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This paper studies the aeroelastic behavior of telescopic, multi-segment, span morphing wings.

The wing is modeled as a linear, multi-segment, stepped, cantilever Euler–Bernoulli beam. It
consists of three segments along the axis and each segment has di®erent geometric, mechanical,

and inertial properties. The aeroelastic analysis takes into account spanwise out-of-plane bending

and torsion only, for which the corresponding shape functions are derived and validated. The use

of shape functions allows representing the wing as an equivalent aerofoil whose generalized
coordinates are de¯ned at the wingtip according to the Rayleigh–Ritz method. Theodorsen's

unsteady aerodynamic theory is used to estimate the aerodynamic loads. A representative Pad�e

approximation for the Theodorsen's transfer function is utilized to model the aerodynamic

behaviors in state-space form allowing time-domain simulation and analysis. The e®ect of the
segments' mechanical, geometric, and inertial properties on the aeroelastic behavior of the wing is

assessed. Finally, the viability of span morphing as a °utter suppression device is studied.

Keywords: Telescopic wing; span morphing; °utter; aeroelasticity.

Nomenclature

â= normalized pitch axis location with respect to half chord

(â ¼ �1 leading edge, â ¼ 1 trailing edge)

b=wingspan
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c= chord of the aerofoil/wing
�EI = bending rigidity
�GJ = torsional rigidity

hðyÞ= bending shape function

I 0
ea =mass moment of inertia around the elastic axis

l= length

L 0 = lift per unit span

L= equivalent lift force

LE= leading edge

m 0 =mass per unit span

M 0
ea = pitching moment per unit span around the elastic axis

Mea = equivalent pitching moment around the elastic axis

s=Laplace variable

t= time

T = total kinetic energy

U = total potential energy

V = true airspeed

x� = distance between elastic axis and center of gravity

w= plunge displacement at elastic axis

y= spanwise location measured relative to the wing root

�= pitch angle

�ðyÞ= torsion shape function

�= air density

Subscripts

t=wingtip

1 = Segment 1

2 = Segment 2

3 = Segment 3

i= ith vibration mode

j= jth wing segment

Superscripts

. = ¯rst time derivative

.. = second time derivative

, = ¯rst spatial derivative

,, = second spatial derivative

R. M. Ajaj et al.
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1. Introduction

A large wingspan/aspect ratio improves the aerodynamic e±ciency but reduces

maneuvrability, whereas a small wingspan improves maneuvrability but reduces

aerodynamic e±ciency.1 The span morphing technology allows integrating the

bene¯ts of both large wingspan and small wingspan into one aircraft to e®ectively

perform a wide range of missions.2–4 Ajaj et al.3,4 studied the bene¯ts of variable span

wings to enhance the aerodynamic e±ciency when actuated symmetrically and to

improve roll control when actuated asymmetrically. Span morphing wings have been

developed since the start of powered °ight. For instance, the MAK-10 aircraft, de-

velop by Ivan Makhonine, °ew in the 1930s with a telescopic span morphing wing.

Makhonine utilized pneumatic actuators to move the telescopic wing to achieve span

extensions up to 60%.5 Recently, there has been some promising work on telescopic

span morphing wings. For example, Blondeau and Pines6 developed a telescopic wing

where hollow shells were used to preserve the aerofoil shape and reduce the storage

size of the wing. They utilized in°atable actuators to withstand the di®erent loads on

the wing. Bae et al.7 studied wings of a long-range cruise missile and highlighted

some of the main challenges associated with the design of a span morphing wing.

They achieved drag reduction of 25% and a range increase of 30%. Ajaj and Jankee8

developed the Transformer Aircraft, a span morphing UAV, capable of symmetric

and asymmetric span extensions. A novel actuation system based on a rack and

pinion mechanism was utilized. They conducted extensive wind tunnel and °ight

testing to assess the e®ect of span morphing on the °ight mechanics and aerodynamic

e±ciency.

Similarly, Santos et al.,9 Mestrinho et al.,10 and Felício et al.11 and developed and

tested a variable-span morphing wing (VSW) to be ¯tted on a mini-UAV. They

achieved 20% wing drag reduction with symmetric span extension. The roll rate

achieved with asymmetric span morphing matched the aileron in terms of roll power.

The VSW was constructed from composite materials and was actuated using an

electro-mechanical mechanism. Mechanical testing was performed to evaluate the

behavior of the wing under various loading scenarios. Flight testing showed full

functionality of the VSW and its aerodynamic improvements compared with con-

ventional ¯xed wing. A more extensive review on span morphing wings (applications

and concepts) for both ¯xed-wing and rotary-wing aircraft is given in Barbarino

et al.1

Recently, there have been a number of attempts to study the aeroelastic behavior

of span morphing wings. For example, Ajaj and Friswell12 developed a linear, time-

domain aeroelastic model that uses Theodorsen's unsteady aerodynamics to study

the aeroelastic behavior of compliant span morphing wings. They performed ex-

tensive sensitivity studies and concluded that span morphing can be used as an

e®ective °utter suppression device. Similarly, Huang and Qiu13 developed a novel

¯rst-order state-space aeroelastic model based on Euler–Bernoulli beam theory. They

assumed time-dependent boundary conditions coupled with a reduced-order
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unsteady vortex lattice method. Similarly, Li and Jin14 studied the dynamical be-

havior and stability of a variable-span wing subjected to supersonic aerodynamic

loads. They modeled the span morphing wing as an axially moving cantilever plate

and established the governing equations of motion using Kane's method and piston

theory. They concluded that a periodically varying (with proper amplitude)

morphing law can facilitate °utter suppression. Gamboa et al.15 studied the aero-

elasticity of composite VSW intended for a small UAV. The study concentrated on

the °utter critical speed estimation and assessed the e®ect of the interface between

¯xed and moving wing parts. Their aerodynamic solver was based on an unsteady

linearized potential theory coupled with three-dimensional lifting surface strip theory

approximation for lifting surfaces with high aspect ratio. The results showed that the

wing can °y safely within the intended speed envelope.

The aim of this paper is to investigate the aeroelastic behavior of telescopic span

morphing wings. The wing is modeled as a stepped, multi-segment Euler–Bernoulli

beam consisting of three main segments with di®erent geometric, inertial, and me-

chanical properties. Theodorsen's aerodynamic theory is utilized for estimating the

unsteady aerodynamic loads. The in°uence of the segments' properties on the binary

(bending-torsion) aeroelastic behavior of the wing is assessed. Goland wing16 and the

HALE wing17 are used as the basis of this study. The e®ect of the segments properties

on the °utter mode is investigated. Finally, the feasibility of utilizing span morphing

as an active °utter suppression device is assessed.

2. Aeroelasticity Model

The wing is modeled as a stepped Euler–Bernoulli beam consisting of three segments.

These segments correspond to the ¯xed wing partition, the overlapping region, and

the extending partition as shown in Fig. 1.

Across each segment, the mechanical and geometric properties are uniform but

they di®er from one segment to another. The properties (considered here) corre-

sponding to each segment are listed in Table 1. Each segment is rectangular,

Fig. 1. A top view of the telescopic span morphing wing.
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unswept, untapered to minimize geometric and aeroelastic couplings. It is assumed to

have a clean wing con¯guration where no control surfaces or engines are attached to

it, and there are no fuel tanks embedded within. The continuous, multi-degree-of-

freedom wing structure is modeled as a two-degree-of-freedom system via the Ray-

leigh–Ritz method using bending and torsion shape functions. These shape functions

correspond to the uncoupled ¯rst bending and ¯rst torsional modes of a stepped

cantilever beam. This allows the wing to be modeled as an equivalent two-degree-of-

freedom aerofoil whose generalized coordinates are de¯ned at the wingtip. The dy-

namics of the telescopic mechanism are neglected (as the rate of span extension or

retraction is low). Using the shape functions, the plunge displacement, speed, and

acceleration at any spanwise location ðyÞ and time instant can now be related to

those of the wingtip (generalized coordinates) as:

wðt; yÞ ¼ wtðtÞhðyÞ;

_wðt; yÞ ¼ wt
:
ðtÞhðyÞ;

€wðt; yÞ ¼ wt
::
ðtÞhðyÞ:

ð1Þ

Similarly, the pitch displacement, speed, and acceleration at any spanwise location

ðyÞ and time instant can now be related to those of the wingtip (generalized coor-

dinates) as

�ðt; yÞ ¼ �tðtÞ�ðyÞ;

_�ðt; yÞ ¼ �t
:
ðtÞ�ðyÞ;

€�ðt; yÞ ¼ �t
::
ðtÞ�ðyÞ;

ð2Þ

where wtðtÞ and �tðtÞ represent the generalized coordinates coinciding with the

wingtip. It should be noted that the datum from which the generalized coordinates are

measured is the static position of the wingtip when the wing de°ects under self-weight.

2.1. Bending shape functions

To obtain the bending shape functions, the continuity and boundary conditions

listed in Table 2 are considered.

Table 1. Geometric and mechanical properties of the multi-segment wing.

Parameter Segment 1 Segment 2 Segment 3

Bending rigidity ðEIÞ1 ðEIÞ2 ðEIÞ3
Torsional rigidity ðGJÞ1 ðGJÞ2 ðGJÞ3
Length l1 l2 l3
Chord c1 c2 c3
Mass per unit span m 0

1 m 0
2 m 0

3

Mass moment of inertia per unit span I 0
ea1

I 0
ea2

I 0
ea3

CG location from LE xcg1 xcg2 xcg3
EA location from LE xea1 xea2 xea3
Distance between EA and CG x�1 x�2 x�3
Spanwise position 0 � y1 � l1 0 � y2 � l2 0 � y3 � l3

Flutter of Telescopic Span Morphing Wings
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The bending shape function, hiðyÞ, corresponding to the ith bending mode is

given as:

hiðyÞ ¼

h1iðyÞ 0 � y � l1

h2iðyÞ l1 < y � l1 þ l2

h3iðyÞ l1 þ l2 < y � l1 þ l2 þ l3

8

>

<

>

:

: ð3Þ

Appendix A details the steps to obtain the bending shape function and natural

frequency corresponding to the ith mode.

2.2. Torsion shape functions

Similarly, to obtain the torsion shape function, the boundary and continuity con-

ditions listed in Table 3 are considered.

The torsion shape function �iðyÞ corresponding to the ith torsional vibration

mode is given as:

�i yð Þ ¼

�1i yð Þ 0 � y � l1

�2i yð Þ l1 < y � l1 þ l2

�3i yð Þ l1 þ l2 < y � l1 þ l2 þ l3

8

>

<

>

:

: ð4Þ

Table 2. Bending boundary conditions.

Root conditions Continuity conditions Tip conditions

w1ðt; y1 ¼ 0Þ ¼ 0 w1ðt; y1 ¼ l1Þ ¼ w2ðt; y2 ¼ 0Þ @ 2w3ðt;y3¼l3Þ
@y 2

3

¼ 0

@w1ðt;y1¼0Þ
@y1

¼ 0 @w1ðt;y1¼l1Þ
@y1

¼ @w2ðt;y2¼0Þ
@y2

@ 3w3ðt;y2¼l3Þ
@y 3

3

¼ 0

ðEIÞ1
@ 2w1ðt;y1¼l1Þ

@y 2
1

¼ ðEIÞ2
@ 2w2ðt;y2¼0Þ

@y 2
2

ðEIÞ1
@ 3w1ðt;y1¼l1Þ

@y 3
1

¼ ðEIÞ2
@ 3w2ðt;y2¼0Þ

@y 3
2

w2ðt; y2 ¼ l2Þ ¼ w3ðt; y2 ¼ 0Þ

@w2ðt;y2¼l2Þ
@y2

¼ @w3ðt;y3¼0Þ
@y3

ðEIÞ2
@ 2w2ðt;y2¼l2Þ

@y 2
2

¼ ðEIÞ3
@ 2w3ðt;y3¼0Þ

@y 2
3

ðEIÞ2
@ 3w2ðt;y2¼l2Þ

@y 3
2

¼ ðEIÞ3
@ 3w3ðt;y3¼0Þ

@y 3
3

Table 3. Torsion boundary conditions.

Root conditions Continuity conditions Tip conditions

�1ðt; y1 ¼ 0Þ ¼ 0 �1ðt; y1 ¼ l1Þ ¼ �2ðt; y2 ¼ 0Þ @�3ðt;y3¼l3Þ
@y3

¼ 0

ðGJÞ1
@�1ðt;y1¼l1Þ

@y1
¼ ðGJÞ2

@�2ðt;y2¼0Þ
@y2

�2ðt; y2 ¼ l2Þ ¼ �3ðt; y3 ¼ 0Þ

ðGJÞ2
@�2ðt;y2¼l2Þ

@y2
¼ ðGJÞ3

@�3ðt;y3¼0Þ
@y3

R. M. Ajaj et al.
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Appendix B details the steps to obtain the torsion shape function and natural fre-

quency corresponding to the ith mode.

2.3. Equations of motion

The total kinetic energy ðT Þ and total potential energy ðUÞ of the three segments'

cantilever, rectangular wing can be expressed as

T ¼
1

2
_w 2
t

Z l1

0

m 0
1h

2
1dyþ

Z l2

l1

m 0
2h

2
2dyþ

Z l3

l2

m 0
3h

2
3dy

 !

þ
1

2
_�
2
t

Z l1

0

I 0
ea1

�2
1dyþ

Z l2

l1

I 0
ea2

� 2
2dyþ

Z l3

l2

I 0
ea3

�2
3dy

 !

� _wt
_�t

Z l1

0

m 0
1x�1h1�1dyþ

Z l2

l1

m 0
2x�2h2�2dyþ

Z l3

l2

m 0
3x�3h3�3dy

 !

ð5Þ

and

U ¼
1

2
�2
t

Z l1

0

ðGJÞ1
d�1

dy

� �

2

dyþ

Z l2

l1

ðGJÞ2
d�2

dy

� �

2

dyþ

Z l3

l2

ðGJÞ3
d�3

dy

� �

2

dy

 !

þ
1

2
w2

t

Z l1

0

ðEIÞ1
d
2
h1

dy
2

 !

2

dyþ

Z l2

l1

ðEIÞ2
d
2
h2

dy
2

 !

2

dyþ

Z l3

l2

ðEIÞ3
d
2
h3

dy
2

 !

2

dy

 !

:

ð6Þ

It should be noted that structural damping is not considered in this study; this

assumption is commonplace in aeroelastic analysis as any structural damping will

increase the speed at which °utter will occur. Using the expressions of kinetic and

potential energies, the full equations of motion of the span morphing wing can de-

veloped using Lagrangian mechanics as:

d

dt

@ðT � UÞ

@ _wt

� �

�
@ðT � UÞ

@wt

¼ L; ð7Þ

d

dt

@ðT � UÞ

@ _�t

� �

�
@ðT � UÞ

@�t
¼ Mea; ð8Þ

where L is the generalized lift force and Mea is the generalized pitching moment.

The generalized lift force and pitching moment around the elastic axis can be

obtained as:

L ¼

Z l1

0

L 0
1h1ðyÞdyþ

Z l2

l1

L 0
2h2ðyÞdyþ

Z l3

l2

L 0
3h3ðyÞdy ð9Þ

and

Mea ¼

Z l1

0

M 0
ea1

�1ðyÞdyþ

Z l2

l1

M 0
ea2

�2ðyÞdyþ

Z l3

l2

M 0
ea2

�3ðyÞdy; ð10Þ

Flutter of Telescopic Span Morphing Wings
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where L 0
1, L

0
2, and L 0

3 are the unsteady lift per unit span on segments 1, 2, and 3,

respectively. M 0
ea1

, M 0
ea2

, and M 0
ea3

are the unsteady pitching moments around the

elastic axis per unit span on segments 1, 2, and 3, respectively. It should be noted

that the expression of lift per unit span and pitching moment per unit span will vary

for the di®erent segments due to di®erent chords and di®erent distances between

aerodynamic centers and elastic axis of each segment.

2.4. Aerodynamics

The aerodynamic loads acting on the wing are modeled according to Theodorsen's

unsteady aerodynamics theory. Theodorsen's unsteady aerodynamic model consists

of a circulatory component accounting for the e®ect of the wake on the aerofoil

(contains the main aerodynamic damping and aerodynamic sti®ness terms) and a

noncirculatory component accounting for the acceleration of the °uid surrounding

the aerofoil.18 The work of Theodorsen is based on the following assumptions:

. Thin aerofoil;

. Potential, incompressible °ow;

. The °ow remains attached, i.e. the amplitude of oscillations is small and the wake

behind the aerofoil is °at.

According to Theodorsen's unsteady aerodynamic theory, L 0
j and M 0

eaj
, acting on

the jth wing segment can be expressed, respectively, as

L 0
j ¼ ��

c2j

4
� €w þ V _��

âjcj

2
€�

� �

þ 2��V
cj

2
CðkÞ � _w þ V �þ

cj

2

1

2
� âj

� �

_�

� �

ð11Þ

and

M 0
eaj

¼ L 0
j

cj

4
þ

âjcj

2

� �

þ ��
c3j

8

€w

2
� V _��

cj

2

1

8
�

âj

2

� �

€�

� �

; ð12Þ

where � is the air density, cj is the chord of the wing at any jth segment, and

âj ¼
2xeaj
cj

� 1 is the normalized pitch axis location with respect to half chord of the

jth segment. CðkÞ is the frequency-dependent, Theodorsen's transfer function that

accounts for attenuation of lift amplitude and phase lag in lift response due to

sinusoidal motion. In this paper, unsteady lift per unit span and pitching moment per

unit span are expressed in time domain. Therefore, a Pad�e approximation for

Theodorsen's transfer function was used.20,21 The approximate transfer function

CðsÞ in the Laplace domain becomes

CðsÞ �
0:5177a2

js
2 þ 0:2752ajsþ 0:01576

a2
js

2 þ 0:3414ajsþ 0:01582
; ð13Þ

where

aj ¼
cj

2V
: ð14Þ
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The Pad�e approximation for Theodorsen function is highly accurate especially at low

reduced frequencies which is the case in this paper. For more details on the expression

of unsteady lift and moment in state-space form, the reader is advised to consult Ajaj

and Friswell.12 A similar analysis was performed by Duan and Zhang19 in which they

used Fourier transform to formulate the aeroelastic equations of motion of a wing in a

state-space form.

2.5. Validation

The aeroelastic model is validated using Goland wing and HALE wing whose me-

chanical and geometric properties are listed in Table 4. The wings studied here are of

high aspect ratio to be consistent with the Euler–Bernoulli formulation (ignoring the

shear deformation of the wing cross-section).

The °utter speed, frequency, and divergence speed estimated for the Goland and

HALE wings are presented in Table 5. Table 5 shows a comparison with estimates

from various other methods available in literatures.

Table 4. Geometric and mechanical properties of Goland and HALE wings.

Speci¯cations Goland wing HALE wing

Half span (m) 6.096 16

Chord (m) 1.8288 1
Mass per unit length (kg/m) 35.71 0.75

Moment of inertia (50% chord) (kg m) 8.64 0.1

Spanwise elastic axis (from LE) 33% 50%

Center of gravity (from LE) 43% 50%

Spanwise bending rigidity (Nm2) 9:77� 106 2� 104

Torsional rigidity (N m2) 0:987� 106 1� 104

Chordwise bending rigidity (N m2) — 4� 106

Density of air (kg/m3) 1.225 0.0889

Table 5. Validation using Goland and the HALE wings.

Method

Present work
(binary)

Present work
(eight modes) Ref. 22 Ref. 23 Ref. 17 Ref. 24 Ref. 14

HALE wing
Flutter speed (m/s) 33.43 33.00 32.21 — — 32.51 —

Flutter freq. (rad/s) 21.38 21.75 22.61 — — 22.37 —

Divergence speed (m/s) 37.18 37.20 37.29 — — 37.15 —

Goland wing

Flutter speed (m/s) 137.11 137.01 — 135.6 136.22 137.16 133

Flutter freq. (rad/s) 69.9 69.93 — 70.2 70.06 70.7 72.7

Divergence speed (m/s) 252.8 252.97 — — 250.82 — —

Flutter of Telescopic Span Morphing Wings
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2.6. Variation of the uncoupled shape functions with wing properties

(aerodynamics OFF)

In this section, it is assumed that Goland wing is extended by 50% so that the wing

semi-span is 9.144m. The wing consists of three main segments. Segment 1 repre-

sents the main wing (without overlapping region), whereas Segment 2 represents the

overlapping region and Segment 3 represents the extension. The mechanical and

geometric properties of Segment 1 are exactly the same as those of Goland wing

(listed in Table 3) except the length of Segment 1 is l1 ¼ 5m. Segment 2 has a length

l2 ¼ 1:096m, whereas Segment 3 has a length l3 ¼ 3:048m. Two scenarios are

studied here, and in both scenarios it is assumed that the locus of the center of

gravity (CG) of the three segments is a continuous line starting at the wing root and

ending at its tip. Similarly, the locus of the shear center of the three segments is a

continuous line starting at the wing root and ending at its tip. The Transformer

Aircraft8 is a good example where the loci of the CG and shear entre are continuous

straight lines.

i. Scenario 1

In Scenario 1, Segments 1 and 2 are assumed to have the same chords, bending

rigidity, and torsional rigidity. The properties of Segment 3 are varied, and the

bending and torsion shape functions for the ¯rst bending and torsion modes as-

sociated with changes in Segment 3 chord are presented in Figs. 2(a) and 2(b).

The chord of Segment 3 is varied as a fraction of the Segment 1 chord. A change

in the chord of Segment 3 results in changes in the bending rigidity, torsion

rigidity, mass per unit span, inertia per unit span according to the expressions in

Table 6.

ii. Scenario 2

In Scenario 2, Segments 1 and 3 are assumed to have the same mechanical and

inertial properties. The chord of Segment 2 is varied as fraction of the chord of

Segment 1. The properties of Segment 2 vary according to the expressions listed in

Table 6. The variations of the uncoupled ¯rst bending and ¯rst torsion shape

functions with Segment 2 chord are shown in Figs. 2(c) and 2(d).

It can be seen from Figs. 2(a) and 2(c) that as the bending sti®ness of Segment 3

or of Segment 2 reduces, the contribution of Segment 1 to the mode shape will be

much smaller than the contributions of Segments 2 and 3. On the contrary, the ¯rst

torsional mode shape is more sensitive to variations in properties (mainly torsional

rigidity) of Segment 2 than of Segment 3. This can be clearly noticed when com-

paring Figs. 2(b) and 2(d). Large variations in the torsional rigidity of Segment 2

severely distort the ¯rst torsion mode shape. Depending on the length of Segment 2,

this can signi¯cantly a®ect the aeroelastic stability of the wing.

Figure 3 shows the variation of the uncoupled ¯rst bending and ¯rst torsion

natural frequencies for each scenario. Increasing the chord of Segment 3

R. M. Ajaj et al.
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Table 6. Correlations between Segments 1

and 3.

ðGJÞ3 ¼ ðGJÞ1
c3
c1

� �

3
m 0

3 ¼ m 0
1

c3
c1

� �

ðEIÞ3 ¼ ðEIÞ1
c3
c1

� �

3
I 0
ea3

¼ I 0
ea1

c3
c1

� �

3

(a) First bending-Scenario 1 (b) First torsion-Scenario 1

(c) First bending-Scenario 2 (d) First torsion-Scenario 2

Fig. 2. Variation of ¯rst bending and ¯rst torsion shape functions.

(a) Scenario 1 (b) Scenario 2

Fig. 3. Variation of ¯rst bending and ¯rst torsion natural frequencies (solid line is for torsion and dashed

line is for bending).
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(while keeping the properties of the other segments constant) reduces the bending

and torsion natural frequencies. On the contrary, increasing the chord of Segment 2

(while keeping the properties of the other segments constant) increases the ¯rst

bending and ¯rst torsion natural frequencies. It can be noticed that the change in the

natural frequencies is negligible when the chord of Segment 2 is above 75% of chord

of Segment 1.

3. Quasi-Static Aeroelastic Study: Binary Flutter

3.1. E®ect of Segment 3 on °utter

In this section, the wingspan is extended quasi-statically to determine the e®ect of

span extension on the °utter speed, frequency, and divergence speed. The HALE

wing, whose properties are listed in Table 4, is used as the basis for this study. The

properties of Segment 3 are varied to assess the e®ect of its mechanical, inertial, and

geometric properties on the °utter speed. Two wing models are used in this study.

The ¯rst is a two-segment model in which the wing consists of two segments

(Segments 1 and 3) and the overlapping region is not considered. The second is a

three-segment model in which the wing consists of three segments: Segments 1, 2,

and 3. Segment 2 represents the overlapping section whose length varies as the

wingspan extends. In the three-segment model, the properties of Segment 2

(overlapping region) such as mass per unit span, torsional, and bending rigidity

depend on those of Segments 1 and 3. Figure 4 shows the variation of the aero-

elastic behavior of the multi-segment span morphing wing for di®erent con¯gura-

tions of Segment's 3. It should be noted that in Fig. 4 the °utter speed, frequency,

and divergence speed are normalized by the corresponding values associated with

the baseline (nonmorphing) Hale wing (listed in Table 5). Three di®erent con¯g-

urations of Segment 3 are studied here. They correspond to the chord of Segment 3

being equal to 40%, 70%, and 100% of Segment's 1 chord. For each con¯guration of

Segment 3, its properties change according to the relationships expressed in

Table 6.

It can be seen that for a given span extension, con¯gurations with smaller chords

(of Segment 3) have higher °utter speed and frequency. This is true for both models

(two-segments and three-segments). In general, span extension results in reduction in

°utter speed, which reduces the °ight envelope of the aircraft. As the chord of

Segment 3 (and the associated properties) gets smaller, the sensitivity of °utter

and divergence speeds with span extension reduce signi¯cantly. It can be seen from

Fig. 4(b) that when the chord of Segment 3 is the same as the chord of Segment 1,

increasing the wingspan by 50% reduces the °utter speed by 35%. In contrast, when

the chord of Segment 3 is 40% of the chord of Segment 1, the °utter speed reduces by

10% at 50% span extension.

The results from the two di®erent models show the in°uence of the overlapping

region on the aeroelastic behavior. In Figs. 4(b), 4(d), and 4(f), the normalized

R. M. Ajaj et al.
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°utter speed, divergence speed, and frequency do not start from unity as with the

two-segment model. As the wingspan increases, the length of Segment 2 reduces and

hence its in°uence on the aeroelastic behavior of the wing. It should be noted that the

three-segment model treats the overlapping region as an idealized joint and does not

take into account any form of localized sti®ness, damping, and/or freeplay that may

(a) Flutter speed (2 Segments model) (b) Flutter speed (3 Segments model)

(c) Flutter frequency (2 Segments model) (d) Flutter frequency (3 Segments model)

(e) Divergence speed (2 Segments model) (f) Divergence speed (3 Segments model)

Fig. 4. Aeroelastic behavior of the extended wing versus Segment's 3 properties.

Flutter of Telescopic Span Morphing Wings
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exist in real telescopic joints. As the wingspan extends by 50%, the length of the

overlapping segment shrinks to become 10% of the baseline semi-span (16m).

Figure 4(b) shows that at zero span extension, the °utter speed is higher than that of

the uniform baseline wing (nonmorphing) by around 8%.

(a) Mass per unit span (b) Mass per unit span

(c) Bending Rigidity (d) Bending Rigidity

(e) Torsional Rigidity (f) Torsional Rigidity

Fig. 5. In°uence of the overlapping segment on the aeroelastic behavior of the Hale wing.

R. M. Ajaj et al.
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3.2. E®ect of overlapping segment on °utter

It is essential to assess the e®ect of the overlapping segment (Segment 2) on the

aeroelastic behavior of the wing. Three main parameters of Segment 2, including

mass per unit span, bending rigidity, and torsional rigidity, are studied at di®erent

wingspans (corresponding to 0%, 25%, and 50% extensions). The chord of Segment 3

is set at 80% of the chord of Segment 1. During this sensitivity study, only one

parameter is varied at a time. For instance, when the torsional rigidity of Segment 2

varies between 0.1 and 2 times the torsional rigidity of Segment 1, the bending

rigidity and mass per unit span of Segment 2 are kept constants.

It can be seen that regardless of the parameter investigated, the sensitivity of

°utter speed and frequency reduce as the wingspan is extended and the size of the

overlapping region drops. However, when the HALE wing is fully retracted, the e®ect

of Segment 2 parameters on the aeroelastic behavior of the wing is signi¯cant. It can

be seen from Fig. 5 that °utter is most sensitive to torsional rigidity followed by the

mass per unit span. The bending rigidity of Segment 2 has minor e®ect on °utter

speed and frequency, irrespective of the span extension. It can also be seen that when

the wing is fully retracted (and the length of Segment 2 is maximum), the °utter

speed and frequency are very sensitive to mass per unit span especially when the ratio

of the mass of Segment 2 to mass of Segment 1 is less than 0.5. It should be noted

that it is impractical to have the ratio of the masses less than 1 at least for wing

studied here.

4. Multimode Flutter Analysis

Section 3 of this paper focussed on the e®ect of the segment properties on the binary

(bending-torsion) aeroelastic behavior of the wing. However, it is essential to de-

termine the e®ect of span morphing on the °utter mode. Therefore, the three-seg-

ment binary aeroelastic model (discussed in Sec. 3) is extended to include high-order

vibration modes, mainly the ¯rst, second, third, and fourth bending modes and the

¯rst, second, third, and fourth torsion modes. For the baseline (nonmorphing)

Goland and HALE wings, the °utter speed and °utter frequency and divergence

speed obtained using the multimode aeroelastic model are listed in Table 5. Goland

wing is used as the baseline wing in this section. The variation of the di®erent

modes with airspeed for the baseline (nonmorphing) Goland wing and for the tele-

scopic span morphing Goland wing at 50% extension is shown in Fig. 6. For the

results in Fig. 6, the chord of Segment 3 (extension) is set equal to the chord of

Segment 1.

The morphing wing at 50% span extension °utters at around 100m/s compared

with 137m/s for the nonmorphing baseline Goland wing. It should be noted that the

modal damping of the ¯rst bending mode (mode 1) increases with airspeed at a

higher rate for the extended morphing wing compared with the baseline wing. The

same is true for the ¯rst torsion mode in which the modal damping initially increases

at a higher rate; then once a critical speed is reached, it reduces at a higher rate when

Flutter of Telescopic Span Morphing Wings
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compared with the baseline nonmorphing wing. Figure 6 shows that span extension

does not change the °utter mode for the clean rectangular wing considered here

(without engines, control surfaces, and fuel tanks). For both the morphing wing and

the nonmorphing, the ¯rst torsion mode (mode 2) is the ¯rst to go unstable.

5. Flutter Suppression

The aim of this section is to assess the feasibility of using span morphing as an

e®ective °utter suppression device. Two main scenarios are studied to demonstrate

the °utter suppression capability. A telescopic span morphing wing whose baseline

dimensions (before span extension) are similar to those of the Goland wing is con-

sidered. Di®erent °ight conditions are used to assess the viability of the device at a

range of operating conditions.

i. Scenario 1: Span retraction at °utter speed

The telescopic span morphing Goland wing is set at 5� angle of attack with an

airspeed equal to the °utter speed at 25% span extension. Once released into the

air°ow, the wing starts a series of undamped oscillations in pitch and plunge. At

(a) Goland Wing (nonmorphing) (b) Goland Wing @ 50% span extension

(c) Goland Wing (nonmorphing) (d) Goland Wing @ 50% span extension

Fig. 6. Frequency and damping trends for the Goland wing at di®erent span extensions.

R. M. Ajaj et al.
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t ¼ 2 s, the wingspan is retracted by 25% (new wing semi-span is 6.096m). Two

retraction speeds are studied (1.5240m/s and 15.240m/s). The behavior of the wing

for the di®erent retraction speeds can be seen in Fig. 7. Figure 7 shows that span

retraction damps the oscillations in pitch and plunge. As the span retraction rate

increases, the wing oscillations decay faster. This is mainly due to the fact that as the

wingspan is reduced, its bending and torsional sti®ness increases, resulting in an

increase in the °utter speed.

ii. Scenario 2: Span retraction above °utter speed

The span morphing Goland wing is set at 1� angle of attack and the airspeed is set at

5m/s above the °utter speed with 25% span extension. Initially, the wing starts

diverging in pitch and plunge until at t ¼ 1 s, where the n is retracted by 25%. Two

actuation speeds are considered (1.5240m/s and 15.240m/s).

It is evident from Fig. 8 that span morphing can suppress °utter allowing the

aircraft to operate over a wide range of airspeeds. Figure 8 also shows that the

(a) Wingtip pitch angle (b) Wingtip plunge

Fig. 7. (Color online) Goland wing at the °utter speed and 5� AOA. At t ¼ 2 s, the semi-span is retracted
by 25%. Two retraction speeds are considered (red thin curve for 1.5240m/s and black thick curve for

15.240m/s).

(a) Wingtip pitch angle (b) Wingtip plunge

Fig. 8. (Color online) Goland wing at 5m/s above °utter speed and 1� AOA. At t ¼ 1 s, the semi-span is

retracted by 25%. Two retraction speeds are considered (red thin curve for 1.5240m/s and black thick

curve for 15.240m/s).
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wingtip's oscillations damp out faster for higher span retraction rates. Span

morphing is able to signi¯cantly shift the stability of the wing. It should be noted

that the choice of the actuation speeds in both scenarios is done manually without

the use of a feedback control system to determine optimum retraction speeds.

6. Conclusion

This paper presented a linear aeroelastic model to study the behavior of telescopic

span morphing wings in time domain. The wing was modeled as a stepped, three

segment, Euler–Bernoulli beam. Rayleigh–Ritz energy method was used to derive

the generalized equations of motion. Theodorsen's unsteady aerodynamic theory

was used for aerodynamic predictions. A representative Pad�e approximation for the

Theodorsen's transfer function was utilized to model the aerodynamics in state-

space form, allowing time-domain simulation and analysis. The e®ect of the me-

chanical, geometric, and inertial properties of the overlapping segment and the

extending segment on the aeroelastic behavior of the wing was assessed. The span

extension segment (Segment 3) has signi¯cant e®ects on the aeroelastic behavior of

the wing; however as its chord, bending rigidity, and torsional rigidity reduce, its

e®ect on °utter signi¯cantly diminishes. In contrast, the overlapping region has

higher e®ect on °utter speed at low span extensions, and the sensitivity of °utter to

the properties of the overlapping region reduces as the wingspan increases. The

e®ect of span morphing on the °utter mode is assessed for rectangular span

morphing wing. It was found that mode 2 (¯rst torsion) is the ¯rst to go unstable.

Finally, the feasibility of utilizing span morphing as a °utter suppression device was

assessed. It was found out that span morphing can act as a °utter suppression

device especially if high actuation/retraction rates are used to prevent large

amplitudes oscillation.

Appendix A. Bending Shape Functions

The bending shape functions for the ith bending mode for wing Segments 1, 2, and 3

can be expressed as:

h1iðy1Þ ¼ A1 sinðb1i y1Þ þB1 cosðb1i y1Þ þ C1 sinhðb1i y1Þ þD1 coshðb1i y1Þ;

h2iðy2Þ ¼ A2 sinðb2i y2Þ þB2 cosðb2i y2Þ þ C2 sinhðb2i y2Þ þD2 coshðb2i y2Þ;

h3iðy3Þ ¼ A3 sinðb3i y3Þ þB3 cosðb2i y2Þ þ C3 sinhðb3i y3Þ þD3 coshðb3i y3Þ:

ðA:1Þ

These shape functions can be rearranged as:

h1iðy1Þ ¼ f1iðy1Þ�1;

h2iðy2Þ ¼ f2iðy2Þ�2;

h3iðy3Þ ¼ f3iðy3Þ�3;

ðA:2Þ
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where

f1iðy1Þ ¼ ½sinðb1iy1Þ; cosðb1iy1Þ; sinhðb1iy1Þ; coshðb1iy1Þ�

f2iðy2Þ ¼ ½sinðb2iy2Þ; cosðb2iy2Þ; sinhðb2iy2Þ; coshðb2iy2Þ�

f3iðy3Þ ¼ ½sinðb3iy3Þ; cosðb3iy3Þ; sinhðb3iy3Þ; coshðb3iy3Þ�

ðA:3Þ

and

�1 ¼ ½A1;B1;C1;D1�
T ;

�2 ¼ ½A2;B2;C2;D2�
T ;

�3 ¼ ½A3;B3;C3;D3�
T :

ðA:4Þ

The constants b2i and b3i for the ith bending mode can be expressed as:

b2i ¼ b1i
ðEIÞ1m

0
2

ðEIÞ2m
0
1

� �1=4

ðA:5Þ

and

b3i ¼ b1i
ðEIÞ1m

0
3

ðEIÞ3m
0
1

� �1=4

: ðA:6Þ

The root, continuity, and tip boundary conditions can be rearranged in the matrix

format such as

Root conditions

Continuity conditions

Tip conditions

2

4

3

5

�1

�2

�3

2

4

3

5 ¼ 0: ðA:7Þ

The dimension of the conditions matrix is n-by-n where n is equal to 4 multiplied by

the number of wing's segments. To obtain the nontrivial solution (Eq. (A.7)), the

determinate of the matrix is set to zero and the value of b1i is obtained numerically.

Each time the determinate of the matrix becomes zero provides a new value for b1i
corresponding to a vibration mode. The clamping condition at the wing root allows

simplifying the ¯rst shape function to

h1iðy1Þ ¼
�f 1iðy1Þ

��1 ¼ A1ðsinðb1iy1Þ � sinhðb1iy1ÞÞ þ B1ðcosðb1iy1Þ � coshðb1iy1ÞÞ;

ðA:8Þ

where

��1 ¼ ½A1;B1�
T : ðA:9Þ

The matrices S1, S2, and S3 expressed in Table A.1, represent the continuity

boundary conditions for each wing segment at its ends.

The bending shape function of Segment 2 can be expressed as:

h2iðy2Þ ¼ f2iðy2Þ½S2ð0Þ�
�1½S1ðl1Þ� ��1: ðA:10Þ
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This can be rearranged further such as

h2iðy2Þ ¼ f2iðy2ÞR2
��1 þ f2iðy2ÞJ2

��1 ðA:11Þ

and therefore

½R2; J2� ¼ ½S2ð0Þ�
�1½S1ðl1Þ�: ðA:12Þ

Similarly, the bending shape function of Segment 3 can be expressed as

h3iðy3Þ ¼ f3iðy3Þ½S3ð0Þ�
�1½S2ðl2Þ�½S2ð0Þ�

�1½S1ðl1Þ� ��1; ðA:13Þ

where

½R3; J3� ¼ ½S3ð0Þ�
�1½S2ðl2Þ�½S2ð0Þ�

�1½S1ðl1Þ� ðA:14Þ

and therefore

h3iðy3Þ ¼ f3iðy3ÞR3
��1 þ f3iðy3ÞJ3

��1: ðA:15Þ

The free boundary condition (no bending moment and no shear force) at the tip of

Segment 3 can be represented as

h 00
3i
ðl3Þ ¼ f 00

3i
ðl3ÞR3

��1 þ f 00
3i
ðl3ÞJ3 ��1 ¼ 0;

h 000
3i
ðl3Þ ¼ f 000

3i
ðl3ÞR3

��1 þ f 000
3i
ðl3ÞJ3 ��1 ¼ 0:

ðA:16Þ

The tip boundary condition can be rearranged as:

f 00
3i
ðl3ÞR3 f 00

3i
ðl3ÞJ3

f 000
3i
ðl3ÞR3 f 000

3i
ðl3ÞJ3

" #

A1

B1

" #

¼ 0: ðA:17Þ

Table A.1. Continuity boundary conditions across

the wing's segments.

S1ðl1Þ ¼

�f 1i ðl1Þ

�f
0
1i ðl1Þ

ðEIÞ1 �f
00
1i ðl1Þ

ðEIÞ1 �f
000
1i ðl1Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

S2ð0Þ ¼

f2i ð0Þ

f 0
2i
ð0Þ

ðEIÞ2f
00
2i
ð0Þ

ðEIÞ2f
000
2i
ð0Þ

2

6

6

6

6

4

3

7

7

7

7

5

S2ðl2Þ ¼

f2i ðl2Þ

f 0
2i
ðl2Þ

ðEIÞ2f
00
2i
ðl2Þ

ðEIÞ2f
000
2i
ðl2Þ

2

6

6

6

6

4

3

7

7

7

7

5

S3ð0Þ ¼

f3i ð0Þ

f 0
3i
ð0Þ

ðEIÞ3f
00
3i
ð0Þ

ðEIÞ3f
000
3i
ð0Þ

2

6

6

6

6

4

3

7

7

7

7

5
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This allows expressing the shape functions as follows.

h1iðy1Þ ¼ A1½sinðb1iy1Þ � sinhðb1iy1Þ� �
f 00
2i
ðl2ÞR2

f 00
2i
ðl2ÞJ2

½cosðb1iy1Þ � coshðb1iy1Þ�;

h2iðy2Þ ¼ A1 f2iðy2ÞR2 � J2
f 00
2i
ðl2ÞR2

f 00
2i
ðl2ÞJ2

f2iðy2Þ

" #

;

h3iðy3Þ ¼ A1 f3iðy3ÞR3 � J3
f 00
2i
ðl2ÞR2

f 00
2i
ðl2ÞJ2

f3iðy3Þ

" #

:

ðA:18Þ

The value of A1 can be obtained through normalization such that the shape function

is unity at the wingtip. The natural frequency of the ith bending mode can be

expressed as:

!bi
¼ b21i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðEIÞ1
m 0

1

s

: ðA:19Þ

Appendix B. Torsion Shape Function

The torsion shape functions for the ith vibration mode for wing Segments 1, 2, and 3

can be expressed as:

�1iðy1Þ ¼ a1 sinðk1i y1Þ þ b1 cosðk1i y1Þ;

�2iðy2Þ ¼ a2 sinðk2i y2Þ þ b2 cosðk2i y2Þ;

�3iðy3Þ ¼ a3 sinðk3i y3Þ þ b3 cosðk3i y3Þ:

ðB:1Þ

These shape functions can be rearranged as:

�1iðy1Þ ¼ �1iðy1Þ�1;

�2iðy2Þ ¼ �2iðy2Þ�2;

�3iðy3Þ ¼ �3iðy3Þ�3;

ðB:2Þ

where

�1iðy1Þ ¼ ½sinðk1iy1Þ; cosðk1iy1Þ�;

�2iðy2Þ ¼ ½sinðk2iy2Þ; cosðk2iy2Þ�;

�3iðy3Þ ¼ ½sinðk3iy3Þ; cosðk3iy3Þ�;

ðB:3Þ

and

�1 ¼ ½a1; b1�
T ;

�2 ¼ ½a2; b2�
T ;

�3 ¼ ½a3; b3�
T :

ðB:4Þ
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The constants k2i and k3i for the ith torsional vibration mode can be expressed as

k2i ¼ k1i
ðGJÞ1I

0
ea2

ðGJÞ2I
0
ea1

� �1=2

ðB:5Þ

and

k3i ¼ k1i
ðGJÞ1I

0
ea3

ðGJÞ3I
0
ea1

� �1=2

: ðB:6Þ

The dimension of the coe±cients matrix is m-by-m where m is equal to 2 multiplied

by the number of wing segments. The coe±cient matrix can be expressed as

Roots conditions

Continuity conditions

Tip conditions

2

4

3

5

�1

�2

�3

2

4

3

5 ¼ 0: ðB:7Þ

To obtain the nontrivial solution of the above equations, the determinate of the left-

hand side matrix must be set to zero. This is solved iteratively to ¯nd the values of k1i
that make the determinate of the matrix zero. Each time the determinate becomes

zero represents a new vibration mode (1st, 2nd, etc.). The clamping conditions at the

root result in b1 ¼ 0. Using the continuity boundary conditions, the coe±cients

a2, a3, b2, and b3 can be expressed as:

a2 ¼ a1
k1i ðGJÞ1
k2i ðGJÞ2

cosðk1i l1Þ; ðB:8Þ

b2 ¼ a1 sinðk1i l1Þ; ðB:9Þ

a3 ¼
k2i ðGJÞ2
k3i ðGJÞ3

½a2 cosðk2i l2Þ � b2 sinðk2i l2Þ�; ðB:10Þ

and

b3 ¼ a2 sinðk2i l2Þ þ b2 cosðk2i l2Þ: ðB:11Þ

It should be noted that a2, a3, b2, and b3 depend on a1. The value of a1 can be

obtained through normalization such that the shape function is unity at the tip. The

natural frequency of the ith torsion mode can be expressed as:

!ti
¼ k1i

ffiffiffiffiffiffiffiffiffiffiffiffiffi

ðGJÞ1
I 0
ea1

s

: ðB:12Þ
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