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Chapter 1 

Laminated con~pasite materials  have been i n  use f o r  many cerlturies. 

Pieces of leminated wood have been found which date back t o  about 1500 B.C. 

Some excellent swords were made i n  the  15th century by laminating several 

layers  of s t e e l  t o  provide an extremely hard and keen cut t ing  edge with 

a softer tough body. Although some of the  advantages of using composite 

materials have been known f o r  some time, only i n  recent years have deter- 

mined e f f o r t s  been made t o  f u l l y  develop composite materials.  The advent 

of high performance a i r c r a r t  and spacecraft has brought about the  need 

fo r  more e f f i c i en t  use of materials.  Recent energy shortages have em- 

phasized i n  even a greater  way t h e  importance of developing composite 

materials fo r  everyday us-e. 

In  recent years, composite materials have been t h e  subject of  a la rge  

number of experimental and analyt ica l  investigations and have been develop- 

ed t o  the  point where s t ruc tu ra l  components a r e  now being used i n  actual  

applications. Previously, most of the  composite applications have been 

s t ruc tu ra l  componento b u i l t  t o  replace exis t ing  conventional components. 

However, new designs a r e  emerging which have considered composite materiala 

i n  the  t o t a l  derlgn. A s  new applications a r e  considered fo r  canposite 

designs, a b e t t e r  understanding of the  behavior of s t ruc tu ra l  caupanents 

under various load conditions is  r~eeded. 

One s t ruc tu ra l  ,component tha t  l o  used extensively i n  a vide variety 

of applications i s  the  f l i t  plate.  Piate8 f r3r ica ted  from composite 



materials  usual ly coneis t  of individual lamina bonded toge ther ,  Each 

lamina usual ly cons is t s  of a number of high s t rength  filaments aligned i n  

i h c  same di rec t ion  and held i n  place by a p l a s t i c  matrix m a t e r h l .  

The lamina may be highly or thotropic ,  and s ince  the  pr inc ipa l  mnter ial  direc- 

t i o n  o r  t he  angle t h e  f i b e r s  make with t h e  p l a t e  wis may d i f f e r  f o r  each 

lamina, t h e  r e su l t i ng  anirotropic  p l a t e  is  more complex t o  analyze than 

an orthotropic  p la te .  

This study i s  being conducted t o  obtain a b e t t e r  ude r s t and ing  of 

the  f l u t t e r  characteristics of laminated compoaite f l a t  p la tes .  However, 

t he  following discussion w i l l  include a general review of previous s tud ie s  

of laminated composite p la tes .  #ost previous s tudies  of laminated p l a t e s  

have been concerned only witn deflect ion,  v ibra t ion ,  and buckling char- 

ac t  e r i s t  i c  s. The development and solut ion of t he  governing equations 

fo r  p l a t e s  under various conditions w i l l  be reviewed and a prcposed a rea  

of invest igat ion ident i f ied .  Solution techniques and possible  problem 

areas  w i l l  a l so  be discussed. 

1.1 Review of Li te ra ture  

Numerous theo re t i ca l  ma lyses  of composite l m i m t e d  p l a t a s  have been 

made and are discussed i n  references 1-23. These refarences represent  

work t h a t  cover t he  spectrum tram c l a r s i c d l  small def lec t ion  theory and 

approximate solut ions t o  non-linear theory and exact so lu t ionr .  Much of 

t h e  ear ly  ana ly t ica l  work f o r  composite p l a t e r  was conducted using c l a s s i -  

c a l  d l  def lec t ion  theory, an& so lu t ions  were obtained only f o r  s p e c i d  

c lasses  of p l a t e s  which resu l ted  i n  considerable s impl i f ica t ion  of t h e  



analysis .  Recent s tud iee  have obtained solut ions t o  more general p l a t e  

problems with t ransverse  shear and ro ta ry  i n e r t i a  e f f ec t s .  

I n  addi t ion t o  t h e  repor t s  m d  a r t i c l e s ,  some excel lent  books have 

considered leminated composite pla tes .  Diet (24)  i n  1969 published a good 

review of much of t h e  ea r ly  ana ly t i ca l  work i n  laminated composites and 

gave a thorough l i s t i n g  of references.  Ashton, Hdp in ,  and P e t i t  (25)  

i n  1969 published an excel lent  primer f o r  those new i n  t h e  f i e l d .  They 

give a good development and discussion of t h e  governing equations. Ashton 

and Whitney (26) i n  1970 published a good review of t h e  progrzss i n  lami- 

nated p l a t e  theory and t h e  various so lu t ions  and so lu t ion  techniques. 

1.1.1 Formulation of Equations 

Two ea r ly  inves t iga tors ,  Rc!nsner and Stavsky (1 ) .  analyzed a p l a t e  

composed of two orthotropic  laminas of e q ~ a l  thickness alig..ed so t h a t  t h e  

pr inc ipa l  a a t e r i a l  axes of t h e  two lsminas a r e  ro ta ted  a t  an angle of 

+8 and -8 with t h e  p l a t e  w e s  ( l a t e r  re fer red  t o  a s  angle-ply  plate^). 

They found t h a t  even f o r  a small def lec t ion  theory m a l y s i s ,  t he re  e x i s t s  

a coupling between t h e  t ransverse bending and inplane s t re tch ing  equations 

t h a t  d ~ e s  not e x i s t  fo r  or thotropic  p la tes .  They shoved t h a t  t h e  coupling 

e f f ec t  e x i s t s  i n  t h e  boundary conditions a s  well  a s  i n  t h e  governing 

equations. 

Reiasner m d  Stavsky (1) formulated t h e  governing equati  ens a s  tvo 

4th order p a r t i a l  d i f f e r e n t i a l  e q u r t i o ~ s  i n  t e r m  o i  t h e  Airy s t r e s s  

function and t h e  transverve displacemmt. Due t o  t h e  coup lhg  of t he  

tyo  equations, they must be eolvsd simultaneously, and i np lme ,  as w e l l  as  



t ransverse boundary c o n d i t i o n g m ~ s t  be specif ied a t  each boundary t o  

obtain a pa r t i cu l a r  p l a t e  solut ion.  Stavsky (2) for ru la ted  t h e  govern- 

ing equations a s  an eighth order  p a r t i a l  d i f f e r e n t i a l  equation i n  terms of 

t he  Airy s t r e s s  function and l a t e r  (3)  i n  t h e  form of t h ree  s i ~ u l t a n e o u s  

p a ~ t i a l  d i f f e r e n t i a l  equations i n  t h e  displacemeats 11, V, and w. Al- 

though each of t h e  formulations have advantages i n  ce r t a in  problems, 

they present about the  same order of d i f f i c u l t y  i n  obtaining a solut ion.  

Later contributions t o  t h e  laminated p l a t e  formulations Lave been 

made by several  authors,  Tsai and Azzi ( 4 )  added ' ,ermal s t r e s s e s  t o  

t he  formulaticn of laminated p l a t e  equations. Whitney and Leissa (51, 

and Yang, Norris,  and Stavsky ( 6 )  included ro t a ry  i n e r t i a  terms i n  t h e  

formulation and the  l a t t e r  authors a l so  included t ransverse shear which 

becomes important f o r  th ick  p la tes .  The formulation by Yang, Norris,  and 

Stavsky r e s u l t s  i n  f ive  coupled p a r t i a l  d i f f e r e n t i a l  equations i n  terms of 

t h e  displacements u, v, and v and two ro t a t ions  of t he  n o d s  t o  the  

midplane. 

1.1.2 Solutions f o r  Symmetric P l a t e s  

Although avai lable   formulation^ of t h e  governing equations and 

boundary conditions a r e  applicable f'or general laminated p l a t e s ,  most 

of the  solut ions have been ~ b t a i n e d  f r r  spec ia l  c lasses  of p l a t e s  which 

r e su l t  i n  consjderable s h p l i f i c a t i o n  t o  t h e  governing equations. 

Stavsky ( 2 )  i n  h i s  ear ly  work showed t h a t  f o r  laminated p l a t e s  symmetric 

about t h e  geometric midplane bath i n  proper t ies  and f i b e r  o r i en t a t ion ,  

t he  t ransverse bending and inplane s t re tch ing  equations and t h e  boundary 



conditions become uncoupled and can be solved independently. However, 

he showed t h a t  even fo r  symmetric laminated p l a t e s ,  t h e  governing equations 

and boundary conditions s t i l l  contain some 39s-stiffness terms due t o  

t h e  laminas which r e s u l t  i n  t h e  governing equations being d i f f e ren t  

from those of an orthotropic  analysis .  He fu r the r  showed t h a t  only f o r  

very spec ia l  kinds of symmetric p l a t e s  do t h e  cross-s t i f fness  terms vanish 

and t h e  governing equations become iden t i ca l  with t h e  or thot ropic  equa- 

t i ons .  A s  a r e s u l t  of these  s impl i f ica t iuns ,  symmetric p l a t e s  have been 

studied extensively i n  t h e  l i t e r a t u r e .  

The Rayleigh-Ritz method of so lu t ion  with beam mode shape Functions 

has been used e f f ec t ive ly  by several  inves t iga tors  t o  obtain def lec t ion ,  

v ibra t ion ,  and buckling solut ions.  Ashton and Waddoups ( 7  ) invest igated 

symmetric laminated p l a t e s  and presented ana ly t i ca l  r e s u l t s  f o r  un iax ia l ly  

loaded p l a t e s  w i t h  t h e  loaded edges clamped and t h e  unloaded edges f ree .  

They a l so  presented ca lcu ls ted  frequencies and mode shapes f o r  cant i -  

levered p l a t e s  which showed good agreement with experiment. Ashton ( 8 )  

extended t h e  ana lys is  t o  include nonuniform c ros s  sec t ion  and mater ia l  

p roper t ies  and presented r e s u l t s  f o r  tapered p l a t e s  under unaxial 

1.0 ,ing with simple supported and clamped boundary conditions. Ashton 

(9 )  f a r t h e r  extended t h e  ana lys is  t o  include e l a s t i c a l l y  res t ra ined  

boundary conditions and presented some def lec t ion  r e s u l t s  with re- 

s t ra ined  boundary conditions.  

Later Srinivas and Rao (10) obtained closed form so lu t ions  f o r  t h e  

f r e e  v ibra t ion  and buckling of simply supported symmetric laminated 



t h i c k  p l a t e s  using l i n e a r  small def lec t ion  theory. They compared t h e i r  

r e s u l t s  with t h i n  p l a t e  theory and showed t h a t  t h e  e r r o r  associated 

with t h i n  p l a t e  theory increases  with p l a t e  thickness  and t h e  modular 

r a t i o  between t h e  lamina. A similar analys is  by Whitney (11) showed 

t h e  same trends,  Thus t h e  de f in i t i on  of "thin" f o r  l d n a t e d  p l a t e s  

must t ake  i n t o  account modular r a t i o  a s  wel l  a s  p l a t e  thickness .  

1.1.3 Solutions f o r  Angle-ply and Cross-ply P la t e s  

Angle-ply p l a t e s  a r e  unsymmetric and cons is t  o f  an even number of  

l aye r s  having the  same thickness  and e l a s t i c  proper t ies ,  and t h e  ortho- 

t r o p i c  axes of symmetry f o r  each p ly  a r e  a l t e rna t e ly  or iented a t  angles 

of +O and -8 t o  t h e  p l a t e  axes ( s ee  f ig .  1.). Cross-ply p l a t e s  a r e  un- 

symmetric and cons is t  of an even number of l aye r s  a l l  of t h e  same thick- 

ness and e l a s t i c  propert ies  with t h e  or thotropic  axes of symmet~ i n  

each ply a l t e rna t e ly  or ien ted  at 0 degrees and 90 degrees t o  t h e  p l a t e  

axes ( s ee  f ig .  2). Whitney and Leissa ( 5 )  showed t h a t  f o r  a n g l e p l y  

p l a t e s  and cross-ply p l a t e s ,  t h e  governing equations and boundary condi- 

t i o n s  a r e  considerably s implif ied but a ' e  s t i l l  coupled and must be solved 

simultaneously. A s  a r e s u l t  of t h e  s impl i f ica t ions ,  angle-ply and cross- 

ply laminated p l a t e s  have been s tudied by several  inves t iga tors  t o  deter- 

mine t h e  e f f e c t s  o f  bending-extensional coupling. 

Several solut ion procedures have been developed which a r e  e f f ec t ive  

i n  solving t h e  coupled governing equations and boundary conditions.  

Whitney and Leissa (5) and Whitney (12) used a Fourier ae r i e s  technique 

t o  obtain eolut ions f o r  def lec t ion ,  f r e e  v ibra t ion ,  and buckling of both 



angle-ply and cross-ply p l a t e s  f o r  simply supported boundary condit ions 

which allow inplane displacements normal and tangent t o  t he  boundary f o r  

cross-ply and angle-ply p l a t e s  respect ively.  Bert and Mayberry (13)  used 

a Rayleigh-Ritz approach with beam mode shape f inc t ions  t o  obtain f r e e  

v ibra t ion  r e s u l t s  f o r  cross-ply and angle-ply p l a t e s  with clamped 

boundary conditions.  Whitney (14)  used a Galerkin procedure t o  obta in  

so lu t ions  f o r  t h e  sheer buckling of cross-ply p l a t e s  with simply suppor- 

t e d  boundary conditions.  

I n  all cases c i t e d ,  t h e  bending-extensional coupling s ign i f i can t ly  

a f fec ted  t h e  r e su l t s .  Bending-extensional coupling has t h e  ove ra l l  

e f f e c t  of reducing the  p l a t e  s t i f f n e s s  and thus increasing t h e  s t a t i c  

def lec t ion  and reducing t h e  na tu ra l  frequencies and buckling loads. The 

e f f ec t  of  coupling i s  increased as t h e  number of  laminas a r e  decreased 

and a s  t h e  degree of anisotropy between lamina i s  increased. 

F o r t i e r  (15) used a Rayleigh-Ritz so lu t ion  procedure t o  inves t iga te  

t h e  e f f e c t s  t h a t  various types of inplane boundary r e s t r a i n t s  have on 

t h e  behavior of angle-ply and cross-ply p l a t e s  with small i n i t i a l  curva- 

tu re .  He a l s o  considered t h e  e f f e c t s  of t ransverse  shear and inplane 

loads on t h e  na tura l  frequencies. He found t h a t  inplane boundary condi- 

t ions ,  i n i t i a l  curvature,  t ransverse  shear,  and inplane loads a l l  have 

a s ign i f icant  e f f e c t  on t h e  behavior of unsymet r i c  p l a t e s .  However, 

Whitney (16) considered t ransverse  shear f o r  cy l ind r i ca l  bending of 

synnnetric and cross-ply p l a t e s  and .showed t h a t  t ransverse shear has l e s s  

e f f e c t  on t h e  def lec t ion  of  cross-ply p l a t e s  than  symmetric p la tes .  



1 . 3  4 Approximate Solutions 

Due t o  t h e  d i f f i c u l t y  of obtaining general  p l a t e  so lu t ions ,  approxi- 

umie so lu t ions  have emerged a l so .  A "reduced bending s t i f fnes s"  method 

was proposed by Ashton (20 ) i n  which t h e  bending-extensional coupling 

i s  accounted f o r  i n  an approximate way. Approximate solut ions were ob- 

t a ?  ned by reducing t h e  bending s t i f f n e s s  of t h e  p l a t e  by an amount deter- 

mined by t h e  coupling terms and then neglecting t h e  coupling e f f e c t .  

Ash$on used t h e  method t o  compare maximum def lec t ions  of a cross-ply and 

an angle-ply p l a t e  with measured r e s u l t s  and obtained good agreement. 

Whitney (21)  a l so  used t h e  methcd t o  compare r e s u l t s  with those calcu- 

l a t ed  using t h e  Fourier s e r i e s  technique and showed good agreement f o r  

30th angle-ply and cross-ply p l a t e s  f o r  simply supported boundary condi- 

t i o n s ,  but fo r  . lamped boundary conditions,  r e l a t i v e l y  poor agreement was 

obte.ined f o r  c e r t a i n  angle-ply cases. 

A more re f ined  ana lys is  was presented by Sr in ivas  (22) which con- 

s idera  t ransverse  shear deformations and ro t a ry  i n e r t i a  e f f ec t s .  By 

assuming piecerriso l l n e a r  va r i a t i ons  of t h e  displacements u and v 

and constan+ m l u e s  of w across  t he  p l a t e  thickness ,  t h e  problem be- 

comes two dimensional. Trigonometric s e r i e s  so lu t ions  were obtained fo r  

t h e  approximate two dimensional problem f o r  p l a t e s  with simply supported 

s u n d ~ r y  condit ions,  and t h e  r e s u l t s  showed good agrecslent with exact 

theory. 



1.1.5 Dynamic S t a b i l i t y  

A l i m i  .ed number of inves t iga tors  have considered t h e  dynamic 

s t a b i l i t y  of laminated p l a t e s .  Smirnov :17) considered t h e  f l u t t e r  of 

an i n f i n i t e  sandwich p l a t e  subjected t o  cy l ind r i ca l  bending i n  a gas 

sLream and obtained an exact solut ion.  He later extended t h e  ana lys is  

(18) t o  include semi-infinite sandwich p l a t e s  with various boundary con- 

d i t ions .  He used l i n e a r  piston theory aerodynamics and obtained solu- 

t i o n s  f o r  both clamped and simply supported semi-inf ini te  p l a t e s .  

Librescu and Sadoiu (19) and Ramkumar (23) analyzed t h e  f l u t t e r  of  

f l a t ,  symmetrically laminated, simply supported p l a t e s  with inplane 

normal loads. They used l i n e a r  p i s ton  theory dynamics with aerodynamic 

damping and the Rayleigh-Ritz so lu t ion  procedure with beam mode shape 

functions. F l u t t e r  boundaries a r e  presented as a function of t h e  

o r i en t a t ion  of t h e  p r inc ipa l  axis o f  t h e  lamina f o r  various inplane 

loads and aerodynamic damping coef f ic ien ts .  However, it should be 

noted t h a t  all t he  f l u t t e r  b o n d a r i e s  presented i n  reference 19 were 

obtained using only two terms i n  both t h e  streamwise and cross-stream 

di rec t ion  and the  r e s u l t s  presented i n  reference 23 were obtained using 

t e n  terms i n  t h e  streamwise d i rec t ion  but  only two terms i n  t h e  cross- 

stream direct ion.  Thus, i n  both cases ,  t h e  r e s u l t s  presented may not 

have been completely converged. 

1.2 Statement of Problem 

Although much work has been done i n  t h e  ana lys is  of composite 

laminated p l a t e s ,  as discussed i n  t h e  l i t e r a t u r e  survey, panel f l u t t e r  



stands out as having received very l i t t l e  a t ten t ion .  Panel f l u t t e r  has 

long been recognized a s  a problem f o r  t h e  design of conventional panels 

subjected t o  supersonic flow. This is evident by t h e  l a rge  number o f  

reported panel f l u t t e r  inves t iga t ions  some of which a r e  l i s t e d  i n  re fer -  

ences 27-42. The panel f l u t t e r  work t h a t  has been done f o r  laminated 

p l a t e s  i s  so  l imi ted  t h a t  it is of l i t t l e  value t o  the  designer. It i s  

evident t h a t  t o  design e f f i c i e n t  laminated composite panels f o r  super- 

sonic  appl ica t ion ,  a b e t t e r  understanding of t h e i r  f l u t t e r  character is-  

t i c s  is needed. 

Another a r e a  t h a t  has received l i t t l e  a t t en t ion  i s  t h e  so lu t ion  of 

general laminated p l a t e  problems where' t h e  p l a t e s  may have any number 

of l aye r s  stacked i n  an a r b i t r a r y  sequence with t h e  f i b e r s  i n  each l aye r  

ro t a t ed  a t  an a r b i t r a r y  angle t o  t h e  p l a t e  axis. For general laminated 

p l a t e s ,  t h e  complete bending and extensional governing equations and 

boundary conditions a r e  coupled and must be solved s imu l t aneous l~  t o  

obta in  p l a t e  solut ions.  Considerable d i f f i c t i l t y  is  encountsed  i n  

solving t h e  coupled equations and boundary conditions.  Thus, although 

t h e  governing equations and boundary conditions have been formulated for  

general laminated p l a t e s ,  no general so lu t ions  were found i n  t h e  l i t e r a -  

t u r e  survey, A l l  t h e  so lu t ions  presented were f o r  spec i a l ly  laminated 

(symmetric, angle-ply, o r  cross-ply) p l a t e s  whcae spec i a l  geometry 

r e s u l t s  i n  s impl i f ica t ions  t o  t h e  governing equations and boundary con- 

d i t i ons  which make it considerably easie:. t o  obta in  so lu t ions .  However, 

s ince  i n  t h e  design of laminated p l a t e s  it is  not always p r a c t i c a l  o r  

des i rab le  t o  use spec i a l ly  laminated p l a t e s ,  an ana lys is  i s  needed which 



0; 

or- 

obtains   solution^ f o r  general laminated p la tes .  

The purpose of t h i s  inves t iga t ion  i s  t o  obtain t h e  f l u t t e r  charac- 

t e r i s t i c s  of  f l a t ,  general laminated p l a t e s  using approximate methods. 

The ana lys is  w i l l  be based upon small def lec t ion  theory but  w i l l  consider 

t h e  general coupled governing equations and boundary conditions f o r  

simply supported p la tes .  Thus, an approximate so lu t ion  procedure w i l l  

be developed f o r  completely general p l a t e s  which may have any number of  

l aye r s  stacked i n  an a r b i t r a r y  sequence and with t h e  f i b e r s  i n  each 

lamina ro t a t ed  a t  an a r b i t r a r y  angle t o  t h e  p l a t e  axes. The p l a t e  may 

be subjected t o  uniform inplane normal and shear  loads. 

An extended Galerkin method w i l l  be used t o  obta in  approximate 

so lu t ions  t o  t h e  governing equations and boundary conditions.  The 

extended Galerkin method w i l l  be  used s ince  it provides a s t r a igh t -  

forward so lu t ion  procedure f o r  nonconservative problems ( See r e f .  42$ 

using simple s e r i e s  t o  descr ibe t h e  displacements. The aerodynamic 

loading on t h e  panel w i l l  b e  assumed t o  be given by l i n e a r  p i s ton  theory 

and t h e  flow may be  a t  an a r b i t r a r y  cross-flow angle. P is ton  theory 

aerodyntdcs  w i l l  be used because it  gives simple expressions f o r  t h e  

aerodynamic loading and has been shown t o  be  appl icable  f o r  Mach nuuibers 

g rea t e r  th- 1.6 ( s ee  r e f .  28 and 2%). 

Since symmetrjc and angle-ply p l a t e s  have been t h e  subject  of mesy 

inves t iga t ions ,  approximate so lu t ions  w i l l  be obtained f o r  t yp ica l  

laminated p la tea  from each c l a s s ,  and a l imi ted  parametric study w i l l  be 

conducted t o  determine t h e  e f f e c t s  on Che f l u t t e r  boundaries. The param- 

e t e r e  t o  be s tudied  w i l l  include t h e  nunber and o r i en t a t ion  of t h e  p l i e s ,  



length-width r a t i o ,  inplane shear  and normal loads, and cross-flow 

angles. The f l u t t e r  boundaries from t h i s  analysis  w i l l  be compared with 

those ca lcu la ted  using c l a s s i c a l  o r thot ropic  p l a t e  theory and the  reduced 

bending s t i f m e s s  method. 

Since general laminated p l a t e s  have not been inves t iga ted  p r io r  t o  

t h i s  t ime, approximate so lu t ions  of t h e i r  governing equations w i l l  be of 

spec i a l  i n t e r e s t .  Thus, f l u t t e r  boundaries w i l l  be ca lcu la ted  f o r  some 

t y p i c a l  general laminated p l a t e s  and the  r e s u l t s  w i l l  be compared with 

those obtained f o r  spec ia l ly  cons bructed symmetric and angle-ply p l a t e s .  

F l u t t e r  boundaries w i l l  a l so  be cal.culbted f o r  some composite s t i f f ened  

aluminum p la t e s  t h a t  do not have a s y m e t r i c  o r  angle-ply construction. 

Although t h e  approximate procedure w i l l  be developed ,'sr the purpose 

of obtaining f l u t t e r  so lu t ions ,  t h e  analysis  w i l l  a l so  have t h e  capabi l i ty  

of giving na tu ra l  v ibra t ion  frequencies,  and inplane normal and shear  

s t a t i c  buckling loads. Since no numerical results a r e  ava i lab le  i n  t h e  

l i t e r a t u r e  f o r  general laminated p l a t e s ,  a ~ i g n i  f i can t  contr ibut ion t o  

t he  l i t e r a t u r e  could be made by using t h e  na tu ra l  v ibra t ion  and s t a t i c  

buckl.ing c a p a b i l i t i e s  of t h e  analysis .  However, only a l imi t ed  number 

of na tu ra l  f r e q u e n q  ca lcu la t ions  w i l l  be made t o  compare with published 

r e s u l t s  t o  ver i fy  t h e  so lu t ion  procedure. 



Chapter 2 

DEVFLOPMENT OF GOVEFtNING EQUATIONS 

I n  order t o  develop t h e  governing equations f o r  t h i s  inves t iga t ion ,  

severa l  assumptions a r e  made as follows: 

1. The p l a t e  is  constructed of f l a t ,  uniform thickness  l aye r s  of 

or thotropic  sheets  bonded together .  The d i r ec t ion  O f  pr inc ipa l  s t i f f n e s s  

of t h e  individual  l aye r s  do not i n  general coincide with t h e  p l a t e  edges. 

2, The p l a t e  is  t h i n ;  i , e . ,  t h e  thickness  is  much smaller than t h e  

o ther  physical dimensions. 

3. The displacements a r e  small compared t o  t h e  thickness.  

4. Each lamina obeys Hooke' s l a w .  

5. The Kirchhoff hypothesis is used; i . e . ,  normals t o  t he  midplane 

of t h e  undeformerl p l a t e  remain s t r a i g h t  and n o d  t o  t h e  midplane during 

deformat ion. 

6. Transverse shear and normal s t r a i n s  are negligible .  

7. Body and ro t a ry  i n e r t i a  forces  a r e  negl ig ib le .  

8. The p l a t e  i s  o f  constant t h i c h e a s .  

These assumptions give rise t o  t h e  conclusions t h a t  y XZ'  yyz9 ' I d  Tyz 9 and 

a, 
a r e  negl ie ib le  which is  t h e  c u e  f o r  an approximate s t a t e  of plane 

s t r e s s .  

The coordinate system used t o  i den t i fy  t h e  p l a t e  and lamina 

geometry is  shown i n  f i gu re  3. Thed i s t ances tn  t h e  individual  laminas 

a r e  measured from t h e  geometrical midplane of t h e  p l a t e .  The pos i t ive  

d i r ec t ions  f o r  s t r e s s e s  are shown i n  f i gu re  4. 



2.1 Lamina Stress-Strain Equations 

From elementaiy strength of materials ,  Hooke's law fo r  an orthotro- 

pic lamina i n  a s t a t e  of plane s t r e s s  i s  given as  follows (See r e f .  

where the  s t resses  ul,U2,Tl2, and s t r a i n s  c1,c2, and y12 a r e  

referred t o  the  d i rec t ion  of principal  s t i f f n e s s  and t he  subscript 

r e fe r s  t o  a par t icular  lamina. This relat ionship,  wri t ten for  another 

(x-y-z) system of axes (see f igure 5 . )  where the x-y axes are ro ta ted  a t  

an angle 8 with respect t o  the  1-2 axes, i s  given as follows: 

where the  matrix l a  a tranefomed matrix with the  e l a s t i c  pmper- 
i J  

t i e s  along t h e  principal  we8  of t h e  lamina ro ta ted  t o  the  x-y-z 

(p la te )  axes syetem. The qiJ matrix h u  non-zero values for  all terms 

when t h e  principal  axes of t h e  lamina do not coincide with the  p la te  

exes oystcm ( for  example, a fibrous composite with t h e  f ibe r s  rotated a t  

an angle with the p la te  weo) .  



From elementary strength of materials  considerations, the  s t r a i n  a t  

any point in  a lamina undergoing deformation csn be expressed i n  terms 

of t h e  deformation of the  geometrical nidplane of t h e  lamina. For 

small deflect ions and a s t a t e  of plane s t r e s s ,  t h e  s t r a i n  at any point 

i n  a lsmina z d i e t ~ c e  from the  midplane i s  given i n  terms of t h e  

midplsne s t r a i n  and curvature a s  follows : 

where c,, € O ,  and ywO a r e  the  midplane s t r a i n s  and rX.uy.  and u 
Y xy 

are t he  midplane curvaturee. The midplsne s t r a i n s  and curvatures de- 

fined i n  terms of t h e  displacements a re  needed i n  the  l a t e r  developnent 

of t h e  equations u d  ar t  given a8 follows: 



Uring equations (2.2) and (2.3). t h e  r t r e r a  state a t  my point  i n  a 

lamina: may be wr i t ten  i n  t e r n s  of t h e  midplane a t r a i n  and curvature ae: 

where z i r  t h e  d is tance  from t h e  midplme t o  t h e  point .  

2.2 Lamina and P l a t e  Const i tut ive Equations 

Since f o r  a p l a t e  conrposed of revera l  l aminu ,  t h e  r t r c s see ,  

s t r a i n s ,  and displacements w i l l  bc d i f f e ren t  fo r  each lan ina ,  it i s  

convenient t o  def ine some equivalent ayettm of forcee and manents which 

w i l l  be considered t o  be appl ied t o  t he  midplane of t he  p l a t e .  Within 

t h e  plane r t r t r r  assumption, such r ayrtem w i l l  be defined f o r  a lunlna 

i n  terms of t h ree  s t r e o r  and th ree  moment r t s u l t b n t s *  The s t r e s s  and mment 

r e su l t an t s  f o r  a lamiru art  Gafined IM:  



and are s t a t i c a l l y  equivalent t o  the  actual  s t r e s ses  on the  lamina and 

may be considered t o  be applied a t  the  midplaae of the  lamina. The 

posi t ive  direct ions fo r  the  stress urd munent resul tants  on t h e  p la te  

a r e  shown i n  f igure  6.  Usiw equcrtionr ( 2 . 6 ) ,  ( 2 . 8 )  and ( 2 . 9 )  t he  

s t r e s s  and moment resul tants  c m  be r e l a t ed  t a  t he  s t r a i n  and curvature 

of t h e  midplane, The resul t ing  re l a t ions  u e  known a s  the  1.~1ina 

const i tu t ive  equatio:~s md a r e  given as  follows: 



me plate constitutive ?quat ions be developed from equations (2.10) 

and ; (2.11) by summing up the individual terms for each lamina. 

Thus, 



Since e0 and K are P~nctiona of x and y only and 5 i s  a function of 

lamina properties, they can be taken outside the integral. Thus, 

and 

or after integrating these may be written as: 



where 

Writing t h e  cons t i tu t ive  equations f o r  laminated p la te s  i n  matrix 

notation, they berome : 

These equations indica te  t h a t  fo r  a general laminated p l a t e  e i the r  s t r e s s  

o r  moment resul tants  produce both s t r a ins  and curvatures. Thus there i s  

a coupling between the  s t r e s s  and moment resul tants  through t h e  matrix [B]. 

Since [B] is  an even function of h (see eq. (2.18),), it is zero and hence 

the  equations a r e  uncoupled for  c l a s s i ca l  orthotropic p la tes  and f o r  

laminated p la tes  t i ~ a t  a r e  symmetric about the  p la te  midplane. 

Equations (2.19) and (2.20) w i l l  be rewrit ten i n  a more useful  form 

fo r  the  following developnent by solving equation (2.19) f o r  t h e  midplane 

s t r a i n s ,  and rewriting equation (2.20) i n  terms of t h e  s t r e s s  resul tants .  

Equations (2.19 ) and (2.20) become : 



where 

2.3 P la te  Governing Equations 

Due t o  the  coupling between moment and s t r e s s  r e su l t an t s  noted i n  

equations (2.19) and (2.20), two d i f f e r e n t i a l  equations a re  required t o  

describe t h e  behavior of the  p la te  under various load conditions. The 

f i r s t  equation w i l l  be developed using p la te  equations of motion and t h e  

second equation w i l l  be developed from the  ccmpatibility conditions t h a t  

must be satisfies between t h e  s t r a ins .  

2.3.1 Equations of Motion 

The equations of motion fo r  a t h i n  laminated p la te  a r e  iden t i ca l  t o  

those of homogenous p la te  theory. For a p la te  -1ub jected t o  inplane n o d  

and shear loads and loads perpendicular t o  the  p la te  surface, the  aquations 

of motion are  given as  follows (See ref. 26$ where the  i n e r t i a  terms i n  the  

x and y direct ions a r e  considered t o  be negligible. 



The inplane loads Nx, N , and N may be separated into the uni- 
Y XY 

form externally applied loads w ~ d  the loads induced by the plate deflections 

as follows: 

Substituting the expressions for IV , and N given by equation (2.27) 
Nx* y xy 

into equations (2.2b), (2.25),  and (2.26) results  i n  the following 

equations of mot ion : 



The higher order terms 

have 

then 

been neglected i n  

Defining a s t r e s s  

2 2 2 a~ a w  
(Nt 7 , N; %, and A' - 1  s 

ax ay 
xy axay 

equation ( 2.30 1. 

function F such tha t  ; 

equations (2.28) and (2.29) are sa t i s f i ed  ident ica l ly  by t h e  function. 

The function F i s  referred t o  i n  the  l i t e r a t u r e  (see re f .  26.) as the  

Airy s t r e s s  function. Using tl-e def in i t ions  of F given by equations 

(2.31), t h e  def in i t ions  of CUI vature given by equation (2.5 ) , and the  

expression for  the  moments g ~ v e n  by equation (2.22) i n  equation (2.301, 

the  following expression i s  obtained: 



I f  p i s  taken as the  w?rodynamic loading due t o  a i r  flow over the  

pla te  surface, then equation (2.33) is one of the  equations needed t o  

solve for the  f l u t t e r  of f l a t  laminated plates. Aerodynamic loads pre- 

dicted by piston theory have often been used in  the l i t e r a tu r e  (See re f .  

28 - 42J t o  obtain f l u t t e r  solutions. Piston theory gives a re la t ively  

simple expression for p and has been shown t o  be applicable for  Mach 

numbers greater than 1.6 (see ref. 28 and 29. ) . For supersonic flow 

over one side of a f l a t  p la te  a t  an angle of A with the  x-axis as 



rhown i n  f igure  7, piston theory gives the  following expression for  t h e  

aerodynamic loads. 

aw a(& cos A + - s i n  A 
P '  B ax  ay 

Substi tut ing t h e  expression fo r  p given by equation (2.34 ) in to  

equation (2.33), the  rd lowing governing equation i s  obtained f o r  f l u t t e r  

of f l a t  laminated plates.  

This expression i s  a 4th order p a r t i a l  d i f f e r e n t i a l  equation which governs 

the  f l u t t e r  behavior of f l a t  leminated p la tes  but i s  i n  terms of two un- 

knowns w and F. Thus an addit ional  equation re l a t ing  w and F is 

needed before solutf  on8 t o  . ' f lu t t e r  problems may be obtained. 



2.3.2 Compatibility Equation 

The addit ional  equation needed t o  solve f o r  t h e  p la te  f l u t t e r  

behavior i s  obtained f romthe  compatibility condition that must be 

s a t i s f i e d  between the  midplane s t r a ins .  The appropriate equation i s  

obtained by eliminating the  midplane displacements from t h e  strain-  

displacement r e l a t ions  given i n  equation (2.4). Differentiat ing €: 

(eq. 2 .4(a) )  twice with respect t o  y and EO (eq. 2 .4(b\ )  twice with 
Y 

respect t o  x and adding, the  following expression i s  obtained: 

b ~ t  from eq. (2 .4 (c ) ) :  

therefore : 

Equation (2.37) i s  refer red  t o  a s  the  compatibility equation and w i l l  be 

used t o  develop the  second governing equa5:on i n  tcrms of w and Y. 



Using the  expressions for s t ra ins  given by equation (2.21) and the  

force resultants  given by equations (2.27) and (2.31) and the  

curvetures : given by equation (2.5) i n  equatiot (2.371, give r i s e  t o  the 

following expresd on : 

This i s  the  second governing equation needed t o  solve for the  pla te  be- 

hsvior. It i e  also a fourth order pa r t i a l  d i f fe ren t ia l  equation i n  terms 



of F and w and f o r  f l u t t e r  problems must be solved simultaneously with 

equation (2.35). I n  order t o  solve t h e  equations f o r  a spec i f i c  problem 

t h e  boundary condit ions must be spec i f ied .  

2.4 Poundary Conditions 

Proper boundary conditions which guarantee unique so lu t ions  t o  t h e  

two governing equations must be specif ied.  It has been found (See 

reference 26.) t h a t  t h e  necessary boundary conditions a r e  those of 

c l a s s i c a l  hanogeneous p l a t e  theory plus  those of an inplane e l a s t i c i t y  

problem. Thus due t o  t h e  coupling, t h e  usual  def lec t ion ,  s lope,  moment, o r  

shear boundary condit ions used i n  c l a s s i f i c a l  p l a t e  theory do not give 

unique solut ions but inplane boundary conditions must a l s o  be specif ied.  

The r e su l t i ng  boundary conditions requi re  one member of each p a i r  of t h e  

following quan t i t i e s  t o  be spec i f ied  along t h e  boundaries: 

where n and t are used t o  denote coordinates normal and t angen t i a l  t o  t h e  

p l a t e  boundary respect ively.  



For t h i s  analyeis, the boundary conditione chosen represent those 

for a simply supporttd plate with no inplant edge restraints end are 

given as follows: 

These equations w i l l  be rewritten i n  terms of w and F using the expression 

for mament~ giverr by equation (2.22) end the definition8 of strain, cur- 

vature, and F given by equations (2.41, (2.51, and (2.31) respectively. 

Thus the boundary conditions become: 

w (0,y)  = w (e,y) = w (x.0) = w(x,b) 0 (2.42) 



The governing equations (2.35) and (2.39) along with the boundary con- 

ditions (2.42) through (2.47) w i l l  be solved by using approximate techniques 

in the next chapter. 



Chapter 3 

APPROXIMATF SOLUTIONS OF THE FLUTTER EQUATIONS 

The two governing fourth order paI.tial d i f f e r e n t i a l  e q u a t ~ o n e  (2.34) 

and ( 2 . 3 9 )  along with boundary conditions given by equations (2.42) 

through (2.47) w i l l  be used t o  o b t a h  approximate f lu t . t e r  solut ions.  The 

analys is  w i l l  be developed fo r  the f l u t t e r  of general laminated p l a t e s  whem 

a rb i t r a ry  stacking sequence and or i en ta t ion  of t h e  lamina f i b e r s  .is 

permissible. Since ce r t a in  spec ia l  c l a s se s  of p l a t e s  have been b-udied 

almost exclusively i n  t h e  l i t e r a t u r e ,  t h e  s impl i f ica t ions  t o  t h e  

general solut ion due t o  t h e  spec ia l  constructions w i l l  be d i acusse~ . ,  The 

saec i a l  c lasses  of p l a t e s  considered a r e  symmetric laminated p l a t e s  and 

angle-ply p la tes .  Symmetric p l a t e s  may be composed of any even number of 

lamina of a r b i t r a r y  thickness and w i e n t a t i o n  of t h e  f i b e r  d i r ec t ions  a s  

long as f o r  every lamina above t h e   late midplane the re  i a  an iden t i ca l  

( i n  thickness ,  materAal  proper t ies ,  md or i en ta t ion )  lamina e q d  

distance below t h e  p l a t e  midplane. Angle-ply p l a t e s  a r e  l e s s  general than 

symmetric p l a t e s  and cons is t  of an even number of l uu lnas  all of t h e  same 

thickness and e 1 a e t . i ~  proper t ies  with the o r t h ~ t r o p i c  axes of ryrrm~etry 

i n  each lamina a l t e rna t e ly  or iented at +e snd -8 t o  t h e  p l a t e  axis. 

Although the  ana lys is  and eolut ion procedure w i l l  be developed bae i c s l ly  

t o  stuOy panel f l u t t e r ,  t h e  analysis  is general ar.d t h e  resup-dne computler 

program can a l s o  be used t o  determ1l.e s t a t i c  bucklih;; loads and na tura l  

vibrat ion frequencies. 



3.1 General Laminated P la tes  

An extended Galerkin lnethod w i l l  be used t o  obtain approximate 

f l u t t e r  aolut ions s5nce it provides a straight-forward so lu t ion  proce- 

dure f o r  nonconservative problems ( s e e  re f .  42. ) using a simple s e r i e s  

t o  descr ibe t h e  assumed displacements. The extended Galerkin method 

admits solut ions only when t h e  assumed deflect ions s a t i s f y  t h e  geometric 

(def lec t ion  and s lope)  boundary conditions.  However, t h e  number of 

terms required i n  t h e  so lu t ion  t o  obtain converged r e s u l t s  a r e  probably 

reduced i f  t he  assumed def lec t ions  s a t i s f y  some o r  a l l  of t h e  na tu ra l  

( force  o r  na tura l  cons t ra in ts )  boundary conditions.  Sirice functions a r e  

not avai lable  which s a t i s f y  a l l  t h e  boundary conditions given by equa- 

t i ons  (2.42) through (2.:7), t he  capabi l i ty  t o  account f o r  t he  na tu ra l  

boundary conditions makes t h e  extended Galerkin method pa r t i cu l a r ly  

su i t ed  t o  t h i s  analysis .  

%e extended Galerkin method of so lu t ion  is  i l l u s t r a t e d  by t h e  

follow?! ng equation wr i t t en  i n  terms of t h e  v i r t u a l  work f o r  displace- 

ments w. 

a b 

(governing rquation)(w h d y  + I fllr,x.y) 6~ 

0 0 0 0 



The terms u n d e ~  t h e  double and s jng le  i n t e g r a l s  a r e  usual ly ind iv idua l ly  

s e t  equal t o  zero and re fer red  t o  as t h e  governing equation and boundary 

conditions,respectively. For t h e  boundary conditions t o  be s a t i s f i e d ,  

e i t h e r  t h e  functions f.(w,x,y) o r  t h e  va r i a t i on  of t h e  deflections o r  t h e  
1 

slopes must be zero a t  t h e  appropriate  boundaries. I n  usual appl ica t ions  

of t h e  Galerkin method, a s e r i e ~  of functions i s  chosen which s a t i s f y  all 

t h e  boundary conditions and the  coe f f i c i en t s  of t h e  functions a r e  deter- 

mined so t h a t  t h e  double i n t eg ra l  term i s  zero or equivalent ly t h e  coeffi-  

c i en t s  a r e  determined so t h a t  each term of t h e  s e r i e s  i s  orthognal t o  t h e  

exact solut ion ( see  r e f .  43.). When a l l  t h e  na tura l  boundary conditions 

a r e  not s a t i s f i e d ,  t h e  extended Galerkin method requires  t h a t  t h e  coeff i -  

c i en t s  be determined using t h e  unsa t i s f ied  s ing le  i n t eg ra l  terms a s  well  

a s  t h e  double i n t e g r a l  terms i n  equation 3.1. 

For t h e  f l u t t e r  of general laminated p l a t e s ,  a s e r i e s  of functions 

f o r  both w and F a r e  needed which exact ly s a t i s f y  t h e  geometrical 

boundary conditions given by equation (2.42) and which s a t i s f y  a s  c lose ly  

a s  possible  t h e  na tura l  boundary conditions given by equations (2.43) 

through (2.47). The functions assumed f o r  t h i s  analysis  are given a s  

f'ollows : 

= 'mn s i n -  mrrx a s i n  nlry e i w t  

m = l  n=l  

cos F = 2 Hm cos - 
8 

nny_ 
b 



These functions exactly s a t i s f y  the  geometrical boundary conditions and 

the  natura l  boundary condittons given by equation (2.47) but the  re- 

maining natural  boundary conditioss are not completely sa t i s f i ed .  The 

unsat isf ied natural  boundary 

For Mx: 

K : 
Y 

N,: 

N *  
Y' 

The boundary condition terms 

condition t e r n s  a r e  given as follows: 

( a )  

t h a t  must be included i n  the  extended 

Galerkin method wri t ten i n  terms of t h e  v i r t u a l  work are given as  follows: 

For Mx: 

My: 

Ivx: 



where t h e  displacements u0 end v0 a r e  given as follows and were obtained by 

subs t i t u t ing  t h e  de f in i t i on  of  curvature given by equatior! (2.5) and t h e  

expression f o r  s t r a i n  given by equation (2.22) i n t o  equation (2.4)  and 

in tegra t ing .  

Using the  assumed funct ions given by equations (3.2) and (3.3) and applying 

t h e  extended Galerkin method, t h e  or thogonal i ty  r e l a t i c n s  f o r  t h e  governing 

equations (3.35) and (3.39) with t h e  boundary cocdition terms given by 

equations (3.5) through (3.10) added may be wr i t t en  as follows : 



2  6 I c c ICrs C K I  - yu ) s i n  a s i n  1~ s i n  a a s i n  a b (3 .11)  

0 r=l s=l 

mnx 
+ s i n  A (F) s i n  cos +s in  s i n  + [ K,, cos a cos a b 

s i n  s i n  
a 

mnx - K2 s i n  - s i n  s i n  % s in  
a a 

M N b 

+ c c 5, [. D:6($($(F) feo* a cos 9 0 s  s i n  [ dy 
a 

r = l  s=l 
0 

- 2 L.1 I:, 1.r + B : 1 ( 4  cos 9 cos COS + s i n  a 
r=l s=l 

b dy 

o O i 



and 

0 

b 

- 
[A:6[?)- B;~ (~r(k)- B:~ ($1 COS ~ i I l  a COS b 1 = 0 

0 

where 



Integrating and rearranging the terms, the  following equations are 

obtained : 

and 
M N 



where 

Equations (3.14) and (3.15) r e s u l t s  i n  2 ( ~ )  equations i n  terms of t h e  

two unknowns S and Hrs. I n  order  t o  ge t  t h e  equations i n  a form 
r s  

th5-L can be  solved, Hrs must be solved f o r  i n  terms o f  C rs' This can 

h e  done using equation (3.15) and wri t ing  it i n  t h e  following matrix 

form: 

[bmrsl [Hrs 1 = [amrs 1 [cr, 1 (3.18) 

where r and s a r e  sumzued from 1 t o  M and N respect ively and 

bmnrs 
and a a r e  t h e  coe f f i c i en t  matrices f o r  Hm and Cmn res- 

mnrs 

pect ively.  To obtain Hrs as a function of Crs, premultiply each s i d e  

o f  equation (3.18) by t h e  inverse  of [bmrs] as follows: 

Equation (3.20) r e s u l t s  i n  a s e r i e s  so lu t ion  f o r  
Hm 

i n  terms of t h e  

unknown coe f f i c i en t s  Crs. 



Using equation (3.20) t o  el iminate  
*m 

from equation (3.14),  MxN 

homogenous equations a r e  obtained i n  terms of t he  unknown 
CrS. 

The 

r e su l t i ng  equations be wr i t t en  i n  t h e  following form: 

where t h e  cm a r e  t h e  coe f f i c i en t s  of Cm. Equation (3.21) is recog- 

nized as t h e  wel l  known cha rac t e r i s t i c  equation and has a non-trivLa.1 

so lu t ion  obtained by s e t t i n g  t h e  Qeterminant o f  t h e  coe f f i c i en t  matrix 

t o  zero. This r e s u l t s  i n  an a lgebra ic  equation o f  order  MxN i n  terms 

of w. The roots  of t he  algebraic  equation a r e  t h e  c h a r a c t e r i s t i c  values 

o r  e i p n v a l v e s  and represent  t h e  p l a t e  nondimensional v ibra t ion  fre-  

quencies. 

F l u t t e r  so lu t ions  have been obtained using a d i g i t a l  computer t o  

solve equation (3.21) f o r  i t s  eigenvalves. Since t h e  coe f f i c i en t s ,  

C 
i j  ' a r e  a func t io :~  of t he  f l u t t e r  parameter, A, t h e  p l a t e  v ibra t ion  

frequencies a r e  a l s o  a .function of A. The c r i t e r i a  used t o  define t h e  

point  of f l u t t e r  i s  t h e  lowest value of A which r e s u l t s  i n  two of  t he  

frequencies (u i j )  coalescing and thus  having a negative imaginary 

value. This c r i t e r i a .was  se l ec t ed  because a negative imaginary fre- 

quency r e s u l t s  i n  the  assumed def lec t ion  funct ion ( see  equation (3.21.) 



becoming unbounded s ince  it i s  mult ip l ied  by eiwt. Similar  c r i t e r i a  

has been used extensively i n  t he  l i t e r a t u r e  (See r e f .  39.) t o  define t h e  

point  of f l u t t e r .  

3.2 Symmetric Laminated P la t e s  

P la tes  t h a t  a r e  lami-.ated such t h a t  they a r e  symmetric about t h e  

midplane represent  t h e  l a rges t  c l a s s  of laminated p l a t e s  of p r a c t i c a l  

use. Their  symmetric construction r e s u l t s  i n  warp f r e e  s t r u c t u r a l  

elements which a r e  des i rab le  i n  most appl icat ions.  Also, t h e  governing 

d i f f e r e n t i a l  equations and t h e  boundary conditions a r e  considerably 

simpler than fo r  general 1 ~ 4 n a t e d  p la tes .  Thus, symmetric p l a t e s  have 

been invest igated m r ?  +::i.? any o ther  c l a s s  of laminated p la tes .  

A s  was pointed out  i n  sec t ion  ("2)  and a s  shown by equation 

(2.18(b) ) , B i s  an even function of  t h e  lamina thickness and f o r  
mn 

symmetric p l a t e s  all t he  Bm terms vanish. Thus, t h e  f l u t t e r  equations 

< equations ( 2.35) and ( 2.39) ) a r e  considerably shortened and more impor- 

t a n t l y  become uncoupled. Then only equation (2.35) needs t o  be solved 

t o  obtain a f l u t t e r  so lu t ion .  For a symmetrically laminated p l a t e ,  t h e  

governing f l u t t e r  equation becomes : 



where the  a s t e r i s k s  have been l e f t  o f f  t h e  Dmn terms s ince  D = 
mn 

D*mn 
f o r  symmetric laminated p la tes .  

Although equation (3.22) is considerably simpler t h a n  t h e  f l u t t e r  

equations f o r  general laminatea p l a t e s ,  it d i f f e r s  from t h e  governing 

equation f o r  f l u t t e r  of an or thot ropic  p l a t e  by t h e  aJd i t iona1  D16 and 

DZ6 terms. These terms appear i n  t h e  governing equation a s  a r e s u l t  of 

t h e  f i b e r s  not being al igned with t h e  p l a t e  axea. 

Since f o r  sylmnetric p l a t e s  t h e  governing equations become uncoupled, 

t h e  boundary conditions t h a t  must be s a t i s f i e d  f o r  a f l u t t e r  so lu t ion  

a re  given by equations (2.42) through (2.44) and a r e  rewr i t ten  as 

follows with t h e  B terms removed: 
m 

These equations d i f f e r  from the  boundary conditions f o r  a simply 

supported or thotropic  p l a t e  by t h e  D16 and D26 terms. 

To obtain a standard Galerkin so lu t ion  f o r  syxnetr ic  p l a t e s ,  it is 

necessary t o  assume a function f o r  w t h a t  e a t i e f i e s  dl t he  boundary 

conditions (3.23) through (3.25). However, t h e  D16 and D~~ terms 

make it d i f f i c u l t  t o  . f ind  s ~ c i s f a c t o r y  functions. Therefore, t he  same 

d e f l e c t i ~ n  iunct ion w e d  i n  sec t ion  (3.1) f o r  general laminated p l a t e s  

and given by equation (3.2) w i l l  be assumed and t he  extended Galerkin 



method used t o  account f o r  t he  unsa t i s f ied  na tu ra l  boundary conditions,  

The houndary condition terms t h a t  must be accour.ted for by t h e  extended 

Galerkin method a r e  given as follows: 

Using t h e  assumed functions given by equation (3.2) and applying the  

extended Galerkin method t o  the governing equation (3.22) with the  
D16 

and D26 boundary condition terms included, r e s u l t s  i n  t he  following 

equation: 



Equation ( 3.29) represents  a system of (MXN) l i n e a r  honogenous equations 

i n  t e r n  of t h e  unknown 
Cm 

and i s  recognized a s  t h e  eigenvalue equa- 

t ion .  F l u t t e r  so lu t ions  a r e  obtained f o r  equrstion ( 3 .29 )  i n  the  same 

manner 88 discussed i n  sec t ion  (3.1) f o r  general laminated p l a t e s .  

3.3 Angle-ply P la t e s  

Angle-ply p l a t e s  by de f in i t i on  a r e  constructed s o  as t o  have an even 

nuuiber of l eye r s  ~1.1 of t h e  same thickness and e l a s t i c  proper t ies  an$ 

with t h e  o n h o t r o p i c  ax is  of symmetry i n  each p ly  a l t e r n a t e l y  or iented 

a t  +0 end -0 t: t h e  p l a t e  ax is  ( s ee  Fig. 2 . ) .  Although angle-ply 

p l a t e s  do not represent  BB large o r  as important a group as t h e  symmetric 

p l a t e s ,  they a r e  important from an analy t ic  viewpoint f o r  ob ta i~ i ing  a 

b e t t e r  understanding of general laminated p l a t e s .  Becauee of the  spec i a l  

gedmetry of angle-ply p l a t e s ,  t he  governing equations a r e  considerably 

a i n q l i f i e d  but  a r e  s t i l l  coupled. Thus, angle-ply p l a t e s  r e t a i n  many of 

t he  cha rac t e r i s t i c s  of general l d n a t e d  p l a t e s  but r e l a t i v e l y  simple 

so lu t ions  can be obtained. These cha rac t e r i s t i c s  have r e su l t ed  i n  t he  

angle-ply plaLes being s tudied  extensively i n  t he  1i t .eratu-e t o  cb ta in  a 

b e t t e r  understanding of general l d n a t e d  p la tes .  

For angle-ply p l a t e s ,  it can be shown ( see  ref. 5. ) t h a t  t h i s  

spec i a l  construction r e s u l t s  i n  some of t he  coe f f i c i en t s  being zero as 

followe : a a a a 
*16 *26 = D16 = D26 

a a a ( 3 . 3 0 )  
' 31 = B22 = B66 = B12 = 0 

Se t t i ng  these  terms t o  zero i n  t h e  f l u t t e r  equations 12.35)  and (2 .391 ,  

r e s u l t s  i n  t h e  following governing equstions.  



These tduationu are coupled and must be solved simultaneously. 

Since the governing equations for angle-ply plates are coupled, a l l  

the boundary conditions given by equations (2.42)  through (2 .47'  must be 

sa t i s f i ed .  However with some o f t h e  coef f ic ients  being zero as indicated 

by !.equations (3.291, the boundary co?ditions are simplified as follows: 



I f  the  functions f o r  w and F used f o r  the  general l d n a t e d  

p la tes  (sect ion 3.1) and given by equations (3.2) and (3.3) a re  used, 

then boundary conditions (3.33), (3.341, (3.35), and (3 .38)  a r e  s a t i s -  

fied. Boundary conditions (3.36; and (3.37) a r e  not s a t i s f i e d  d i rec t ly  

but w i l l  be shown t o  be s a t i s f i e d  indi rec t ly  by the  following deve lop  

ment. Einc? equations (3.36) and (3.37) are not s a t i s f i e d ,  the  terms 

tha t  must be included i n  the  extended Galerkin method a re  given by 

equations ( 3 . 7 )  and ( 3 . 8 )  and a re  repeated as follows: 

Using equations ( 3.9), (3.101, ( 3.29) and ( 3.30), the  displacements u 
0 

0 
and v are given as  follows : 



Using t h e  assumed functions given by equations ( 3.2) and ( 3.3) i n  equa- 

0 
t i ons  (3.39) and (3.40) r e s u l t s  i n  zero values fo r  u and v0 on t h e  

boundaries x = 0 and a, and y = 0 and b, respect ively.  Thus, a l l  

t h e  boundary conditions a r e  s a t i s f i e d  without using t h e  extended 

Galerkin method. 

Subs t i t u t i ng  t he  expressions f o r  F and w given by equations 

(3.2) and (3 .3)  i n t o  equations (3.31) and (3.32) r e s u l t s  i n  t h e  follow- 

ing equations : 

- 2 
"y (?)(?) cos cOI a + c r s cos A cos - a .in P 

L 

+ ( )  i n  A sin 0 s  
a 

and 



Eliminating Hm between t h e  two equations, t h e  following expression is  

obtained: 

+ s i n  A (?-sin a 0 

j l 
where 

Applying the  Galerkin procedure t o  equation (3 .43)  and rearranging t h e  

terms, t he  Zollowing equation is obtained: 



Equation (3.45) r e s u l t s  i n  MxN homogenous equations i n  terms of Cmn 

and i s  recognized a s  t h e  eigenvalue equation. F l u t t e r  so lu t ions  a r e  

obtained f o r  equation (3.45) i n  t h e  same manner as discussed i n  sec t ion  

3.1 f o r  general and symmetric laminated p la tes .  

3.4 Approximate Solut ions 

An approximate theory (See r e f .  20. ) r e f e r r ed  t o  a s  t h e  reduced 

bending s t i f f n e s s  theory w i l l  be  compared with the  present ana lys is .  In  

t he  approximate theory, t h e  p l a t e  bending s t i f f n e s s  is reduced by an 

amount depending 011 t h e  coupling between t h e  governing equations and 

then the  coupling is  neglected when solving t h e  equations. The reduced 

bending s t i f f n e s s  is  t h e  same as t h a t  defined by equation (2 .18(c) ) .  

Thus, t h e  governing equation f o r  t h e  reduced bending s t i f f n e s s  theory 

i s  obtained from equation (2.35) by neglect ing t h e  coupling [ B ~ ]  and 

is  given a s  follows: . 



Since the  coupling i s  neglected, only boundary conditions given by eqca- 

t ions  (2.42) through (2.44) with [ B ~ ~ ]  = 0 need t o  be s a t i s f i e i .  The 

bcundary conditions a r e  given as follows : 

The resul t ing  governing equation ( 3.46) and boundary conditions 

(3.47) through ( 3.49) are  iden t i ca l  t o  those used f o r  symmetric lamin- 

ated p la tes  (See equations (2.22) through ( 2.25). ) except t h a t  [D*] i s  

used instead of  [Dl. Thus, the  approximate theory reduces the  solut ion 

for  general laminated p la tes  t o  t h a t  of a symmetric p la t e  with t h e  bend- 

ing s t i f f n e s s  reduced. For angle-ply p la tes ;  the  and D*26 terms 

(See equation ( 3.29 ) . ) a r e  zero and the  approximate governing equation 

( 3.46) and boundary conditions (3.47) through ( 3.49) a re  iden t i ca l  t o  

those fo r  classical p la te  theory. Thus, t he  reduced bending s t i f f h e s s  

theory can be used t o  obtain solut ions f o r  angle-ply plates From 



p d l i s h e d  c l a s s i c a l  p l a t e  theory r e su l t s .  Since f o r  synsletric p l a t e s  

[ B ~ ]  = 0 and [D*] = [D] , t he  reduced bending stiff 'ness theory and t h e  

present ana lys is  a r e  i den t i ca l .  

The advantages of using t h e  approximate theory a r e  evident f o r  

angle-piy p l a t e s  s ince  r e s u l t s  can be obtained u s i t ~ g  w e l l  known published 

sa lu t ions  . For symmetric and general laminated p l a t e s ,  t h e  advantages 

are not so c l e a r  s ince  a symmetric ana lys is  s imi l a r  t o  t h e  ope discussed 

i n  sec t lon  3.2 is  necessary even t o  obta in  approximate so lu t ions .  How- 

ever ,  p r i o r  t o  t h e  present ana lys is  t h e  reduced bending s t i f f n e s s  theory 

was t h e  only so lu t ion  procedure ava i lab le  fo r  general laminated p l a t e s .  



Chapter 4 

RESULTS AND DISCUSSIONS 

The equations governing the  behavior of general laminated p l a t e s  

have been programed f o r  approximate so lu t ion  on a d i g i t a l  computer. 

Although t h e  computer programs were developed l a rge ly  t o ~ o b t a i n  f l u t t e r  

r e s u l t s ,  na tu ra l  v ibra t ion  frequencies and s t a t i c  buckling loads may 

readi ly  be obtained using t h e  programs. Special  ana lys i s  and programs 

were developed t o  obta in  so lu t ions  f o r  symmetric and angle-ply p la tes .  

However, t h e  advantages of  using t h e  spec i a l  programs over t he  one 

developed f o r  t h e  gene1,al laminated p l a t e s  were minimal and i n  all cases 

gave i d e n t i c a l  r e su l t s .  

F l u t t e r  boundaries have been ca lcu la ted  f o r  symmetric, angle-ply, 

and general laminated p la tes .  The p l a t e  nomenclature an3 geometry a r e  

shown i n  f i gu re  8 f o r  symmetric p l a t e s ,  i n  f i gu re  9 f o r  eagle-ply p l a t e s ,  

and i n  f i gu re  10 f o r  general laminated p la tes .  F l u t t e r  'ooundaries were 

a l s o  obtained f o r  an aluminum p l a t e  w i t h  one, two and four  i aye r s  of  
6 

composite mater ia l  appl ied t o  one o r  both s ides  of t'he p l a t e  as shown i n  

f i gu re  11. The mater ial  p roper t ies  of t h e  individual  lamina used ir! 

making t h e  ca lcu la t ions  a r e  t yp ica l  of those f o r  boron-epoxy and glass- 

epoxy mater ials .  These mater ia l  propert ies  a r e  given i n  t a b l e  I. 

Material  propert ies  f o r  t h e  composite s t i f f e n e d  alumi~~um p l a t e  a r e  given 

i n  t a b l e  11. 



4.1 Convergence of  Results 

When using a s e r i e s  so lu t ion ,  it is important t o  determine t h a t  

s u f f i c i e n t  terms a r e  used i n  t h e  analysis  t o  obta in  converged r e su l t s .  

However, using more terms than necessary r e s u l t s  i n  considerably longer 

computation times. The usual procedure fo r  determining convergence is 

t o  s t a r t  with a small number of  terms and increase t h e  number u n t i l  t h e  

so lu t ion  does not change as more terms a r e  included. For so lu t ions  

obtained herein,  a converged r e s u l t  is one which changes no more than 

1 percent when more terms are included i n  t h e  f l u t t e r  determinant. This 

method of determining convergence i s  demonstrated i n  f i gu re  1 2  f o r  a 

four-ply, symmetric, square panel where t h e  f l u t t e r  parameter i s  shown 

as  a fhnction of t h e  number of terms i n  t h e  x-direction. Curves a r e  

shown f o r  8 = 0' and 60°, and t h e  symbols represent  t h e  d i f f e r en t  

numbers of terms used i n  t h e  y-direction. For 8 = oO, four  terms i n  

t h e  x-direction and only one term i n  t h e  y-direction a r e  s u f f i c i e n t  f o r  

converged r e s u l t s .  For 8 = 60°, approximately s i x  t e r n s  i n  both t h e  

x- and y-directions a r e  needed t o  obtain r e s u l t s  converged within 1 per- 

cent.  Note t h a t  f o r  8 = 60°, t he  converged so lu t ion  is approached from 

higher  values of A f o r  m > 4 and n > 2. This suggests t h a t  t he  

c ross -s t i f fness  terms have an adverse e f f e c t  on t h e  f l u t t e r  so lu t ion ,  a 

phenomena t h a t  w i l l  be discussed i n  a l a t e r  sec t ion .  

The modes t h a t  coalesce t o  produce f l u t t e r  f o r  0 = 0' and 8 = 60' 

a r e  shown i n  f igures  .13(a) and 13 (b ) ,  respect ively,  where X i s  shown 

as  a function of t h e  non-dimensional frequency squared. For both cases ,  



t he  (1.1) and (2.1) modes coalesce and resu l t  i n  f l u t t e r .  The d i f ferent  

numbers of terms required t o  obtain converged resu l t s  fo r  the  two cases 

0 
ace due t o  the  D16 and DP6 cross-Stiffness tern. For 8 = O , the  Cross- 

s t i f f n e s s  terms a r e  zero, and the  p la te  is an orthotropic p la te  fo r  

which it has been shown (See re f .  40.) t h a t  only the  f i r s t  mode i n  the  

cross-stream direct ion has an e f fec t  on the  f l u t t e r  solutions. For 

0 = 60°, the  cross-stiffness terms couple the modes i n  t h e  x- and 

y-directions, and consequently, all modes ef fec t  the  f l u t t e r  s o l u t i o ~ .  

An attempt has been made throughout the  remainder of t h i s  study t o  in- 

sure t h a t  the  values presented a re  converged within approximately 1 

percent. 

4.2 Comparison with Li tera ture  

In order t o  verify,  as well  a s  possible, the  accuracy of the  present 

analysis ,  the  analysis  w i l l  be used t o  obtain f l u t t e r  data comparable 

with t h a t  presented i n  reference 19 f o r  square synm,+tric plates.  The 

material  properties f o r  the  p la te  considered i n  reference 19 are given 

i n  t ab le  111. A comparison of the  f l u t t e r  boundaries is shown i n  figure 

1 4  where X is  shown ae a function of the  orientat ion angle of the  out- 

s ide  lamina. The dashed curves were obtained from reference 19, end the  

so l id  curves were obtained using the  present analysis.  Both s e t s  of 

curves were calculated using only two terms i n  the  x- and y-direct ims.  

The agreement between the  two analyses i s  very good except fo r  0' = 0' 

and 0' = 90' and f o r  8 near 90' where large discrepancies do e x i s t ,  

Since the  present analysis uses a Galorkin method of solut ion and the  



ar;lysis of  r e f e r a m e  19 uses a Rayleigh-Ritz method, the  discrepancy is  

a t t r i b u t e d  t o  t h e  difference between t h e  two methods when an in su f f i c i en t  

number of terms a r e  used i n  t he  ana lys is  t o  cLtcin converged r e su l t s .  

For converged r e s u l t s ,  both analyses should give t h e  same values. Con- 

verged f l u t t e r  boundaries obtained using t h e  present analysis  a r e  shown 

i n  f igure  15. Although it i s  evident t h a t  t h e  two-t;rm so lu t ions  are 

not converged, t he re  i s  s t i l l  good agreement between the  t rends  shown by 

the  two-term and t h e  converged analysis .  For 9 = 0' o r  8 = 90' and 

f o r  e 1  = 0' o r  8' = go0, t h e  present analysis  should give the  same re- 

s u l t s  as an or thot ropic  aaa lys i s  s ince  the  c ross -s t i f fness  terms a r e  

zero. This i s  shown i n  f igure  13 where the  symbols represent or thotropic  

r e su l t s  obtained from reference 31. 

Although no f l u t t e r  so lu t ions  were found i n  t he  l i t e r a t u r e  f o r  

angle-ply o r  general laminated p l a t e s ,  some comparisons of  na tu ra l  f re-  

quencies f o r  angle-ply and cross-ply p l a t e s  a r e  possible .  The four 

lowest na tu ra l  frequencies ca lcu la ted  using t h e  present  ana lys is  a r e  

compared i n  t a b l e s  I V  and V v i t h  those ca lcu la ted  i n  reference 15  using 

a R~yleigh-Ritz  method Par square a n g l e p l y  and cross-ply p l a t e s ,  res- 

pectively. The n s t u r a l  frequencies ca lcu la ted  by t h e  present ana lys is  

f o r  simple supports should compare d i r e c t l y  v i t h  those r e f e r r ed  t o  i n  

reference 15 as having hinge-free-tangential  and hinge-free-normal 

boundary conditions,  respect ively,  f o r  t h e  angle-ply end cross-ply 

p la tes .  For angle-ply p l a t e s ,  na tu ra l  frequencies are given f o r  t h e  

pr inc ipa l  mater ia l  d i rec t ions  ro ta ted  at oO, lo0,  20'. 30°, and 40' 

with respect  t o  t h e  p l a t e  ares .  The agreement between t h e  two analyses 



is excellent.  

For cross-ply p la tes ,  na tura l  frequencies calculated using the  two 

analyses a re  compared (See t ab le  V. ) , f o r  values of El1/Ez2 = 1, 10, 20, 

30, and 40. The agreement between the  two analyses is excellent e x c q t  

for  the  higher frequencies and high values of the  r a t i o  Ell/E22. 
How- 

ever, the  difference0 are  too small t o  be of p rac t i ca l  significance. 

Since 8 E-..ecial analysis w a s  not made fo r  cross-ply p la tes ,  the  analysis  

fo r  general laminated p la tes  was used t o  obtain the  na tura l  frequencies. 

Thus, t h e  assumed mode shape functions do not s a t i s f y  the  boundary con- 

d i t ions  exactly, but they are  s a t i s f i e d  through the  extended Galerkin 

procedure as discussed i n  section (3.1). The good agreement between the  

natura l  frequencies indicates the  va l id i ty  of using the  Galerkin method 

t o  account fo r  the  boundary conditions not s a t i s f i e d  by the  assumed mode 

4.3 Symmetric Plates 

F lu t t e r  boundaries f o r  ~ym&iric p la tes  with lamina propert ies  

typica l  of boron-epoxy material o r  a glsss-epoxy material a re  presented 

i n  t h i s  section where A is shown aa a function of the  angle t h a t  the  

f ibe r s  make with the  x-axis. The e f fec t s  of inplane norm+-- and shear 

loads and cross-flow on the f l u t t e r  of a square boron-epoxy p la te  com- 

posed of 4 laminas are also  shown. The values of X i n  each case a re  

- 
based on Dll which is  the  value of Dll with a11 t h e  f ibers  aligned 

with the  x-axis. 



4.3.1 Flu t t e r  Boundaries 

F lu t t e r  boundaries fo r  square, symmetric, glass-epoxy and boron- 

epoxy pla tes  are  presented i n  f igure 16(a ) ,  and 16(b) ,  respectively, fo r  

p la tes  composed of two, four, and s i x  laminas. For square symmetric 

p la tes ,  the  highest f l u t t e r  s t a b i l i t y  is obtained with the  f ibers  aligned 

with thc  x-axis; ro ta t ing  the  f ibe r s  away from the  x-axis r e su l t s  i n  a 

continuous reduction i n  f l u t t e r  s t a b i l i t y  for  values of 0 up t o  90'. 

F lu t t e r  boundaries calculated using c l a s s i c d  orthotropic p la te  theory 

which neg1ect.s the crcas-stiffaces terms D16 and DZ6 are  seen t o  be 

inaccurate and nonconservative. Thus, inclusion of the  crcss-st i ffness 

terms i n  the  analysis has a des tabi l iz ing  e f fec t  on f l u t t e r .  Increasing 

the number of laminas composing the  p la te  r e su l t s  i n  improved f l u t t e r  

s t a b i l i t y  and f l u t t e r  boundaries t h a t  a r e  closer  t o  those given by 

c las s i ca l  p la t e  theory. P comparison of the  f l u t t e r  boundaries fo r  the  

glass-epoxy (see  fig. 16( a). ) and boron-epoxy (see f ig .  16(b). ) pla tes  

shows t h a t  increasing the  orthotropy ( fo r  glass-epoxy material 
Ell/Epp 

= 3, and fo r  boron-epoxy material  Ell/Epp = 10) of the  laminas causes 

the  discrepancy between c l a s s i c a l  p la t e  theory am? the  present analysis 

t o  be more pronounced. Alro, fo r  t h e  more highly orthotropic material 

propert ies ,  or ient ing  the  f ibers  transverse t o  the  flow has a la rger  

destabil izing e f fec t  on f l u t t e r .  

F lu t t e r  boundnries eimilar  t o  those presented i n  f igure 16 for  a 

square p la te  arc presented i n  f igure 17 for  a boron-epoxy pla te  with a 

length-width r a t i o  of 2.0. These f l u t t e r  boundaries show the  solutions 

based upon claseiced p la te  theory t o  be h i@ly nonconservative due t o  



the  neglect of the  crosr-st i ffness terms. For the  aha = 2.0 p la te ,  

ro ta t ion  of the  f ibe r s  away from t h e  x-axis r e su l t s  i n  an increase i n  

the  f l u t t e r  s t a b i l i t y  t o  maximum values of X fo r  8 of approximately 

30' and 40'. respectively, for  p la t e s  composed of two and four laminas. 

Thus, i n  designing composite laminated p la tes ,  proper f i b e r  orientat ion 

is important t o  improved f l u t t e r  6tabil. i ty ,'or the  plate.  

4.3.2 Effect of 1.1plane Normal and Shear Loade 

The e f fec t  of .the f l u t t e r  boundaries of inplane nonnal and shear 

loads f o r  a square, symmetric, boron-epoxy panel composed of four 

1aP;lnas is shown i n  figures 18 and 19 where X i o  presented as a func- 

t i o n  of the  inplane load. F lu t t e r  boundaries a r e  shown f o r  values of 

8 = oO, l5', and 30'. The c i r c l e  symbols indicate the  point o f  buckling 

with a i r  flow. 

Inplane normal loads ( see  f ig .  18. ) renult  i n  ap1;roximstely a l i n e a r  

reduction i n  f l u t t e r  s t a b i l i t y  f o r  loads up t o  the  point o f  buckling. 

The e f fec t s  of the  cross-st i f inera t e r m  and ro ta t ion  of the  f ibe r s  away 

from the  x-wis both r e r u l t  i n  a reduction i n  the  f l u t t e r  r t a b j l i t y  and 

buckling lords.  Thus, c lass i ca l  p la t e  theory, which neglects the  cross- 

s t i f f n e s s  t e r m ,  i r  n o n c o n s e ~ t i v e  i n  i t s  predictions of both f l u t t e r  

s t a b i l i t y  and buckling loads. 

5-1 inplane rhear loads (see f ig .  19.) have a s t a b i l i z i n g  e f fec t  

on f l u t t e r  fo r  0 = 15' and 8 = 30". but l a rgc r  loado decrease the  

f l u t t e r  s t a b i l i t y .  The increase i n  f l u t t e r  s t a b i l i t y  with small inplane 

sheer load8 is contrary t o  r e s u l t s  obtained fo r  i so t ropic  p la tes  (Set 



re f .  41. ) and i e  due t o  a change i n  t h e  modes %hat coalesce t o  produce 

f l u t t e r .  This is s h a m  i n  f igu re  20 where coalescence of t h e  frequencies 

- 
f o r  8 = 15' a r e  shown f o r  values of inplane shear  loads K = 0.. , 5 ,  

xy 

and 1.0. For = 0 ( s e e  f ig .  2 0 ( a ) , )  and i? = 1.0 (See f ig .  20(c) . ) ,  
ICY w 

t h e  two lowest frequencieo which correspond t o  t h e  (1.1) and (1.2) modes 

coalesce and r e s u l t  i n  f l u t t e r ,  However, f o r  a sm?l. inplane shear load 

- 
K of 0.5 ( s ee  f i g ,  20(b) . ) ,  t h e  lowest frsquency and one of t he  higher 
w 

frequencies,  which correrpond t o  t h e  (1.1) and (2,1! modes, coalesce t o  

produce f l u t t e r .  For g rea t e r  than 1.0, t h e  (1.1) and (1.2) modc 
ICY 

continue t o  coalesce t o  produce f l u t t e r  but  at lower values of X (See 

f i g .  19. ). The cross-stiff 'ness terms and r o t a t i n g  t h e  f ibe r s  away :'rom 

the  x-axis both r e s u l t  i n  increased buckling loads and i n  improvec? 

f l u t t e r  s t a b i l i t y  f o r  most values of inplane shear  loads. This i u  con- 

t r a r y  t o  ref iul ts  noted f o r  inplcne nonnsl 10838. It should be noted 

t h a t  a t  t he  point o f  buckling, t h e  f l u t t e r  values of X f o r  inplanr  

shear  loads (See f i g .  19. ) a r e  considerably lower than those of inplane 

normal loads ( see  f ig .  18.). This  is i n  cont ras t  with r e s u l t s  presented 

i n  reference 41 f o r  i so t rop ic  p la tes .  

4.3.3 Effect of Cross-flow 

The z f f ec t e  of  cross-flow on the  f l u t t e r  boundaries f o r  a square, 

s y m e t r i c ,  boron-epoxy p l a t e  cornpored of four laminas src shown i n  

f igure  21. F l u t t e r  boundarieo a r e  preoented f o r  t) = oO, 15' and 30' 

where X is  shown ae a function of t h e  cross-flow angle. For 8 = 15' 

and 8 - 30'. flow a t  small cross-flou anglee may have a subs t an t i a l  



s t ab i l i z ing  ef fec t  on f l u t t e r .  For 0 = 15O, a 30 percent increase i n  

h may be obtained fo r  a 10' cross-flow angle whereas l a rge r  cross-flow 

angles r e su l t  i n  a reduction i n  f l u t t e r  s t a b i l i t y .  Similar r e su l t s  a re  

obtained f o r  8 = 30' where a 45 percent increase i n  h is obtained 

fo r  a cross-flow angle of 20'. This increase i n  the  f l u t t e r  s t a b i l i t y  

with cross-flow angle can be explained as follows: Cross-flow is  de- 

stab'lizing fo r  an orthotropic p la te  (see r e f .  40.). Orienting the  

f ibers  a t  an angle with the  p la te  axis  r e su l t s  i n  the  maximum bending 

s t i f fness  and thus the  marimurn f l u t t e r  resistance occurring i n  t h a t  

direction. These factors  tend t o  counteract each o ther  and resu l t  i n  

the  maximum f l u t t e r  s t a b i l i t y  occurring a t  an angle between the  x-axis 

and the  f ibe r  directions. Note t h a t  the  maximuii value of A fo r  the  

cases shown a re  obtained a t  an angle approximately two-thirds of the  

angle A t he  f ibers  make with the  x-axis. 

For p la tes  with the  f ibe r s  aligned with the  x-axis ( 8  = o O ) ,  cross- 

flow i s  destabil izing,  but a t  small cress-flow angles they have higher 

values of X than plates with the  f ibe r s  rotatod a t  0 = 15' and 0 = 

30'. Classical p la te  theory does not show any benef ic ia l  e f fec t s  of 

cross-flow and thus, underpredicts the  f l u t t e r  s t a b i l i t y  f o r  la rge  cross- 

flow angles. For laminated composite p la tes ,  cross-flow may be e i the r  

s t ab i l i z ina  o r  destabil izing depending on the  flow angle and the  orienta- 

t ion  of  the  f ibers ,  Thus, i n  designing composite p la tes  tha t  w i l l  experi- 

ence cross-flow, an optimum orientat ion of the  f ibe r s  may considerably 

improve the  f l u t t e r  s t a b i l i t y  of the  plate. 



4.4 Angle-ply P la t e s  

F l u t t e r  boundaries ca lcu la ted  using t h e  present ana lys is ,  c l a s s i c a l  

p l a t e  theory, and reduced bending s t i f f n e s s  theory a r e  presented i n  t h i s  

sec t ion  f o r  t y p i c a l  angle-ply p la tes .  The e f f e c t s  of inplane normal and 

shear  loads and cross-flow on t h e  f l u t t e r  of a s q u u e  boron-epoxy p l a t e  

composed of  four  laminas are a l s o  shown. There is  a bending-extensional 

coupling between the  governing equations f o r  an angle-ply p l a t e  which i s  

neglected by c l a s s i c a l  p l a t e  theory. Since t h e  c ross -s t i f fness  terms 

discussed i n  sec t ion  4 .3  f o r  symmetric p l a t e s  a r e  zero f o r  angle-ply 

p l a t e s ,  t h e  only difference between c l a s s i c a l  p l a t e  theory and t h e  pre- 

sen t  analysis  is  due t o  bending-extensional coupling. The reduced bend- 

ing  s t i f f n e s s  theory accounts f o r  t h e  coupling i n  an approximate way by 

reducing t h e  Zending s t i f m e s s  of t h e  p l a t e  by an amoun', determined from 

t h e  coupling terms and then neglect ing t h e  coupling i n  solving t h e  equa- 

0 
t i ons .  For 8 = 0 o r  0 = 90°, t he  coupling terms a r e  zero, and t h e  

present ana lys is  and t h e  reduced bending s t i f f n e s s  theory become ident i -  

c a l  with c l a s s i c a l  p l a t e  theory. 

4.4.1 F l u t t e r  Boundaries 

F l u t t e r  boundaries f o r  square,  angle-ply p l a t e s  with propert ies  

t y p i c a l  of  a glass-epoxy and a boron-epoxy mater ial  a r e  presented i n  

f igure  22(a)  and 22(b), respect ively,  where X i s  shown a s  a f'unction 

of 8. Bending-extensional coupling has a l a rge  des t ab i l i z ing  e f  f e c t  on 

t h e  p l a t e  composed of  only two laminas, bu t  as t h e  rider of laminas 

increase,  t he  coupling e f f e c t  becomes smaller ,  and the  boundaries 



approach those given by c l a s s i c a l  p l a t e  theory. The reduced bending 

s t i f f n e s s  theory gives f l u t t e r  boundaries t h a t  s r e  i n  good agreement 

with t h e  ac tua l  boundaries even f o r  t h e  p l a t e  composed o f  only two 

laminas. The s m a l l  e r r o r s  associated with using t h e  reduced bending 

s t i f f n e s s  theory, however, a r e  not alwqrs conservative. Comparing t h e  

f l u t t e r  boundaries f o r  t h e  glass-epoxy ( s e e  f ig .  22(a).)  and t h e  boron- 

epoxy ( see  f ig .  22(b).) p l a t e s  shows t h a t  increasing t h e  orthotropy of 

t h e  laminas increases  t h e  des t ab i l i z ing  e f f e c t  of bending-extensicnal 

coupling. The good agreement between t h e  present  ana lys is  and t h e  re- 

duced bending s t i f f n e s s  ana lys is  does not de t e r io ra t e  as t h e  lamina 

or thot  ropy i s  incret~sed.  

F l u t t e r  boundaries s imi l a r  t o  those presented i n  f i gu re  22 f o r  a 

square p l a t e  a r e  presented ir, f i gu re  23 f o r  a boron-epov p l a t e  with a 

length-width r a t i o  of 2.0. The f l u t t e r  boundaries show l a r g e r  destabi l -  

i z i n g  e f f e c t s  due t o  bending-extensional coupling than found f o r  t h e  

square p l a t e s ,  bu t  increasing the  nuniber of  laminas composing t h e  p l a t e  

reduces t h e  des t ab i l i z ing  e f fec ts .  For p l a t e s  with four  o r  more laminas, 

o r ien t ing  t h e  f l b e r s  at an angle w j  t h  t h e  x-axis may r e s u l t  i n  l a r g e  

improvements i n  t h e  f l u t t e r  s t a b i l i t y  with t h e  highest  f l u t t e r  values 

being obtained at 0 2 45O. For p l a t e s  with two laminas, r o t a t i n g  t h e  

f i b e r s  away from t h e  x-axis r e s u l t s  i n  l i t t l e  o r  no improvement i n  t h e  

f l u t t e r  s t a b i l i t y .  I n  each case,  o r i en t ing  t h e  flbers t ransverse t o  t h e  

x-axis r e s u l t s  i n  t h e  most unstable condition. Good agreement is  obtained 

between t h e  present ana lys is  and t h e  reduced bending s t i f f n e s s  theory 

f o r  all p la t e s ,  bu t  t h e  l a r g e s t  discrepancy i s  obtained f o r  t h e  p l a t e  



composed of  two lamines. 

4.4.2 Effect of Inplane Normal and Shear Loads 

The e f f e c t s  of inplane normal and shear  loads on t h e  f l u t t e r  of 

square angle-ply p l a t e s  a r e  shown i n  f igure  24(a)  and 24(b) ,  respectively. 

F l u t t e r  boundaries a r e  shown f o r  values of 0 = oO, 15O, and 30'. The 

c i r c l e  symbols ind ica te  t h e  point  of buckling with air flow. Inplane 

normal and shear  loads r e s u l t  i n  a sharp drop i n  t h e  f l u t t e r  s t a b i l i t y  

f o r  loads up t o  t h e  point  of buckling. Bending-extensional coupling has 

a des t ab i l i z ing  e f f e c t  on f l u t t e r  and reduces t h e  panel buckling loads. 

For p l a t e s  with inplane normal loads ( see  f ig .  24 (a ) . ) ,  r o t a t i n g  t h e  

f i b e r s  away from the  x-axis genernlly has a des t ab i l i z ing  e f f e c t  on the  

f l u t t e r  and reduces the  buckling loads, but  f o r  p l a t e s  with l a rge  in- 

plane shear  loads (See f i g .  24(b) . ) ,  t h e  opposite e f f e c t  occurs. How- 

ever,  f o r  small values of inplane shear ,  r o t a t i n g  t h e  f i b e r s  away from 

t h e  x-axis may a l s o  be des tab i l iz ing .  The reduced bending s t i f f n e s s  

theory gives f l u t t e r  boundaries t h a t  a r e  i n  good agreement b , the pre- 

sent  ana lys is  f o r  each case shown. It should be  noted t h a t  at t he  point 

of buckling, t h e  f l u t t e r  values of X for  inplane shear  loads a r e  con- 

s iderably lower than those fo r  inplane n o d  loads. This i s  i n  agree- 

ment with r e s u l t s  shown f o r  symmetric laminated p la tes .  

4.4.3 Effect of Cross-Flow 

The e f f e c t  of  cross-flow -n t he  f l u t t e r  boundaries f o r  a square, 

ariglc-ply, boron-epoxy p l a t e  composed of  four  laminas i s  shown in  f igure  



25. F lu t t e r  boundaries a re  presented f o r  8 = oO, 15O, and 3(1° where A 

i s  shown as a function of the  cross-flow angle. In each case, cross- 

flow and bending-extensional coupling have a la rge  des tabi l iz ing  e f fec t  

on the  f l u t t e r  boundary. However, TL 1:'4 nc the  f ibe r s  away from the  x- 

axis  r e su l t s  i n  cross-flow having a l e s s  destabil izing e f fec t  01, t k e  

f l u t t e r  boundary. Thus, f o r  angle-ply p la te s ,  al igning t h e  p la te  axis  

with the  flow resu l t s  i n  t h e  most s t ab le  condition, but  i f  cross-flow is  

unavoidable, proper or ienta t ion  of the  f ibe r  direct ions mEqy reduce i t s  

destabil izing ef fec ts .  For each condition shown, the  reduced bending 

s t i f m e s s  theory shows good agreement with t h e  present analysis.  

4.5 General Laminated Plates 

The term "general laminated plates" a s  used i n  t h i s  study encom- 

passes p la tes  composed of any number of laminas, with a fb i t r a ry  thick- 

ness, stacking sequence, and material propert ies ,  t h a t  s a t i s f y  the  

l inea r  s m a l l  i leflecticn theory assumptions. This def in i t iou  covers an 

i n f i n i t e  number ?f p la tes  including t h e  symmetric a d  angle-ply p la tes  

discussed i n  sections 4.3 and 4.11. 

Flu t t e r  boundaries w i l l  be shown fo r  two square, boron-epoxy panels 

t h a t  a re  composed of four laminas stacked i n  the  sequence shown i n  figure 

10 arld designated as  P-1 and P-2. In addition, f l u t t e r  boundaries w i l l  

be calculated f o r  s i x  square, composite-stiffened aluminum pla tes  con- 

figured as shown i n  figure 11, The f l u t t e r  boundaries calculated f o r  

p la tes  P- end P-2 using the  present analysis  w i l l  be  compared witii 

those calculated using c las s i ca l  p la t e  theory, and reduced bending 



s t i f f n e s s  theory and with thoee presented f o r  t h e  symmetric and angle- 

ply p l a t e s  i n  sec t ions  4.3 and 4.4. The difference between t h e  present 

ana lys is  and c l a s s i c a l  p l a t e  theory f o r  general laminated p l a t e s  i s  due 

t o  both cross-s t i f fness  terms and bending-extensional coupling. 

4.5.1 F l u t t e r  Boundaries 

F l u t t e r  boundaries ca lcu la ted  using t h e  present ana lys is  a r e  com- 

pared with those ca lcu la ted  using c l a s s i c a l  p l a t e  theory and reduced 

bending s t i f f n e s s  theory i n  f igure 26(a)  and 26(b) ,  respect ively,  f o r  

p l a t e s  P-1 and P-2. The bending-extensional coupling and cross-s t i f fness  

terms have a l a r g e  inf luence on t h e  f l u t t e r  boundary f o r  both p l a t e s  and 

render t h e  c l a s s i c a l  p l a t e  theory highly nonconservative. For these  

cases,  neglect ing t h e  coupling and cross-s t i f fness  terms r;8y r e s u l t  i n  

f l u t t e r  values t h a t  a r e  c lose  t o  100 percent t oo  high. However, f l u t t e r  

boundaries ca lcu la ted  using t h e  reduced bending s t i f f n e s s  theory show 

good agreement with t h e  present  analysis .  The agreement i s  s l i g h t l y  

b e t t e r  f o r  p l a t e  P-1 than f o r  P-2. This i s  expected s ince  p l a t e  P-1 is  

more nearly symmetric and thus ,  t h e  coupling e f f e c t  i s  smaller  than f o r  

p l a t e  P-2. 

4.5.2 Effect  of P l a t e  Construction 

F l u t t e r  boundaries f o r  p l a t e s  P-1 and P-2 a r e  compared 3.12 f i gu re  27 

with those obtained f o r  t he  symmetric and angle-ply p l a t e s .  The curves 

shown represect  f l u t t e r  boundaries f o r  s i x  p l a t e s ,  a l l  o f  which a r e  corn- 

posed of  t h e  same mater ial  and have t h e  same thickness bu t  which have 

d i f f e r en t  f l u t t e r  cha rac t e r i s t i c s  aa a r e s u l t  of the  number of l aye r s  



and t h e  sequence i n  which they are laminated. Although the  f l u t t e r  

boundaries fo r  a l l  t he  p la tes  follow the  same bas ic  t rends with 0 ,  the  

aiigle-ply p la te  with K = 4 shows considerably more resistance t o  

f l u t t e r  than any of the  other p l a t e  con~t ruc t ions .  The symmetric p la t e  

with K = 4 shows the  next best  res is tance  t o  f l u t t e r  followed by the  

general laminated p la tes  P-1 and P-2 which have s imi lar  f l u t t e r  boun- 

daries. The symmetric and a n g l e p l y  p la tes  with K = 2 show the  lowest 

values of A, which are as much as 40 percent lower than t h e  maximum 

values obtained f o r  the  angle-ply p la te  with K = 4. Thus, improvements 

i n  the  f l u t t e r  s t a b i l i t y  a r e  obtained by increasing the  number of laminas 

and stacking them i n  an angle-ply sequence. 

The e f fec t s  of cross-flow on the  f l u t t e r  boundaries fo r  the  general 

laminated p la tes  m e ~ r  be seen i n  f igure  28 where A is plot ted  as a func- 

t i o a  of the  cross-flow angle. The f l u t t e r  boundaries f o r  the  synnnetric 

and angle-?ly p la te s  with K = 4 are  a lso  shown f o r  comparison. For 

the  general laminated p la tes ,  cross-flow a t  small angles s l i g h t l y  improve 

the  f l u t t e r  s t a b i l i t y ,  For p la te  P-1, cross-flow a t  angles grea ter  than 

20' and f o r  p la t e  P-2, cross-flow a t  angles greater  than 5' each resu l t s  

i n  a steady decrease i n  f l u t t e r  s t a b i l i t y .  Similsr r e su l t s  a re  obtained 

for  the  symmetric p la t e  where large improvements i n  the  f l u t t e r  s t a b i l i t y  

0 
are obtained f o r  cross-flow angles up t o  10 . However, f o r  the  angle-ply 

p la te ,  even s smal! amount of cross-flow resu l t s  i n  a reduction i n  f lu t ter  

s t a b i l i t y .  Although it was pointed out previously t h a t  f o r  no cross-flow, 

%he angle-ply construction i s  the  most r e s i s t an t  t o  f l u t t e r ,  the  presence 

of cross-flow may r e s u l t  i n  the  symmetric conbtruction giving b e t t e r  



f l u t t e r  s t a b i l i t y .  Thus, i n  designing laminated p la tes ,  the  stacking 

sequence may have a s igni f icant  e f fec t  on the  f l u t t e r  s t a b i l i t y .  

4.5.3 Composite St iffened Aluminum Plates 

F lu t t e r  boundaries are  presented i n  f igure  29 f o r  s i x  square, cow 

posi te  s t i f fened aluminum pla tes  constructed as shown i n  f igure 11 and 

with material properties a s  given i n  t a b l e  11. Two of t h e  p la tes  a r e  of 

symmetric construction witn one o r  two layers  of composite material 

applied t o  each s ide  of t h e  aluminum. The other four p la tes  a re  of un- 

symmetric construction with one and two l w e r s  of composite material 

applied t o  one o r  both sides of the  a l d n u m .  I n  each case, 50 percent 

of the  p la te  mass is  composed of composite materials ,  and the  only 

difference between the  p la te s  is the  way i n  which the  composite material 

i s  applied. The f l u t t e r  boundaries f o r  the  composite s t i f f ened  p la te  

a re  compared with the  f l u t t e r  boundary f o r  an equal mass aluminum p la te .  

The values of A shown i n  f igure  29 are based on Ul1 of the  aluminum 

p la te  so  t h a t  the  r e l a t ive  advantages of the  various constructions may 

be seen. 

The composite s t i f f ened  alwninum pla tes  have considerably higher 

f l u t t e r  s t a b i l i t y  than the  aluminum pla te .  For small value:, of 8, 

aluminum pla tes  with laminas on both s ides  of the  p la te  have values of 

X t h a t  a re  50 percent higher than those obtained f o r  p la tes  with the  

laminas only on one s ide  and over three  times those fo r  the  aluminum 

plate. However, fo r  increasing values of 8, t he  values of A decrease 

u n t i l  l i t t l e  o r  no improvement i n  s t a b i l i t y  is  obtained by using the  



composite material. For values of 8 between O0 and go0, increasing 

the  nuniber of  layers  of  composite material a l so  increases the  f l u t t e r  

s t a b i l i t y .  

These resl i l ts  show t h a t  composite materials mryr be used very effec- 

t ive ly  t o  increase the  f l u t t e r  s t a b i l i t y  of an i so t ropic  p ia te ,  For 

square p la tes ,  al igning the  f ibe r s  with the  p la te  axis  and applying the  

composite material synunetrically about the  midplane of the  p la te  both 

r e s u l t  i n  improved f l u t t e r  s t a b i l i t y .  I f  the  f ibe r s  a re  ro ta ted  with 

respect t o  the  p la te  axis ,  increasing the  number of laminas also in- 

creases the  f l u t t e r  s t a b i l i t y .  



Chapter 5 

CONCLUDING REMARKS AND REXOMMENDATIOIVS 

For general laminated p l a t e s ,  t h e  bending and extensional  governin6 

equations a r e  coupled arid have cross-s t i f fnesa t e r m  which a r e  not in- 

cluded i n  c l s s s i c a l  or thotropic  p l a t e  theory. The coupling and cross- 

sti i ' fness t e r m  occur a s  a r e s u l t  o f  t h e  lamina p r inc ipa l  d i rec t ions  not 

coinciding with t h e  p l a t e  axis .  These additional. t e r n  and t h e  coupling 

increase t h e  d i f f i c u l t y  of  obtaining solut ions.  However, a so lu t ion  

proced*ure has been developed using l i n e a r  small  def lec t ion  theory f o r  

t he  f l u t t e r  of a r b i t r a r i l y  laminated simply supported p la tes .  The ex- 

tended Galerkin method is  used t o  obtain so lu t ions  t o  t h e  governing 

equations, and t h e  aerodynamic pressure loading used i n  t h e  ana lys is  is 

t h a t  given by l i n e a r  p i s ton  theory with flow st a r b i t r a r y  cross-flow 

angles.  

F l u t t e r  so lu t ions  were obtained f o r  t y p i c a l  symmetric, angle-ply, 

and general laminated composite pla:es, and a l imi ted  parametric study 

was conducted. The parameters s tud ied  inciude t h e  number, o r ien ta t ion ,  

and orthotropy of  t he  lamina; t h e  p l a t e  length-width r a t i o ;  t h e  inplane 

normal and shear  loads; and t h e  cross-flow angle. I n  addi t ion,  f l u t t e r  

so lu t ions  f o r  severa l  composite s t i f f e n e d  aluminum p l a t e  designs were 

obtained t o  determine t h e  most f l u t t e r  r e s i s t a n t  design. 

The bending-extensional coupling and t h e  c ross -s t i f fhess  terms both 

have a l a r g e  des t ab i l i z ing  e f f e c t  on t h e  f l u t t e r  of unstresced laminated 

p l a t e s ,  bu t  i n c r e a s i i g  t he  number of laminas, reducing t h e  lamina 



orthotropy, and 8tackir.g the  laminae i n  the  "best" order reduce the  de- 

s t ab i l i z ing  ef fec t .  For a square p la te ,  al igning the  f ibe r s  with the  

x-axis r e su l t s  i n  t h e  highest f l u t t e r  s t a b i l i t y ,  but f o r  a p la te  with a 

length-width r a t i o  of 2.0, la rge  improvements i n  f l u t t e r  s t a b i l i t y  may 

be obtained by ro ta t ing  t h e  f ibers  away from the  x-axis. For angle-ply 

plateq,  inplane n o d  and shear lo tds  and cross-flow have a destabil iz-  

ing  ef fec t  on f l u t t e r  s imilar  t o  t h a t  obtained for  orthotropic plates.  

However, fo r  synnnetric p la tes  with the  f ibers  not aligned with the  

x-axis, t h e  cross-st i ffneer  terms resu l t  i n  small inplane shear loads 

and cross-flow angles improving the  f l u t t e r  s t a b i l i t y .  F lu t t e r  calcula- 

t ions  f o r  equivalent symmetric, angle-ply, and general unoymrmetric 

p la tes  indicate t h a t  fo r  no cross-flow and no inplane shear loads, 

p la tes  with an angle-ply construction w i l l  have the  highest f l u t t e r  

s t a b i l i t y .  I f  cross-flow OA- i nplane shear loads a r e  present,  syrmnetric- 

a l l y  constructed p la tes  my ham hi,sher f l u t t e r  s t a b i l i t y ,  

Since c la s s i ca l  p la t e  theory does not consider bendingrextensional 

coupling and cross-st i fmesa terms, it gives inaccurate and usually non- 

conservative f l u t t e r  boundaries f o r  laminated p la tes .  Reduced bending 

s t i f f n e s s  theory, an approximate f l u t t e r  theory which accounts fo r  the  

coupling by reducine the  p la te  bending s t i f fness  a s  determined by the  

coupling terms and then neglects the  coupling i n  solving the  equations, 

gives f l u t t e r  solut ions tha t  a r e  adequate fo r  a l l  p l a t e s  f o r  which numer- 

i c a l  r e s u l t s  were obtained. For angle-ply p la tes ,  reduced bending s t i f f -  

ness theory r e s u l t s  a re  obtained using published c l a s s i c a l  orthotropic 

p la te  theory solutions, However, f o r  symmetric o r  general laminated 



p l a t e s ,  a so lu t ion  procedure similar t o  t he  present one f o r  symmetric 

p l a t e s  i s  necessary t o  obta in  even approximate so lu t ions .  

The f l u t t e r  s t a b i l i t y  of  composite s t i f f ened  aluminum p la t e s  was 

considerably b e t t e r  than t h e  f l u t t e r  s t a b i l i t y  f o r  an equal mass aluminum 

pla te .  Applying t h e  composite mater ial  t o  both s ides  of  t he  aluminum 

p l a t e  r e s u l t s  i n  b e t t e r  f l u t t e r  s t a b i l i t y  than by applying a l l  t h e  

mater ial  t o  one s i d e  o f  t h e  p la te .  Also, i f  t he  f i b e r  d i rec t ions  do not 

coincide with t h e  p l a t e  ax i s ,  increasing the  number of l aye r s  c f  mater ia l  

improves t h e  f l u t t e r  s t a b i l i t y .  

Since only a l imi t ed  parametric study was conducted i n  t h i s  inves t i -  

gation, it would be bene f i c i a l  t o  use t h e  present  analysis t o  conduct a 

paramet, i c  study i n  g rea t e r  depth. Spec i f ica l ly ,  a wider va r i e ty  of 

lamina mater ia l  p roper t ies  ahould be considered and addi t iona l  p l a t e s  

with general unsymmetrdc construct ion should be  invest igated.  Also, t he  

possible  bene f i t s  of using composite m t e r i a l s  t o  s t i f f e n  conventional 

or thot ropic  and i so t rop ic  p l a t e s  should be  s tudied  f o r  severa l  additiontal 

p la tes .  For a l l  r e su l t6  presented, t he  f i b e r  d i rec t ions  of t h e  laminas 

were ro t a t ed  by t h e  same abeolute angle about t h e  p l a t e  axis. Thus, 

fu r the r  inves t iga t ions  should be made i n t o  t h e  f l u t t e r  charac te r i -  ics 

f o r  laminated pl-ate6 i n  which t h e  f1bi.r d i rec t ions  of t h e  individual  

lamina a r e  ro t a t ed  independently. This becomes of s p e c i d  s igni f icance  

f o r  laminated p l a t e s  with inplane shear  o r  cross-flow where s ign i f i can t  

improvements i n  f l u t t e r  s t a b i l i t y  may b e  obtained by r o t a t i n g  the  f i b e r s  

awey from t h e  p l a t e  axis. 

The f l u t t e r  r e s u l t s  pre-ented i n  t h e  present  ana lys is  were obtained 



f o r  simply supported p l a t e s  with free normal and t angen t i a l  inplane dis- 

placements. Other boundary conditions,  which r e s t r i c t  t h e  inplane dis- 

placements have been considered i n  t h e  l i t e r a t u r e  f o r  s i ~ ? l y  supported 

p l a t e s  and have r e su l t ed  i n  l a rge  changeo i n  na tu ra l  frequencies.  Since 

change8 i n  f l u t t e r  cha rac t e r i s t i c s  a r e  usually associated with changes 

i n  t h e  na tu ra l  frequencies,  t h e  inplane boundary conditions may have a 

s ign i f i can t  e f f e c t  on t h e  f l u t t e r  cha rac t e r i s t i c s .  Thus, an extension 

of t he  present analysis  t o  consider o ther  i n p l u e  boundary conditions 

would be a worthwhile endeavor. 

Although t h e  reduced bending s t i f f n e s s  theory adequately predicted 

t h e  f l u t t e r  cha rac t e r i s t i c s  f o r  a l l  t h e  p l a t e s  s tudied,  it was shown i n  

the  l i t e r a t u r e  not t o  give na tu ra l  frequencies and def lec t ions  a s  

accurately as desired f o r  c e r t a i n  p la tes .  Thus, addi t iona l  comparisons 

between reducedtending s t i f f n e s s  theory and the  present rna lys i s  a r e  

needed f o r  6 wider rsr.ge of  p la txs .  Also, s ince  t h e  reduced bending 

s t i f f n e s s  theory does not account f o r  t h e  inplane b o u d a r y  conditions,  

any change i n  t h e  f l u t t e r  cha rac t e r i s t i c s  due t o  t he  changes i n  boundary 

conditions suggested i n  t h e  above paragraph would not be shown with t h e  

reduced bending c t i f f h e s s  theory. These addi t iona l  s tud ie s  are needed 

before t h e  redwed bending s t i f f n e s s  theory can be used with confidence. 

Since the  l i t e r a t u r e  survey revealed no numcraical r e c u l t s  ava i lab le  

f o r  general laminated p l a t e s ,  a s ign i f i can t  contr ibut ion t o  t h e  litera- 

t u r e  could be ma4t by using t h e  present malye18 t o  ca l cu la t e  t he  na tu ra l  

v ibra t ion  frequencies and t h e  inplane normal and shear  s t a t i c  Luckling 

loads f o r  general laminated p la tes .  Althor* t h i s  study hlra 5 ~ r i  



concerned primarily with f lutter characteristics, the analysis and re- 

aulting computer program cur be used without modi.ficstion~ to  perform 

the indl cated ca'lculatione . 
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TABLE I 

LAMINA MATERIAL PROPEKTIES USED IN ANALYSIS 

I 1 30,000,000 psi 1 7,500,000 psi 

I 

3,000,000 psi :2,500,000 psi 00 

Material 

I 

G12 

I I 

1,000,000 psi 1,000,000 psi  



TABLE I1 

MATERIAL PROPEirrIES FOR COMPOSITE STIFFENED 

ALUMINUM PI ATE 

.r 

Material 

10,000,000 psi 

Properties 

10,000,000 psi 

Aluminum 

3,850,000 psi 

Composite 

29,600,000 psi 

4,130,000 psi 

2,020,000 psi 



M,j'!!ilERIAL PROPERTIES OF REFEREITCE PLATE 

r 

Proper t ies  

5 1  

E22 

G12 

v12 

Material  

Outside 
l aye r s  

E 

10E 

.5E 

.0349 

Middle 
layers 

1 0 E  

E 

.5E 

.349 



TABLE IV 

COMPARISGN OF FWR LOWEST GA'I'URAL FREQUENCIES 

FOR A SQUARE ANGLE-PLY PLATE (Ell/E22 = 40, G12/E22 = 1, V12 = .25) 

l e  I Extended Galerkin Method I 

I I Rayleigh-Ritz Methcs, re f .  15 



TABLE V 

COMPNiISON OF FOUR MWEST NATURAL FREQUENCIES 

FOR A SQUARE CROSS-PLY PTATE ( G ~ ~ / E ~ ~  = .5 ,  Via = .25) 

I I Extended Gaierkin M e t h d  

I I Rayleigh-Ritz Method, ref. 15 



Figure 1.- Geometry of angle-ply platee.  



Figure L - Geometry of cross-ply plates. 



Figure 3.- Lamina coordinate rrystem. 



Figure 4.- Lemina notation and positive direction of stress. 



F i p r e  5.- Rotation of l d n r  axes. 



Figure 6.- Positive direction of s+,ress and moment resultants. 



Flow 
\ /L,- a -------7' 

Fibure 7.- Plate geometry and coordinate system. 



Figure 8 .- Nomenclature and geometry of symmetric plates. 



Figure 9.- Nomenclatura and geometry of angle-ply plates. 



Plate P- I 

Figure 10.- Nomenclature and geometry of general lamlnbted plates .  



+ - Composite material 

z 

K =2 

K-4 

(a) Symmetric plates. 

Figure  11.- Nomenclature and geometry of cmpo~i te  s t i f f e n e d  a l d n u m  

plate. 



r Composite material 

(b ) Unsymmetric p l a t e s .  

Figure 11,- Concluded. 



Symbol I N 

d 

No flutter 

Figure 12.- Convergence of 8oht ion  for a symmetric, boron-epoxy, square 
- plate with' K = 4. 



r Flutter point 

F i v e  13.- Coalescence of frequencies for a symmetric, bo2on-epoxy, 
iquare plate with K = 4. 



Flutter point 

Cb) 0 = 60'. 

Figure 13.- Concluded. 



Flutter 

------ 
No flutter 

Rayleigh-Ritz analysis, ref. 19 

I I I I I 1 

Figure 14.-  Comparison of f Lutter so lu t ions  fo r  square reference p1.sl.e. 

N = M = 2 .  



0 Orthoiropic analysis, ref. 31 

No flutter 

- 
Figure 15.- Converged flutter boundaries for square reference plate. 



Present ant!ysis 

C 
----- Classical plate theory 

\ 

No flutter 

50 I 

\ Flutter 

(a) Glass-epow plate.  

Figure 16. - Flutter boundaries for square, synnnetrj c plates. 

" I y . \ = o .  X 



Present analysis 
---.-- Class~cal plate theory 

(b 1. Boron-tpwq plate. 

Figure 16. - Concluded. 



Present analysis 
----- Classical plate theory 

Flutter 
/--\ 

/' 
\ 
\ 

/ \ 
/ 
/ \ 

\ 

/' \ 
/ 

\ 

/ \ 
/ \ 

Figure 17.- Fluttu' boundaries for boron-epoxy, symmetric plate w i t h  - 
a/b - 2.0. Ax ' $ s = 0. 



"1 Flutter 
Present analysis 

----- Classical plate theory 

o Ruckling with airflow 

- - -- symmetric plate Ftgure 18. - Flutter boundaries for square, boronyepoxyy - 
with inplane normai loads. m i !  =-0; K =  4, % w 



Present analysis 

---- Classical plate theory 

0 Buckling with airflow 



/- 
Flutter point 

Fxgure 20.- Coalescence of frequencies for a symmetric, boron-epoxy, 
square plate with inpleme shear loads. 3 = tix = 0; K = 4; 
and e = 15'. Y 



point 

Figure 20.- Continued. 



Figure 20.- Concluded. 



"r Present analysis ---- Classical plate theory 

0 \ r 8-30 

Figure 21.- Flutter bundaries for square, boron-epoxy, eynrmetric plate 
withcross flow. Nx = 8 = fi = 0; JC = 4. 

Y w 



Present analysis 
---- Reduced bending stiffness 

-- - --- Classical plate theory 

b 1 Glass-epoxy plate. 

150 

100 

M 

Figure 22.- Flutter boundaries for square, .angleipl.y plate. 
B x - r$=I  S O .  

xy 

- 

- No flutter 

- 



Present analysis 
---- Reduced bending stiffness 

(b ) Boron-tpoxy plate. 

Figure 22.- Concluded. 



I 
------ Classical plate theory 

FZgure 23.- Flutter boundaries for boron-epoxy, angle-ply plate with 

xy 



Flutter 

\ 

Presentanalysis . 

- -- - Reduced bending itiff ness 

----- Classical plate theory 

0 Buckling with airflow 

(a) Inplane nomal loads, = a = 0 .  
Y w 

F m e  24. - Flutter boundaries for square, boron-epoxy , angle-ply plate 
with inplane loeds. K = 4 ,- 



Flutter Present analysis 
---- Reduced bend ng stiffness 

350 ----- Classical plate theory 

(b) Inplane shear loads, = fx = 0. 
Y 

Fiqure 24.- Concluded. 



- 

Flutter 

-- Present analysis 

-- . - - Reduced bending stiffness 

- -  . - . -  Classical plate theory, 

- 
No flutter 

Figure 25 .- Flutter boundaries for square, boron-epoxy , a~~gle-ply plate 

withcross-flow. i = l? = N = O; K =  4. 
X Y W  



Flutter 
Present analysis 

(a) Plate P-1. 

Figure 26. - Flutter boundaries for square, boron-epov , general laminated 
plates. R = R  = N  -0, 

x Y XY 



- . . - Present analysis 

(b) Plate P-2. 

Figure 26.- Concluded. 



Flutter General laminated plates 

Figure 27.- Comparison of flutter boundaries for square, symmetric, 
- angle-ply, and general leuninated plates. Ex - E5 = = 0. 

w 



Flutter General laminated plates 

----- Angle-ply plate 

- - - - -  Symmetric plate 

Figure 28.- Effect of cross-flow on flutter of square, symmetric, 

angle-ply and general laminated plates. Ex = = = 0 .  
Y xy 



Flutter C o w s i t e  material on one side 

-- - - Composite material on both sides 

\ ----- Symmetric plates 

\ . \ \ 

" t No flutter 

Figure 29.- Flutter bounda~ies for square, composite-stiffened aluminum 

plates. iX = 5 = fi = 0; mass /mass = 1.0. 
Y XY aluminum composite 


