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II. INTRODUCTION

The aeroelastic instability of aircraft skin panols has been

the subject of a number of theoretical investigations.l°2l Mbst of

these papersl”l6 have dealt in some detail with the problem of a one-

dimensional panl in a two-dimsnsional flow and have been attempts

either to establish approximate stability bounaries for use in the

design of flat or slightly curved panels or to investigate some of

the apparent peculiarities of the panel—flutter phenomsnon. The aero-

elastic behavior of thin cylinders has also been considered,l7*l8

although in a somewhat preliminary fashion. In addition, the flutter

of two-dimensional flat panels in a three-dimansional flow has been

treated by Eisleylg and Luke, St. John, and Gross2O'2l. It is to the

latter subject that this thesis is directed.

The work both of Eisley and of Luke, St. John, and Gross con-

cerns the flutter of rectangular simply supported plates subjected to

supersonic flow over one side; both analyses euploy model solutions

and present numerical results for a variety of panel aspect ratios for

a limited range of supersonic Mach numers. No attention is paid,

however, either to the higher Mach numbers (yeater than 2) or to the

effects of midplane tension and oompression stresses on flutter. In

addition, neither analysis is completely satisfactory fbr an isolated

panel; Eisley used linearized two-dinsional unsteady-flow theory

and Luke, et al, while employing three-dimnsional theory, actually

solve the problem of an infinite-span panel separated into rectangular

bays by equally spaced, rigid streamwise stiffeners.
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In this thesis we consider again the flat rectangular simply

supported plate. The important departure from the previous analyses

is in the use of so-called "static" air forces,2 for solving the

flutter problem. Experience has shown that this static approximation

yields flutter boundaries that exhibit excellent agreement with those

yielded by more refined (with regard to unsteady effects) aerodynamic

theories provided that the Nach number is sufficiently high.* The

use of the static air forces as the obvious virtue of simplicity and

allows the inclusion of three-dimensional aerodynamic forces in a

relatively simple manner. In addition, large ranges of the pertinent

parameters of the problem can be readily investigated. Also, studies

of the effects on the flutter boundaries of the midplane stresses which

might arise as a result of loading and aerodynamic heating are feasible.

Because of the paucity of experimental information pertaining to

the flutter of flat, unbuckled panels, it is not possible to assess

the overall accuracy of any panel flutter theory. Consequently, state-

ments regarding the validity of the theory contained herein are based

on comparisons with re refined (and, presumably, more accurate)

theories.

The help of Prof. Daniel Frederick in preparing this thesis is

hereby acknowledged. Appreciation is also due to Miss Lillie Belle

Evans and Mr. Keith Redner of the staff of the National Advisory

Committee for Aeronautics for their valuable aid in performing the

numerical computations.

*Comparisons presented in a subsequent section show that the
lower limit on Mach number is somewhere between VÜ? and 2.
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III. SYMBOLS I

A RX � 2n2¤2(a/b)2

K Äx ·· 2112 (a/b)2 (Note that flutter is usual.ly

mostcriticalfor n ·
1)

I

BB2Ä
E2 + n2(a/b)2I-Yy

-—..2..Bo (B/b> ay -
(a/¤>L‘

C(m,o) integral defined by equation (Alb)

D platestiffness,E

Young‘s modulus of elaeticity

Imn’Jm’ functions used in evaluation of generalized fbrce
K L (see Appendix)
mn’ mn

Immrs generalized force of (rs) mode on (mn) mode

M Mach number

Nx,Ny midplane stresses (positive in compression)

RX Nxaz/D
2Ry Nya /D

S(m,c) integral defined by equation (A10)

U velocity of air flcw

Wh complex amplitude of panel vibration (see eq. (h))

a,b dimensions of panel (see fig. l)
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cm amplitude of (mn) mode (see eq. (19))
7h panel thickness 7

k frequency parameter, m2

k/u2

Z lateral aerodynamic loading

im lateral aerodynamic loading due to (mn) mda

j,m,n,r,s integers

q dynamic pressure, pU2/2

t time

w lateral deflection of panel

x,y,z Cartesian coordinates (see fig. 1)

xl x/a

5 (lt? - 1
7 mass density of plate

6 mass ratio, P8/rh

q; perturbation velocity potential

X dynamic presaure parameter, 2qa3/ßD

ACI, critical value of 1
L1. transtability value of X

p. Poissorüs ratio

p mass density of air

¤ ä ää
oo circular frequency

1(y) step function, equal to zero for y< 0 and eqrnl to
unity for y> O

7
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IV. STATEMENT OF PROBLEM
V

The configuration to be analyzed herein is shown in Figure l.
(

It consists of a simply supported flat plate of uniform thickness h

mounted in a rigid wall with air flowing over the top at a meh

number M. The plate has a length a and a width b and is sub-

jected to constant midplane force intensities NX and Ny (positive

in compression).

In the following analysis, smalbdeflecticn thin-plate theory

is assumed to apply. The appropriate equilibrium equation and

boundary conditions are:

Dvb! + Nxwm + Nywyy + Thwtt
-
l(x,y,t) (1)

w(x,O,t) � w(x,b,t) ¤ w(O,y,t) == w(a,y,t) == O

wyy(x,O,t) =· ww(x,b,t) ·- wm(0,y,·«.) · wxX(a,y,t) - 0

where w(x,y,t) is the lateral deflection of the plate and 1.(x,y,t)

is the lateral load per unit area due to aerodynamic pressures;

D is the plate stiffness Eh3/l2(l -·
$:.2) and 7 is the density of

the plate material.

As was mentioned in the Introdmtion we will assume that the air

forces yielded by linearized static aerodynamic theory give an

adequate approximation for this problem. In this theory, the loading

at each instant is taken to be the loading which would result from

flow over a stationary surface with a shape the same as the shape of
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bFig.l.- Rectangular panel and coordinate system.
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-thedeflected plate at that instant. Thus no time-dependent effects

are considered in either the potential equation, the boundary con-

ditions, or the pressure—potential relations. Note tht this differs

(on the side of simplicity) from the so-called "quasi-steady" theory,

in which time derivatives are included in the boundary conditions and

pressure·potential relations and from the first-order theoryzz in

which time—dependent effects are included approximately in all three

governing relations.

As is usual in the treatment of flutter problems, the analysis

contained herein is of the dynamic stability type. That is, condi-

tions are sought for which an unstable (growing with time), self-

excited motion is possible. The existence of such a possible motion

would then imply instability of the panel since an small disturbance

would "trigger" the motion.

In the following sections a closed-form solution of equation (1)

is first carried out for two·dimensiona1 aerodynamic theory (strip

theory). The same problem is then solved by the Galerkin procedure

in order to investigate the convergence of this modal approach.

Finally, a modal solution of equation (1) for three-dimensional theory

(surface theory) is presented.
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For strip theory, the lateral leading is given by the simple

Ackeret value

2Y·(><.y„’¤)
· · ggg- wX(><„;v„t) (2)

where q is the dynamic pressure pU2/2 and 3 - (xu - 1.
Equation (l) then becomes

Dvbw + Nxwm + blyxvyy +
gg- wx + yhwrtt ··· 0 (3)

For the simply supported plate a solution of equation (2) can

be written in the form:

vr � Re|§'IH(x)sin E? ([1)

The frequency m is, in general, complex; however, we direct our

attention primarily to real values of 6:, for which the motion in

harmonic.

Substituting equation (L1) into equation (3) and the associated
boundary conditions and nondiznensionalizing yields:

IV 2 2 a 2 M M a 2 2 2 e 2 2hh -· 211 TL Tf (*6) Wu + }„Wn' ·k Wü �· 0

(5)
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(
91 II 7wn(0) · wu (0) - w¤(1) · wu

(1) - 0

where the primes denote differentiation with respect to xl
-
x/a and

Nxaz
Rx ° D

·

Nyaz
Fx 11

(6)
X
�ßD

Thühkz " -*-13-- 022

Equation (5) and the boundary conditions constitute an eigenvalue

problem where k2 can be considered to be the eigenvalue. We seek,

in fact, the values of 71, RX, and R}, for which one of the eigen-

values k2 becomes complex and, hence, the panel becomes unstable.

(See ¤q~ (h)-)
Equation (5) can be rewrittem

wnm + Awn" + 1w„' — swg, -· 0 (7)
where

2 2 a 2A � RX - 211 TI (E)
(8)

2 74B -
k2 + 112112 ·� 1'1hT(h<·ä->

Note that B now takes on the role of the eigenvalue.
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Exact solution.- The chaxacteristic equation for equation (7) is

p)4+Ap2+).p·-B==O

The roots of this equation can be written in the form]'3

p ¤- -¤ I 6, a * 16

where

,
V
>. 2 56 EI. + 41 +

2

E 2 (9)

2 2B .. ..;..5 - „<„2 . g)16a

Substituting the form

wn niepixl
1-l

in the boundary conditions yields the following condition for a

nontrivial solution

2[(62 + 62) + L;a2(ö2 — czgsin 6 sinh 6 ·· 8a266(cosh 6 cos 6 ·— cosh 2a)

<1¤>

The eigenvalm B can be computed for fixed values of ). and A

by varying a until equation (10) is satisfied and then using the last

l _, cr.
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of equations (9) to determine B. The resulting solutions can be

shown in the form of plots of X versus B for various values of A.

An example plot for A � O is indicated by the solid line in Figure 2.

(The abscissa is instead of B in order to allow the inclusion
of large ranges of B conveniently.)

It can be seen tht for a fixed value of X there exists an

infinite discrete set of values of B. For X - O, the values of B

can be shown to correspond to the natural frequencies of the plate

in a vacuum. Increasing the dynamic-pressure parameter X merely

changes the values of B (and, hence, the natural frequencies)

smoothly until a critical value (denoted Xcr in Fig. 2) is reached.

At this value, two of the roots for B become equal. For X.< Xcr,

the values of the frequencies remain real (provided the panel is

unbuckled for X = O) and, thus, the panel is stable. For X.> Xcr,

two of the values of B become complex; hence, in view of equations (h),

(6), and (8), the panel has at least one unstable mode of oscillation.

Therefore, the value Xcr defines the flutter boundary. (Note that

other roots for B ‘would coalesce and become complex if X ·were

increased further, thereby producing additional unstable modes. These

secondary critical values are symbolized by the dotted lines in

mg. 2.)

The variation of Xcr ‘with A has been calculated and is shown

by the solid line in Figure
jf.

The abscissa here is

E · fi = Ex -
2n2<%>2 (11)

*Some examples of the shape of the flutter made are presented
in the Appendix for interest.

W
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where 7
FX ··

ig-(12)n

Note that for ÄÄ< S, Ac? decreases monotonically with
‘Ä;
thus, fbr

fixed values of ä& and a/b, the lowest value of lcr would be

achieved fer n
-
1. The resulting shape of the flutter mode in the

y-direction weuld be a half sine wave.

Although a full discussion of th flutter boundary in Figure 3 is

included in a later section of this thesis, a mntion of several

salient points is warranted here. The first is that the flutter speed

is independent of By. This result, which comes about from the lack

of coupling between the various modes in the y—direction, is of

interest in connection with wing panels fer which the greatest stress

is usually in the spanwise (y) direction. Secondly, the range of F

validity of the results in Figure 3 is limited by the buckling charac-

teristics of he plate. For instance, a square plate with no stress

am es y—«111~aee1¤¤ (R5, - 0) weuld bucme (rer >. -· 0) if Fx 2 hg for

this reason, the curve in Figure 3 would be valid only fer Ä < 2.*

Other values of a/b and Ry weuld yield other ranges of validity.

Thirdly, the critical dynamic-pressure parameter is finite when the _

panel is on the verge of buokling even though the ”effective stif£ness”

of the panel (as measured by the lowest in-vacuo natural frequency)

*Since the buckllng lod is affected by the air forces, this
inequality is not strictly correct. This phenomenon is discussed in
a later section.
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approaches zero. Finally, the critical dynamic-pressure parameter

goes to zero at 'Ä equal to 5. The need of large panel thicknesses

if
—Ä~

5 is obvious.

Galerkin solution.- In order to investigate the convergence of

the modal procedure, a Galerkin solution of equation (7) will be

performed.

Let

J
WH � E cm ein mnxl

m·l

Substituting into equaticn (7}: multiplying by sin rnxl, and inte-

grating yields the following set of equations for the coeffioients cm

"3 r=�l
’

where

2 2 L;.. B . k 2 s - h a“NbN
n n

·— Q rmL¤m1·¤'¤°§”"'§‘“'“·
""“"°°dd‘° r ·- m (ll;)

-1:m,N
··· 0; n ¤ s, m + r even

Lm,rs
� O; n f s

N
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In the first of the latter expressions, B3, � Ry/112. The seemingly

overcomplicated form for the generalized aerodynamic·force coeffi—

oient
elgmßs

is introduced at this point to agree with the notation
in the next section.

For a nontrivial solution, the determinant of the coefficients

of cm must equal zero. If J -
2, for instance,

1 — K - E - lg 1
3n

¤ O
g .. ..

A 16 — LA · BSU?

Upon expanding and solving for K we get

nh ·· ·- ·- ·->.-ZE-(A+B-1)(16-LA-B) (1;)

This relation is illustrated by the dashed line in Figue 2 for Ä � O.

The tw¤·-·term approximation to the critical value of X can be obtained

by finding the maximum; the resultiskm,

�
16 5 -· A (16)

This approximation and the three-term and four—term approxi—·

mations (,1 � 3 and L) are compared in Figure 3 with the exact result.

It can be seen that the two··term approximation consistently under-

estimates lcr, the error increasing as Ä becomes large negatively.
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The three-term approximation is satisfactory for small values of Ä

but is again unsatisfactory for the larger negative values of Ä.

On the other hand, the four-term solution yields good results over the

entire range of A considered}

Aerodynamio Surface Theory

The results in the preceding section were obtained on the basis

of aerodynamic strip theory. The influence of three-dimensional

aerodynamic effects on the flutter bommdery is cf interest. In this

section, the flutter of the rectangular panel in a three-dimensicnal

flow is analyzed by means of the Galerkin solution.

Air Forces.- The lateral loading due to the supersonic flow above

the panel can be found in a straightforwsrd manner by means cf source-

euperposition techniques. Thus, if the deflection of the panel is

w(x,y,t), the lateral load 1„(x,y,t) iszh

l(x,y,t) ·· pü ggf (>¤,y,’¤) (17)

where

U « dl')
q>(x,y,t) "

"‘
EU8

"""""”"""""""""""""""""""“ (18)

Jh: ·— U2 ·· ß2(y — n)2

The integration is carried out over the forward Mach cone from the
p¤i¤‘¤ (XJ)-

1

*It should be menticned that the four-terg solution would also be
inaccurate for very large negative values of A. In this case, the
behavior of the plate approaches that of a meubrane for mich the
Galerkin solution is known to be inapplicable.23
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In the mdal solution the deflection is expreesed as the series

vr sin F-EF sin (19)

in the region O 5 x 5 a, 0 5 y 5 b. The corresponding loading is

1(x,y,t) =· cI.SlI.S(x,y)ei°°t’
;|

(20)
r s

where

T Ö x cos ein
lr 2 2(X-!) ·B(Y*‘V1)

[101) —· ]_(n -· büdn dä (21)

Note that the step—function expression

10*2) ·1(n·b) -=¤s ¤<¤

� 1; O < 1} < b

� 0; 1} > b

excludes the regions outside of the plate from the integration.

Modal solution.- Substituting equations (19) and (20) into the

equilibrium equatiorx, equation (1), gives
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2D fi , 2€2?. _ D äänä __
a2 b2 In #121· s -

621-:2 D 3 i rm; ina 1*1--;-6 b —crsZrs(x,y) - 0

If bmg ¤qu2.·¤1b¤ 16 mu1·b1p11¤d by am nn? am P2} ma mugabsd,

the result is

2 2 —- 2- �-2 ..{Enz "' n2<§)iI " manu: " n2<%) By " In Ii °m¤ "
fn; ii; L!lKl,I‘8cI°5

(22)

where
Y:.
-
k/112 and

·· . 222 jdn fn 222 222L¤m,z�s nab O O
am a an b X

6
‘x y+·:I'-(X-§) eossinEx-
0

-1III
—§) ,I 2 2 2 Xypfx (X-?·)-B(y-n)

[lm) -· im —
bildm

ds} dx dy
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is the generalized force of the (rs) mode on the (mn) mode. Inte-

yation by parts yields

imJS azb O O O y—1(x·-Q,)E (le — og — so — ez

@01) ·— 101 —· büdn di dx dv (23)

Before continuing, it is necessary to determine these generalized

forces. As is usual for supersonic-aerodynamic problems, the

generalized forces can be shown to be functions of the modified aspect

ratio parameter ßb/a. For ßb/a ,2 1, the reduction of the expression

for -f.¤m’x,S in terms cf Bessel and Struve functions axd two readily

evaluated single numerical integrations is possible; this reduction is

carried out in the Appendix. Values of °fm,rs for ßb/a � l, 2, 11

and m, n, r, s -= 1, 2, 3, L1 are given in Table 1. Also given are

the values for the two-dimensional case (ßb/a ··
¤�) obtained from

equation (15).

It should be noted that lmmra =· O when n + s is odd. Thus,

flutter modus are either symmetric (n -
1, 3, . . .) or antisymmetric

(n
-
2, 11, . . .) about the midspan. Also, the generalized force

possesses the following symustry properties

imn,rs ° i-ms,rn

T*1¤n,rs " E-rn,ms$ m + 1° °"°“

i1m,rs ° °‘frn,ms·‘ m + r Odd
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TABLE 1. - VALUES OF GENERALIZED FORCE

i!I]I1,I‘S

(+) gg = l

11 21 51 1+1 15 25 55 1+5
11 0.280799 0.918988 -0.01079+ 0.5+255+ -0.09+02+ 0.027056 0.0715+8 0.051672

21 -.918988 . 1; 1.707919 .062655 -.027056 -.22501+0 -.179612 -.052125

51 - .016791+ -1. 707919 . 070016 2 . 278778 .07151+8 . 179612 - .005225
— . 122558

+1 -.5+255+ .002055 -2.278778 .0++78+ -.051672 -.052125 .122558 .11590+

15 -.091+021+ .027056 .07151+8 .051672 .591+560 .179055 —. 517892 .271509

25 -.027056 -.22501+0 -.179612 -.052125 -.179055 1.585+01 1. il 59*517 -.1+99257

55 .0715+8 .179012 -.005225 -.122558 -.517892 -1.559517 2.250015 5.1975+9

1+5 -.051672 -.052125 .122558 .115961+ -.271509 - .1+99257 -5.19751+9 1.2811+62

12 22 52 1+2 11+ 21+ 51+ 1+1+
12 0.517757 0.0+5152 -0.252+72 0.2+80++ 0.009291 0.158695 0.078055 -0.00810+

22 -.61+5152 1.117025 1.969181+ .02551+5 -.158695 -.266500 .055955 .178951+

52 -.252+72 -1.90918+ .70+8+0 2.752580 .078055 -.055955 -.+82967 -.+11002

+2 -.2+80++ .0255+5 -2.752580 .2165M7 .00810+ .178958 .+11002 .050558

1+ .009251 .158095 .078055 -.00810+ .28258+ .050501 -.0859+8 .209+00

21+ -.158695 -.286560 .055955 .178951+ -.056501 1.227635 .576756 -.617150

5+ .078055 -.055955 -.+82907 -.+11002 -.0¤5)+8 -.576756 2.984986 2.125151

++ .00810+ .17895+ .+11002 .050558 -.269960 -.617150 -2.125151 5.055+2+
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'TI·.1;LM 1.- VALUES OF 0ENEmL12.E0 12012012 - COHCÄHUGÖ

(2) E.? = 2

ll El jl 2l 15 25 55 25

ll 0.115757 0. 910125 0.022577 0 . 559008 -0.056992 -0.025205 -0. 018266 -0.012028

21 - . 910125 . 056088 1 .566619 . 012605 . 025205 .005858 - . 019678 - . 015282

51 .022577 -1.566619 .011287 2.205615 -.018266 .019978 .025528 .006027

21 - . 559008 .012605 -2 . 205615 .008108 .012028 - . 015282 - .006027 .005112

15 -.056992 -.025205 -.018266 -.012028 .550582 .889221 -.127650 .287169

25 .025205 .005858 - .019678 - .015282 - .889221 . 722612 2 . 009015 . 171298

55 -.018266 .019678 .025528 .006027 -.127650 -2.009015 .168158 2.229559

25 .012028 -.015282 -.006027 .005112 -.287169 .171298 -2.229559 .087275

12 22 52 22 12 22 52 22
12 0. 562129 0. 985525 0 .015851 0. 562869 -0 . 080855 -0. 051587 0.012926 0.010780

22 -.985525 .221190 1.729682 .078551 .051587 -.069568 -.098219 -.058556

52 .015851 -1.729682 .059022 2.269501 .012926 .098219 .068260 .010209

22 -.562869 .078551 -2.269501 .022120 -.010780 -.058556 -.010209 .015761

12 -.080855 -.051587 .012926 .010780 .569556 .595959 -.525652 .191677

22 .051587 -.069568 -.098219 -.058556 -.595959 1.559618 2.168729 .112766

52 .012926 .098219 .068260 .010209 - . 525652 -2.168729 .657%0 2.805101

22 - .010780 -.058556 - .010209 .015761 - .191677 .112766 -2 .805101 .1. 552676
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TABLE 1.- VALUES OF GENERALTZED E0BcE - COHÜÄDUQÖ

<¤> P; - I

ll 21 51 Hl 15 25 55 45
ll 0.05u825 0.870251 0.009766 0.5u7509 -0.010958 -0.01056u -0.006599 -0.00u678

21 -.870251 .00u086 1.555199 .OOlü78 .01056u .006575 .001822 .001551

51 .009766 -1.555199 .005659 2.1895Äl -.006599 -.001822 .000568 -.000820

Al -.5u7509 .OOl#Y8 -2.1895Äl .000995 .00u678 .001551 .000820 .OOlÄl6

15 -.010958 -.01056u -.006599 —.OOMÖT8 .26MYll .985087 .OÄ5§Ol .579560

25 .01056u .006575 .001822 .001551 -.985087 .095516 1.628195 .056687

55 -.006599 -.001822 .000568 -.000820 .0u5501 -1.628195 .017556 2.251651»

A5 .00u678 .001551 .000820 .OOlÄl6 -.579560 .056687 -2.251651 .019055

12 22 52 M2 lü 2u 5I+ Im
12 0.150759 O.92MM8Y 0.051581 0.565621 -0.025207 -0.022527 —0.0l2MYO -0.008852

22 —.92MM8Y .0266ÄQ 1.565657 .010u55 .022527 .OlO9YM -.000285 -.OOO2MY

52 .051581 -1.565657 .011565 2.206962 -.Ol2M7O .000285 .00uu95 .000228

Ä2 -.565621 .010u55 -2.206962 .006059 .008852 -.OOO2HY -.000228 .002066

lä -.025207 -.022527 -.Ol2Ä7O -.008852 .#O579Ä 1.018790 .029lÄÄ .575056

QM .022527 .01097u -.000285 —.OOO2MT -1.018790 .252958 1.7u0565 .086199

5u -.Ol2MTO .000285 .00uu95 .000228 .029lMM -1.7u0565 .280215 2.26M862

uu .008852 -.OOO2MY -.000228 .002066 -.575056 .086199 —2.26&862 .090980
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1.- VALUES OF 0E1~1ERAL1ZED FORCE - 0000104188

ßb _(Ö) Q — °°

ll 21 5l Äl 15 25 55 M 5
ll 0 0 .8M8820 0 0. 559551 0 0 0 0

21 -. . 1 0 1.527887 0 0 0 0 0

51 0 -1.527887 0 2.182090 0 0 0 0

Ml - . 559551 0 -2.182090 0 0 0 0 0

l5 0 0 0 0 0 -ö$«ö<%2<.> 0 . 5 555 jl

25 0 0 0 0 -. 8M8820 0 1.527887 0

55 0 0 0 0 -1.527887 0 2.1824,00

M5 0 0 0 0 - .559551 0 -2.182090 0

12 22 58 M2 lä 2M 5M MM
12 0 0 .8M8820 0 0. 559551 0 0 0 0

22 -. 8M8820 0 1 . 527887 0 0 0 0 0

52 0 -1 . 527887 0 LZ . 182090 0 0 0 0

M2 - . 559551 0 -2 .182090 0 0 0 0 0

lM 0 0 0 0 0 . 8M882€— 0 . 5 55 51

QM 0 0 0 0 -.8M8820 0 1.527887 4,

5M 0 0 0 0 0 -1 . 527857 0 .lr4};_}c,MM

0 0 O 0 - .559551 0 -;3.18-;+;9·„ 0
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For Bb/a < 1, a similar, but more complicated, reduction can be

made. No results have been obtained for this case, however, primarily

because they would be useful only for very low-aspect··ratio panels.

For example, values of Bb/a < 1 would correspond to Mach numbers less

then J2- for a panel of unit aspect ratio. But, as will be demon-

strated, the static aerodynemic theory cannot be expected to yield

good results for this region.
e

Calculations for an egggle panel.- In view of the results

obtained for the modal solution for strip theory, it is evident that

the use of four modes in the x··direction should give satisfactory

accuracy. In the y-direction, it is convenient to include two modes:

. n
·
1, since this oonstituted the most critical value for the strip-

theory solution; and n -
3, in order to include effects of spanwise

coupling.

Equation (22) then becomes

2 a 2 2 __ 2** _m + n m RX

m-izsn)2 » » »n2® Pw 1% °“‘“ :3 1--1,2,3,1, s�1,3 I‘““·*°°°‘°" O a · 1, 3

For a nontrivial solution, the detcrminant of the coefficients of

cm must be zero. When expanded, this determinant yields an eighth-

order equation in 1-E2 in which the ooefficients are dependent on A,

EC,
läy,

and a/b. As before we seek the lowest valm of X for fixed
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and a/b for which two of the sight roots for E2 become

complex. (For ). ¤ O, all roots are obviously real.) The calculations

have been carried out for a/b ¤ 1 and for a number of values of EX
and 'Ihe following values for Aer were obtained:

For 8b/a -= 1

-1, 61,7.7 1,80.0 322.8 179.6 51,.38 1,6.63

-2 61,7.7 1,80.0 322.8 179.6 51,.38

0 61,7.7 1,80.0 322.8 179.6

2 61,7.8 1,80.1 322.9

1, 61,8.0 1,80.3

For {Sb/a. =· 2

E *11 ·2 la
Y

6 -1, 81,7.7 668.2 1,95.8 333.9 186.3 56.56 1,6.35

-2 668.2 1195.8 333.9 186.3 56.56

0 668.2 1195.8 333.9 186.3

2 668.2 1195.8 333.9
1, 668.2 1,95.6



... 3Q ..

For ßb/a = 11

ll
859.8 676.9 502.5 338.6 189.1 57.55 ll9�39

676.9 502.5 338.6 189.1 57.55
676.9 502.5 338.6 189�l

676.9 502.5 338.6

676.9 502.5

In the calculations for ßb/a == 1, 2, and lg, an automatic high-

speed digital computer was used. For each set of valuesforand

äy the determinant was expsnded for various selected values

of 1. The resulting eighth—order equation in E2 was then solved.

The critical value of 1. was found by an interpolation procedure.

A significant outcome cf these calculations is the virtual inde-—

pendence of her on the value of Evidently the ceupling

between the various modes in the y·—d:Lrection is slight, even for

Bb/a � 1. Since the coupling is so slight, it is improbsble that the

addition of more modes in the y·~direction wouJ.d change the results

appreciably. Thus the tabulated values can be considered to be

essentially correct.

The lack of dependence on äy also suggests the pcssibility

that the value of km? is dependent only on the parameter

1: - ai „
21.312

1
1
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as it was for the strip—theory solution. If this were the case, the

results for a/b � 1 could be extended to apply to other aspect

ratios through the use of this paramter. As a check, the vales

er nm, were calculated for a/b · 2, Fx · 1,, F}, · o and
a/b
-
1/2, Ex -

-3.5, Nm
-
O. For ßb/a = 1, the resulting values

of Aer are 6h7.7 and 626.6, respeotively, in reasonable agreement

with the tabulated value fbr a/b � l, äg
-
-2, äy = O. Thus, the

extension can apparently be made. The variation of Xcm with Ä

is shown in Figure h for ßb/a
·
1, 2, h, and.«� (strip theory);

the values are also given in Table 2. Note that for Ä ·
5, the

critical dynamic-pressure parameter is zero fbr all values of Bb/a.

The significant results of this thesis are embodied in Table 2.

From this table, the critical values of X for isolated rectangular

simply supported panels can be found in terms of Ä fer a large

range of panel aspect ratio, midplane stress, and Mach number. The

necessary panel thicknees to prevent panel flutter can then be

calculated from the value cf lem. In this regard, it is interesting

to note that the aerodynamic erreet of finite aspect ratio on the

panel thickness is very small. Fer the range considered the variation

of Aer between ßb/a ·�¤ and ßb/a
· 1 is approximately 6 percent;

the correspcnding variation cf thickness weuld be less than 2 percent.

4
4

4
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TABLE 2.- CRITICAL VALES OF DYNAMIC PRESSURE PARAMETER A

-6 822 BAB 860 865

-A 6AB 668 677 680

-2 A80 A96 502 505

0 525 55A 559 5A1
2 179.6 186.5 189.1 190.5

A 5A.A 56.6 57.6 58.0
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VI. DISCUSSION

1
Accuraoy of Static Aerodnamic Approximation

The results obtained by Eis1eyl9 by using linearized two-

dimensional usteadyeflow theory provide an excellent basis for

evaluating the accuracy of the static aerodynamic approximation

employed in this thesis. The results calculated by a two-mode Galerkin

solution for unstressed plates cf aspect ratio h, 2, 1, and l/2 sub-

jeoted to M
·
2 flow are shown in Figure 5. The abscissa in this

figure is the well-known mass ratio

which does not appear in the preset analysis because of the simplicity

of the aerodynamic theory. Indeed, the values of ACT obtained from
the static approximation are the same as those in Figure 5 for e ¤ O.

It is therefore apparent that the static approximation is adequte

if e is small enough.

In order to define the practical range of s, it is convenient tc

make use of the following combined parameter

e Ü Ü

where c is the speed of sound in the air. Note that, for fixed Mach

number, this parameter is dependent only on the properties of the air

and the plate material. For a particular altitude-material combination,
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Fig. 5.- Results for M = 2 obtained from 6 two-mode strip-theory
solution using unsteady air forces.
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therefore, A would vary as 63. The variation for magnesium at sea

level is indicated oy the dashed line in Figure S. For this altitude—

material combination the error of the static approximation can be

seen to be negligible. For higher altitudes or denser materials the

corresponding cubic line would lie above the one shown and the error

would be less. lt is reasonable to conclude, therefore, that the

static approximation yields satisfactory accuracy for M = 2.

Investigations of the frequency expansions of the flotter forces

(see ref. 6, for example) shcw·that the accuracy of the static

approximation would be even better for Mach numbers greater than 2.

For M < 2, however, the accuracy decreases. At~JM � 2, for

instance, the unsteady flow theory yields tw flutter boundaries6’l9

whereas the static theory predicts only one. It is paobable, there-

fore, that a lower limit, somewhere between \/2-
and 2, exists on the

Mech number range for which the results cbtained in this thesis are

applicable.

Buckling Behavior

It is generally agreed that buckling has an adverse effect on the

flutter speed of panels. Past theoretical work on this subject,

however, has dealt with only the two—dimensional panel~flutter problem.

This work was pioneered by Isaacsl, who introduced the concept of the

”transtability" speed, a speed caloulated from purely_gtatig considere-

tion that constitutes an uper limit on the flotter speed of the

buckled panel. Hayee2 and Milesg then demonstrated that the

transtability speed is indeed equal to the flutter speed for small

perturbations about the static equilibrium position.
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The similarity between the governing equations of two~ and three-

dimensional panel flutter for strip theory with static air forces (see

eq. (7) and ref. 12) indicates that the flutter speed of a buckled

finite·—aspect·-ratio panel might also be obtained through a

transtability·type approach. A mwliminary investigation, limited

by the use of small·def1ection plate theory to small buckle depths,

of the static buckling behavior of panels is outlined here. Since

some of the results obtained are of unoertain validity, being unsup-·

ported by a dynamic analysis, the investigation is limited to a two-·

mode solution for simplicity.

The effect of the air forces on the buckling load can be determined

by setting E equal to zero in equation (15). Slightly rewritten,

the equation becomes

·~ 1><l6 ·· LX - Fo) (2L;)
3n

where, for n - l

gv *
ä-Y<%)2

·
(äh

The buckling loads can be calculated from this equation. An example

plot of the variation of äx with X for a/b
-
l, Ey � O is shown

in Figure 6. Similar plots would result for other values of a/b

andI
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l
The transtability analysis for the two—d:Lmensional problem is 1

based on a plot like that in Figure 6. It is argued that a buckled

panel subjected to air flow would exhibit the midplane load given by

the left-hand branch of the curve. If X is increased, the load

would increase until the maximum of the curve is reached. Further

increase of X would necessarily produce motion of the panel since

there would be no stable static equilibrium position of the buckled

panel. (Presumably, the panel would be unstable at the higher buckling

loads not considered in the two·—mode solution.) The maximum value

of X given by the curve is the transtability valm .

The same line of reasoning can be used for the three-·dimensional

problem provided that the buckle depth is kept small. For this case,

the results are dependent on the boundary conditions on in-·plane

deflections and stresses at the edges. Consider, for instance, a

buckled panel with streamwise edges having a prescribed stress end

spanwise edges having a presoribed displacement. For such boundary

conditions the value cf Fo would be fixed and the valm of Ä would

be that given by equation (21;). The resulting transtability value

of X would be found from the condition

Q: -· 0BA

which gives

Ä "
Qglilh

(25)T 32 O
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On the other hand, a pael with the edge boundary conditions reversed

would have a fixed value of Ä and the appropriate transtability

condition would be

ät- � O
seo

The resulting value of ÄT is

>„T II (26)

which is the same as that obtainsd for the unbuckled panel (see

eq. (16)); this result can, of course, be quite different from that

given by equation (25).

In a practical situation, the edge boundary conditions would

probably be different from either of the foregoing cases and different

values of AT would result; each situation requires separate

treatment.

A question might arise as to the usefulness of the small—deflection

theory in obtaining results pertaining to finite—aspect-ratio buckled

panels. It is felt, however, that such results represent correctly

the limiting case of vanishingly small buckle depths and, furtherore,

that this limiting case establishes a lower bound on the critical

value of A for buckled panels. Th latter conjeoture is based on

the demonstrated independence of lcr on buokle depth for the two-

dimensional problem12’l6 and the more rapid increase of stiffhess with

buckle depth for a finite·aspect—ratio plate than for an 1nfinite—

aspect-ratio plate (beam)2S. A test of the validity of the ccnjecture,
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and others implied in this section, must await a full—fledged dynamic

analysis of the aeroelastic behavior of three-dimensional buckled
panels including large—deflection structural effects.

Panel Thickness

Two examples of the variation of the critical thicknees ratio

with Mach number as cbtained'by the present theory are indicated by

the olid lines in Figue 7. The results apply to ustressed aluminum

panels at an altitude cf 50,000 feet with aspect ratics of one and

infinity. As could be expected, the effect of reducing the aspect

ratio is to reduce the required h/a.

Also shown in Figure 7 are the results calculated from unsteady—

flow theory for the lower supersonic Mach numbers by Luke and

St. Johnzl. These results, which are indicated by the dashed lines,

mrge well with the predictions of the present analysis. Th meting

is nearly exact for the aspect ratio cf infinity if account is taken

of the fact that the dashed lines wee obtained from a two—mcde

solutionzl whereas the solid lines were obtained from a four—mde

solution; the effect of going from four to two modes is to increase

th thickness by 7.5 percent. For the case of unit aspect ratio, the

results are again not directly comparable; in addition to being based

on fewer modes, the dashed line applies to a spanwise array cf panels

rather than to an isolated panel. The effect of this latter disparity

is probably small for M ~—l.5, however, since strip theory yields

the sam results for both configmrations and the aeodynamic influence
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of finite aspect ratio is rather unimportant. The correction for

number of modes mentioned above wouhd again produce

exoellentagreement.

Past analyses of two—dimensiona1 panel flutter have indicated

that the most critical condition for design occurs at a value of Mach

number of about 1.3. This is illustrated strikingLy“by the infinite—

aspect-ratio curves in Figure 7. The required thickness decreases

rapidly between M ¤ 1.3 and 1.5 and then increases very slowly.

Even at M
-
6, the thickness ratio is only about one·fouth of that

at M ~ 1.3. However, the situation is apparently different for

finite aspect ratios; a virtually monotonic increase of required

thickness with Mach number is experienced for an aspect ratio of one.

Thus the high Mach number theory of this thesis should provide useful

design information for panels of moderately low aspect ratio.

The numrical values of the critical hiokness ratios in Figure 7

are fairly small and would be of consequence only for lightly loaded

portions of the structure such as fairings ad control surfaces. It

should be emphasized, however, that large thickness ratios would be

required if the parameter Ä were close to 5. This situation would

not be difficult to attain. For instance, if a panel of aspect ratio

equal to 1/2 were subjeoted to a compressive midplane stress in the

chordwise direction only, Ä � 5 could be achieved without buckling.

Even for a panel of unit aspect ratio, Ä � 5 could be obtained

without bukling by compressing in the xedirection and pulling in

the y—direction. It is obvtcus that such configurations should be

assiduously avoided in design.
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VII. OONCLUDING REMARKS

The panel flutter analysis presented herein has been restricted to

the problem of an isolated simply supported plate of uniform thickness.

The same type of analysis can be applied, however, to other panel con-

figurations. Clamped panels, integrally stiffened panels, arrays of

panels, end others should be amnable to treatment by the model approach

based on the static aerodynamic approximation.

It is generally egreed that flutter analyses should be supported

by experiment. In this regard, the small amount of datal6'26 which

is available indicates that theoretical panel-flutter calculations

are somewhat conservative. Most of these data, however, relates either

to buckled panels or to the lower supersonic Mach numbers. More experi-

mental data, especially on unbuckled panels, are needed in order to

assess the validity of panel-flutter analyses.

I
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X. APPENDIX
I

EVALUATION OF ign rsJ ,
}

The generalized force Eqm rs is given by equation (23)
L1 ,

l ..6
_ sb a „x „y+

ß
(X )

„g(@m1·Lm¤’rS
a2bP

cos ÄEE-ein BEY-cos SEE ein Egg
A b a b X
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If 5 and n are replaced by

u= (><·—6) -B(y··n)

v··(><-6)+ß(:v—*1)

the result is

2a .2a-U „b
‘ > ab 0 lg uv ~0 B

-*1...;.*; - .. ..1*..:..2My 26) lI”’ ‘° 26))
xda _

dy f cos@¥cosH(x-Li-äü (A2)a a 2
2



I

I
-— Sl -

where the order of integration has been changed. Carrying out the x- and I

y·—integrations yields the following result after some manipulation:

When n + s is odd,

1,,,,,,,,8 = O (A3)

When n + s is even,
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In these expressions

-‘1, ein 11 //
‘

mn a n V Jg;“ 1

-1= mn Il du dv
8 1 . Juv 1
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2a 2a 2éb du dv IA 1

(IN l__ll‘*‘V)(l__V�]1}: 1 (11+V) (V'll),1 2 if ( Za 2% oe mz 2a cos mz Qpb IIimu =· a (mn) I du dvuv
R

The region of integration R is bounded by the lines u == O, u � v, and

u + v - 2a
for ßb/a _; 1 and by the additional line v ·— u · 2{sb for

ßb/a 1.

Hereinafter we confine our attention to values of ßb/a greater

than or equal to one. For this range the expressions for Im, Jam,

Kum, and L11111 can be reduced to simpler forms as follows:

Let

u = a§§(l — ein G)
(A6)

v � a(j(l + sin G)
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Then Im, for example, becomes

E
m -, 2 -1 Ä1 -

@19 (-1) sm mn; am @11; ein e d9‘i§ (A7)
O O

where

O' ¤ ig.gg?.n
a

Carrying out the Q-integration yields

P. I1 „
I: G ein 9):19

+
/*2 ein 9):19

IYHF1 Q; 0 ¤+sin9 O U·-ein9

or

Ium = ·· _-g,-@(::1,:;:) - S(m,—cÜ (A9)mz

where

2 ein(-Eli-1 sin 9) d9 Äs(m,¤) - [
—————l—‘1—-———-—- (910)

O ein 9 + o
By a similar procedure we find

cv
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0 m a mn ,* *5*** * HH1<—;N (A12)
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(A13)
where

I1_ ·2 ces ($*-6E- sin Q) - cos mu
C(m,¤) ·=

Ä/*
—-—·—-———-—————--—--—-·—-—·-·—-—— de (Alb)

Q sin 9 + cx

and J1 and H1 are Bessel and ötruve functions.

The functions S(m,¤) and C(m,¤) can be evaluated accurately by

means of numerical integration; the presence of the term cos mn in

equaticn (Alb) insures well·-behaved integrands. For the caloulations of

the values of Lmn ,,8 in Table 1, Gaussian integration with eight pointsI

on the interval (O, 11/2) was used; this procedure yields values of the

integrals accurate to at least five significant figures.
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Lxcept in the special case <*� l, the values of Z canr¤I1,I‘S

be calculated from equations (aß), (Ab), and (A9) through (Alb). For
Ü
-
l, it is convenient to gc back to equation (A5) and obtain expressions

for Imn, Jnm, Kmn, and Lmn directly. Thus, since gg for this

,
case, we can write, for example,

sinmnci-é-gl-C>sinand

the necessary integrations can be performed without changing

variables. The results for w � l are

, E. ra 1 LL2 2 u 2 aJmn 3 H +
3 n HÜ(m¤) mn Jl(mu)

3 H Hl(mn)

2 H ( 1)
3 H +

3 H HG(mn)
3 H dl(mn) (A15)
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FLUTTER MDE SHAPES FOR AERODYNAMIC STRIP THEORY

The shape of the flutter mode as obtained from the exact solution

of equation (7) is given by

M
w 1: epl xl (A16)n 1i==l

where

pl 2 3 M = ~·a + 6,—-a-— 6, a + 18, a·- 18
) } )

The Di must satisfy the matrix equation

l l l l Dl O

. exl epg eP3 epx Db O

2 2 2 2 D " O (A17)

plaepl p22eP2 p32ep3 phxepu Dh O

At flutter, of course, the determinant of the square matrix is zero

and the Di are determined except for a common multiplier. Thus, the

set of Di at flutter must be proportional to

l l l

Dl = ep? ep} cpu 1

2 2 2
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1 1 1

D2 =¤ ~· ep3 epu epl 1

2 2 2

1 1 1

D3 =· ep1* em sp2 1
2 2 2Pu pl P2

1 1 1

Du =·= —· ep]- ep? eP3 1

2 2 2

where 1 =·- v-— 1 has been inserted as a multiplier in order to make

the resulting Wu real.

The flutter mode shapes for Ä == —- 7, -—3, O, 3 have been evaluated

by using equation (A16) in conjunction with the appropriate values of Ä

and cx. . (See discussion following equation (10).) The results

(normalized so that the maximum ordinates are unity) are shown in

Figure 8. It can be seen that the amplitude of flutter 1s greatest in
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the rear portion of the panel and that the peak amplitude moves rearward

as Ä is decreased.

Also plotted in Figure 8 is the flutter mde shape as obtained by

the tw0—term Galerkin solution. Fbr this solution the shape is given by

Wh = sin nxl — sin 2xxl (A18)

for all values of Ä . The degree of agreement with the exact shapes

is similar to that shown in Figure 3 for Acr ; that is, increasingly

poor agreement with decreasing Ä . The differences, however, are net

as marked as those obtained for act .
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Figure 8. — Flutter Mode Shapes Obtaimed by Aerodynaxuic Strip Theory


