

α α− + ⋅

−⋅ ⋅

⋅ ⋅

⋅

Non-dimensional wing parameters 

a  

h
ω  

ε  

r  

h
ζ  

αζ  

u
k  

1/ 2 aη = −  

0.4−

0.3875

0.0467

0.5366

0.0731

0.0071

0.0113

0.9

Table 1. Dimensional wing model parameters

Parameters of the two-dof wing model 

aρ  

b  

s  

k  

kα  

hc  

cα  

Aρ  

EJ  

o

LC  

31.225 kg m−⋅

0.135 m

21 m

2844.4 N m⋅

2(2.82 62.332 3709.71 ) N mα α− + ⋅

127.43 N s m−⋅ ⋅

0.036 N s m⋅ ⋅

12.387 kg

20.065 kg m⋅

6.28

 

ω ζ

Fig. 2.  Variation of the �utter velocity V
_

cr of the augmented three-dof 

system, comprising the linear visco-elastic vibration absorber 

with ω
_

d and ζd as obtained by the Routh-Hurwitz criterion.
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In relation to the VA damping ratio ζd, an optimum 

damping ratio can increase the �utter speed by orders of 

magnitude, while  the hysteretic part of the force does not 

in�uence the onset of �utter. Hysteresis is shown to have 

a fundamental role in increasing the decay rates of the 

transients. �is occurs mostly in the pre-�utter regime, but 

is also seen in the post-�utter regime.

By adopting the parameters of the wing model studied 

 

α

ζ δω= & ω δ δ ζ δω= + − + & ∈

=

Fig. 3.  From left to right: (�rst line) time history of h, (second line) time history of α, (third line) time history of q, (bottom) loops of the total vibra-

tion absorber (VA) force, given respectively by Nd = 2ζd δ ω
_

dq and Nd = ω
_

d
2[δq + (1-δ)z]+2ζd δ ω

_
dq  in t

_
∈[0,5000] for the three-dof system 

with the linear visco-elastic VA (left) and with the visco-hysteretic VA (right). The �ow velocity is V
_

 = 0.999 V
_ 

cr.



337

Walter Lacarbonara    Flutter Control of a Lifting Surface via Visco-Hysteretic Vibration Absorbers

http://ijass.org

by Behal et al. (2006), the application of the Routh-Hurwitz 

criterion leads to calculation of the non-dimensional linear 

�utter speed of the airfoil by itself found to be V
_

cr = 2.46. �e 

model in question is shown in Tables 1 and 2.

�e optimal parameters for the linear visco-elastic VA 

can be determined by a numerical search calculating the 

�utter speed via the Routh-Hurwitz criterion on a grid that 

discretizes the parameter plane (ω
_

d, ζd ) in a lattice. Figure 2 

shows the results of these computations, which lead to the 

following optimal parameters: ω
_

d = 0.72 and ζd  = 0.36. With 

these optimal parameters, the �utter speed goes up to 8.3; an 

increase of approximately 240 percent. �e sensitivity of the 

�utter speed with respect to ω
_

d and ζd  can be appreciated by 

computing the �utter speed at meaningful values detuned 

from the optimal values. For example, if the VA frequency is 

tuned with the frequency of the �utter mode, ω
_

d= 1, and if the 

damping ratio is set to ζd  = 0.1, �utter speed is determined to 

be 4.5 and the increase with respect to the case without VA 

is only 83 per cent. In contrast, if ω
_

d = 0.87 and ζd  = 0.1, the 

�utter speed goes up to 5.9, with an increase of approximately 

140 per cent.

Numerical investigations via integration of the equations 

of motion into the e�ects of the visco-hysteretic VA (i.e., the 

parallel arrangement of a dashpot and a Bouc-Wen element) 

have shown that the purely hysteretic part of a system is 

unable to alter the �utter boundary of a system endowed 

with a purely visco-elastic VA. However, it does increase the 

e�ective damping of the system in the pre-�utter regime, as 

shown in Fig. 3. �e decay rate of the airfoil response to initial 

conditions is greatly enhanced by hysteresis. Moreover, 

the decay rate increases with the magnitude of the initial 

conditions up to a certain threshold, at which the e�ective 

damping is maximized.

It is interesting to study the e�ects of detuning in the 

optimal parameters of the visco-elastic VA while observing 

the e�ects of variations of the constitutive parameters of 

the hysteretic part of the VA restoring force. For example, 

in Fig. 4 the visco-elastic parameters are set to ω
_

d = 1 and 

ζd = 0.1. In such a case, �utter is reached at a �ow speed of 

4.5, with an increase with respect to the system without VA 

of only 83 per cent. However, in this detuned case there is 

a post-�utter range in which the airfoil exhibits LCOs with 

relatively small amplitudes. Hence, the hysteresis has a 

twofold e�ect: it enhances damping in the pre-�utter stage 

and controls the post-�utter up to a threshold value of the 

speed beyond which the response of the airfoil diverges if all 

other structural /aerodynamic nonlinearities are neglected. 

Some examples of such post-�utter responses are shown in 

Figs. 5-7 at various �ow speeds when γ
_  

= 1 = β
_

.

To assess the e�ects of the purely hysteretic component of 

the VA restoring force, the dashpot contribution is neglected 

and a set of post-�utter responses are shown in Figs. 8-10 

with γ
_  

= 1 = β
_

 at various �ow speeds. While in the immediate 

vicinity of �utter, the LCO has one dominant frequency 

(the nonlinear �utter frequency); multiple harmonics of 

the �utter frequency are manifested at speeds further away 

from the �utter condition. More interestingly, when the �ow 

speed is 3.66 times the �utter speed, the LCO undergoes a 

Hopf bifurcation by which the post-critical LCO becomes 

amplitude-modulated (i.e., quasiperiodic motion), as shown 

in Fig. 10.

4. Discussion and Conclusions

In this paper, a visco-hysteretic VA is proposed in order to 

enhance the aeroelastic stability of an airfoil by increasing its 

�utter speed. �e passive system is a parallel arrangement 

of a dashpot and a rate-independent hysteretic element, 

represented by the Bouc-Wen di�erential model (Bouc, 

1967; Lacarbonara and Vestroni, 2003; Wen, 1976).

�is paper shows that, for a set of parameters representing 

an experimental airfoil (Behal et al., 2006), the optimized 

purely visco-elastic VA (without the hysteretic element) can 

result in an increase of the �utter speed by up to 240 per cent 

when the mass ratio is 1 per cent. Numerical investigations 

are carried out into the e�ects of the purely hysteretic VA, i.e. 

a VA without the dashpot. �ese results show that a purely 

β

ζ

δ ω γ β=

Fig. 4.  Variation of the flutter speed with the hysteretic constitutive 

parameter β
_

 with the vibration absorber (VA, thin solid line) 

and without the VA (thick solid line), when ζd= 0.1 while the 

other parameters are �xed to δ = 0.2, n = 1, ω
_

d = 1, and γ
_

 = β
_

. 

The shaded region represents the post-flutter range, where 

the lifting surface exhibits limit-cycle oscillations due to the 

nonlinear hysteretic force in the VA. The boundary is de�ned as 

the speed at which the torsional angle reaches the threshold 

amplitude of 0.2 rad, beyond which the response diverges.
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Fig. 5.  From left to right: (top) time history of α and phase diagrams (α, α· ) in the transient phase (t
_
∈[0,600] and t

_
∈[0,200], respectively) and at 

steady state (t
_
∈[4.8∙104, 5∙104] and t

_
∈[3∙104, 5∙104], respectively), (middle) Fast Fourier Transform (FFT) of α and q, (bottom) loops of total 

vibration absorber force Nd = ω
_

d
2[δq + (1-δ)z]+2ζd δ ω

_
dq in the transient phase (t

_
∈[0,600]) and at steady state (t

_
∈[3∙104, 5∙104]), when ζd= 0.1 

and V
_

 = 1.02 V
_

cr with V
_

cr = 4.5. The peak in the FFT is attained by f
_

 = 0.14, where  f
_

 denotes the non-dimensional frequency.
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f

Fig. 6.  From left to right: (top) time history of α and phase diagrams (α, α· ) in the transient phase (t
_
∈[0,600] and t

_
∈[0,200], respectively) and at 

steady state (t
_
∈[4.8∙104, 5∙104] and t

_
∈[3∙104, 5∙104], respectively) (middle) FFT of α and q, (bottom) loops of total vibration absorber force 

in the transient phase (t
_
∈[0,600]) and at steady state (t

_
∈[3∙104, 5∙104]), when ζd = 0.1 and V

_
= 1.33 V

_
cr with V

_
cr = 4.5. The peak in the FFT is 

attained by f
_

 = 0.132.
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Fig. 7.  From left to right: (top) time history of α and phase diagrams (α, α· ) in the transient phase (t
_
∈[0,600] and t

_
∈[0,200], respectively) and at 

steady state (t
_
∈[4.8∙104, 5∙104] and t

_
∈[3∙104, 5∙104], respectively), (middle) FFT of α and q,(bottom) loops of total vibration absorber force 

in the transient phase (t
_
∈[0,600]) and at steady state (t

_
∈[3∙104, 5∙104]), when ζd = 0.1 and V

_ 
= 1.64 V

_
cr with V

_
cr = 4.5. The peak in the FFT is 

attained by f
_

 = 0.14.
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Fig. 8.  From left to right: (top) time history of α and phase diagrams (α, α· ) in the transient phase (t
_
∈[0,600] and t

_
∈[0,200], respectively) and at 

steady state (t
_
∈[4.8∙104, 5∙104] and t

_
∈[3∙104, 5∙104], respectively), (middle) FFT of α and q,(bottom) loops of total vibration absorber force 

in the transient phase (t
_
∈[0,600]) and at steady state (t

_
∈[3∙104, 5∙104]), when ζd= 0 and V

_ 
= 1.05 V

_
cr with V

_
cr = 2.1. The peak in the FFT is at-

tained by f
_

 = 0.146.
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Fig. 9.  From left to right: (top) time history of α and phase diagrams (α, α· ) in the transient phase (t
_
∈[0,600] and t

_
∈[0,200], respectively) and at 

steady state (t
_
∈[4.8∙104, 5∙104] and t

_
∈[3∙104, 5∙104], respectively), (middle) FFT of α and q, (bottom) loops of total vibration absorber force 

Nd = ω
_

d
2[δq + (1-δ)z] in the transient phase (t

_
∈[0,600]) and at steady state (t

_
∈[3∙104, 5∙104]), when ζd = 0 and V

_
cr = 2.38 V

_
cr with V

_
cr = 2.1. 

The peak in the FFT is attained by f
_

= 0.136.
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Fig. 10.  From left to right: (top) time history of α and phase diagrams (α, α· ) in the transient phase (t
_
∈[0,600] and t

_
∈[0,200], respectively) and at 

steady state (t
_
∈[4∙104, 5∙104] and t

_
∈[3∙104, 5∙104], respectively), (middle) FFT of α and q, (bottom) loops of total vibration absorber force 

in the transient phase (t
_
∈[0,600]) and at steady state (t

_
∈[3∙104, 5∙104]), when ζd = 0 and V

_
 = 3.66 V

_
cr with V

_
cr = 2.1. The peak in the FFT is 

attained by f
_

= 0.122.
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hysteretic restoring force does not have the capability to 

change the �utter boundary of the airfoil, since at the onset 

of �utter the aeroelastic destabilizing forces can only be 

counteracted by a VA control force in which the resistive 

component depends on the relative instantaneous velocity. 

In contrast, the hysteretic restoring force can only dissipate 

energy over a full cycle of oscillation. However, the presence 

of a purely hysteretic restoring force enhances damping in 

the pre-�utter regime and controls the post-�utter behavior 

over a signi�cant range of �ow speeds.

�e optimization described in this paper can be carried 

out in the presence of a visco-hysteretic force by applying 

the Routh-Hurwitz criterion, accounting for only the linear 

visco-elastic part of the restoring force. �e primary e�ect 

of the hysteretic part of the restoring force is to increase 

the e�ective damping of the system in the pre-�utter 

regime, as shown in Fig. 3. In practice, the decay rate of the 

airfoil response to initial conditions is greatly enhanced 

by hysteresis. In the optimal con�guration of the absorber, 

decay rates can only be controlled by hysteresis. �is justi�es 

its use in conjunction with the linear visco-elasticity of the 

spring and dashpot. �e experimental validation of the 

control system is part of an ongoing research project.
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