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The stability boundaries of a very flexible wing are sought to inform a wind-tunnel flutter test

campaign. The objective is twofold: to identify via simulation the relevant physical processes to

be explored while ensuring safe and non-destructive experiments, and to provide a benchmark

case for which computational models and test data are freely available. Analyses have been

independently carried out using two geometrically nonlinear structural models coupled with

potential flow aerodynamics. The models are based on a prototype of the wing for which static

load and aeroelastic tests are available, and the experimental results have been successfully

reproduced numerically. The wing displays strong geometrically nonlinear effects with static

deformations as high as 50% of its span. This results in substantial changes to its structural

dynamics, which display several mode crossings that cause the flutter mechanisms to change

as a function of deformation. Stability characteristics depend on both the free-stream velocity

and the angle of attack. A fast drop of the flutter speed is observed as the wing deforms as the

angle of attack is increased, while a large stable region is observed for wing displacements over

25%. The corresponding wind tunnel dynamic tests have validated these predictions.

I. Introduction

Flutter clearance is a well-established process and a basic feature in aircraft design [1, 2]. For conventional (and

many unconventional) vehicles, the aeroelastic stability boundary can be well predicted using the natural vibration

modes of the undeformed structure and linear unsteady aerodynamics (traditionally obtained using the Doublet-Lattice

Method corrected using wind tunnel or high-fidelity aerodynamic simulation data). Aerodynamic loading however

creates a follower force on the deforming structure which requires updating the aerodynamic computational mesh. In

some situations, such as T-tails at non-zero incidence angle, steady aerodynamics may also play an important (and
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destabilizing) role in the basic flutter mechanism [3, 4]. Further complications may be encountered with very flexible

wings, where the change in geometric stiffness and moments of inertia resulting from wing deformation modify the

vibration characteristics, and may have a large effect on the onset of flutter [5]. For the gust load evaluation problem of

high aspect ratio wings, it is also crucial not only to account for these steady loads, but also to use the deformed trim

geometry as linearization reference given the effect on loads and flight dynamic modes [6].

Very flexible wings have been long considered for power-constrained vehicles, such as solar-powered aircraft,

which seek large aerodynamic efficiency with very lightweight structures. The former leads to designs with very high

aspect ratio, that, when coupled with modern lightweight materials, result in wings that are capable of achieving

wingtip deflections comparable to their span. Very high aspect ratio wings, also susceptible to large deformations,

are also considered in most future concepts of ultra-low (or zero) emission commercial transport aircraft [7]. The

large deformations induced by the aerodynamic forces make it indispensable to design the system with an aeroelastic

perspective, with tools and methods capable of capturing geometrically-nonlinear structural effects [8, 9]. Since a basic

feature of these vehicles is the presence of very high aspect ratio wings, one-dimensional beam approximations are an

attractive alternative for the structural model. In addition, the mostly-attached nature of the flow at low wing-sections

angles of attack and the prevalence of thin lifting surfaces make potential flow based aerodynamics a viable option

below transonic speeds, provided it can still accommodate large wing displacements [10].

Most recent work on high aspect ratio very flexible wings employs similar methods [11, 12] and shares common

focus to this paper in the prediction of the flutter onset of said aeroelastic systems, for which a thorough review of flutter

and post-flutter prediction methods can be found in Ref. [13]. For instance, for the large aspect ratio truss-braced wing,

Refs. [14, 15] use transonic wind tunnel data to explore wing and engine nacelle limit cycle oscillations for concepts like

the Boeing SUGAR or NASA TBW. In the particular case of the Boeing SUGAR, the second out-of-plane bending and

the first torsional mode coalesce, where the onset of instability is a function of the aircraft’s angle of attack (similar to

the case study shown in this work) [14]. Predicting post-flutter behavior is also of great importance, since nonlinearities

can cause divergent flutter modes to stabilize into limit cycle oscillations (LCO), and although post-flutter is not within

the scope of this work, the reader is referred to Ref. [16] for novel and efficient data-driven methods to predict LCOs

large aspect ratio wings with geometrically nonlinear effects. Note, finally, that the characteristics of the LCOs may be

strongly affected by nonlinearities in structural damping but the topic of damping has been explored extensively for the

F16 wing stores in Refs. [17–19].

However, as with all computational methods, the question remains as to how accurate are they and whether they are

able to capture all the key physical phenomena. In other words, whether they are valid [20] in modeling and simulating

the aeroelastic response of slender, flexible lifting bodies. Few aeroelastic benchmark cases for which experimental data

is available exist and thus most comparisons between methods have been purely numerical [21]. In terms of experimental

flutter data sets, we find, dating back to the 80’s, Dugundji’s work on swept, composite wings, which includes nonlinear
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aerodynamic effects [22, 23], as well as the Duke University wing [24–27], dating from 2001. However, limited data

is available and corresponds to a few angles of attack and deformations below 20% of span. Later, an extensive and

thorough wind tunnel test campaign on a DARPA Vulture-inspired cantilever wing was carried out in 2012 to validate

the nonlinear aeroelastic methods used in the project [28]. Despite the extensive data presented and the interesting

aeroelastic phenomena exhibited by the wing, its complex geometry (with several horizontal and vertical surfaces) likely

does not make it an ideal candidate for its use by the wider aeroelastic community in validating their own tools. Most

recently, a novel benchmark case has been presented at the Technion [29] of a very flexible clamped wing, designed to

undergo deformations beyond 50% of span and to be used for flutter tests in the wind tunnel. This wing, named the Pazy

wing, consists of an aluminum spar and a Nylon chassis (consisting of evenly-spaced NACA0018-shaped ribs and a

wing tip rod). To give it the external aerodynamic shape, the wing is covered with an Oralight polyester skin. The Pazy

wing is a bespoke wing built specifically for this purpose, but in the case of large scale wings replicated for wind tunnel

analysis, Ref. [30] explores the important topic of deriving adequately scaled models that display similar aeroelastic

phenomena as their full sized counterparts.

This paper has two objectives. First, to showcase the importance of geometrical nonlinearities in the flutter prediction

of very flexible wings by comparing and assessing the performance of two aeroelastic solution methods, described

briefly in Sec. II, against a prototype of the wing. The wing is thoroughly described in Sec. III alongside the relevant

approximations used in the models. Section IV compares the numerical models with the static experimental results,

which serve as a model validation exercise. Thence, the dynamic aeroelastic behavior is discussed in Sec. V, where the

flutter boundary of the wing is analyzed for different root angles of attack simulating the conditions in the wind tunnel.

The result is the aeroelastic stability envelope of the wing as a function of free-stream velocity, angle of attack and

deformation which has been used for the design of an experimental flutter test. The first available wind-tunnel test results

validate the proposed methodologies in the prediction of the nonlinear flutter boundary and are summarized in Sec. V.D.

The second objective is to use the Pazy wing case as a benchmark case for the comparison and validation of

future aeroelastic tools and experiments. This is within the scope of the Large Deflection working group of NASA’s

3rd Aeroelastic Prediction Workshop (AePW3) which aims to bring together different numerical and experimental

knowledge from academia to solve relevant and modern aeroelastic problems. For such a purpose, we provide all

models, scripts and codes used to obtain the results presented herein available as open source. Details on how to obtain

them can be found in the Appendix.

II. Numerical Methods
Two computational methods were used with different structural and aerodynamic models which are tailored for aeroelastic

applications such as the one at hand. Thus, this section will provide a brief summary and direct the reader to the

appropriate references for further detail.
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A. SHARPy

SHARPy (Simulation of High Aspect Ratio airplanes and wind turbines in Python) is a nonlinear aeroelastic simulation

toolbox available under open-source license [31]. At its core, SHARPy couples a geometrically-nonlinear composite

beam solver with a potential-flow unsteady aerodynamic model with sectional corrections. It also includes a consistent

analytical linearization of these nonlinear models around arbitrary static aeroelastic equilibria [32] and several

implementations of model-order reduction methods [33, 34]. SHARPy has tens of modules that can be combined for

specific analysis and interested readers can find details in the extensive online documentation [35]. For brevity, we will

only summarize here those modules that need to be employed to compute flutter of highly-flexible, clamped structures.

For this we will (i) solve for the geometrically-nonlinear static aeroelastic equilibrium condition of the wing at a given

angle of attack and free-stream velocity; (ii) linearize the structural and aerodynamic systems about this deformed

configuration; (iii) reduce the systems using modal reduction and Krylov-based methods, respectively; and (iv) analyze

the stability of the resulting reduced linear state-space.

The structural model is based on a geometrically-exact 1D beam formulation, with linear constitutive relations

and nonlinear velocity and displacement kinematic relations. The formulation is parametrized in displacements and

rotations and applied by discretizing the beam in quadratic (3-node) finite elements [36, 37]. The nonlinear equations

that result from the application of Hamilton’s principle take the form of [21]

M(() ¥( + Wgyr ((, ¤() + Wstiff (() = Wext ((, ¤(), (1)

where M is the mass matrix and W represents the discrete external (aerodynamic), gyroscopic and stiffness forces. The

flexible degrees of freedom expressed in a body-attached frame, ( ∈ R6×(=nodes−1) , include nodal displacements and

rotations, the latter parametrized through a Cartesian rotation vector (CRV).

These equations are then linearized about a reference equilibrium condition, defined, in general, by the constant

values ((0, ¤(0) and with ¥(0 = 0. Using X to indicate small perturbations, this results in [32]

M((0)X ¥( + C ((0, ¤(0)X ¤( +K ((0, ¤(0)X( = XW4GC (X(, X ¤(), (2)

where C and K are the tangent damping and tangent stiffness matrices, respectively. The system can then be projected

onto modal coordinates (which will depend on the equilibrium shape) and truncated to retain the modes that capture the

most significant dynamics.

In SHARPy, the aerodynamics are solved using an Unsteady Vortex Lattice Method (UVLM), which is based on the

assumptions of incompressible potential-flow theory [10, 21, 38, 39]. Vortex panels are laid out over lifting surfaces,

with their spanwise location coincident with that of the underlying structural elements. In turn, the wake can be modeled
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by either infinitely long horseshoe vortices (in static simulations) or with discrete panels that are influenced by the

bound and other wake vortices (for unsteady simulations). The flow field itself is solved enforcing the non-penetration

boundary condition at the center of the bound vortex rings by adjusting their circulation strength. The formulation

is nonlinear given the dependency of the aerodynamic influence coefficients (which contain the information on how

each vortex affects others) on the instantaneous deformation of the structure and shape of the wake sheet. Once the

circulation of the vortices has been solved for, the aerodynamic forces are calculated attending to steady and unsteady

contributions: the steady forces are calculated using the Joukowsky theorem [40] whereas for the unsteady forces we use

Bernoulli’s unsteady equation based on the time derivative of the circulation, which is calculated by finite differences.

An important underlying assumption is that all viscous effects are confined to thin boundary layers whose effects can be

neglected, including viscous drag contributions and flow separation [10]. Stall has not been modeled in the results

presented in this work.

INPUT PARAMETERS:  

sharpy.solvers.StaticCoupled()

Nonlinear
geometrically-exact

beam model
UVLM

Compute structural
eigenvector matrix

Analytically linearize
UVLM about

deformed condition

Project linear UVLM
onto structural modal

space

Krylov subspace
reduction of linear UVLM

Assemble linear
modal structural

state-space

 

+

Iterative

sharpy.solvers.LinearAssembler()

Reduced linear
aeroelastic state-

space

Repeat for new
parameters, 

Fig. 1 SHARPy solution process to obtain frequency and damping data for each angle of attack and free stream
velocity pair.

The linearization of the UVLM equations is performed analytically about the deformed equilibrium shape under

the assumption of a frozen, yet arbitrary (i.e. including wake roll-up), wake shape [41]; the linearization includes

steady load effects [3] which appear as a result of non-zero aerodynamic loading at the reference condition and are
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treated as follower forces. To achieve numerical convergence and capture unsteady effects a highly resolved bound

vortex lattice and a long wake are typically required [33, 41, 42], so it is highly convenient to reduce the system to

alleviate the computational burden of linear analysis tools, such as computing the system’s eigenvalues. Thus, we

turn to Krylov subspace methods to reduce the dimension of the aerodynamic system [34]. This is a computationally

efficient model order reduction method based on matching the transfer functions and their derivatives at user-defined

frequencies, which for aeroelastic problems we limit to the lower end of the spectrum [10]. Nonetheless, since this

reduction method is based on transfer function matching, the reduced order system is prone to be of significant size

if the input/output dimensionality is large. This is the case of the linear UVLM, where the inputs (displacement and

velocities) and outputs (forces) are defined at each of the lattice vertices. Therefore, under the assumption of chordwise

rigid rotations about the beam elements, the UVLM input/output space is projected onto the modal coordinates of the

underlying beam element, which significantly reduces the dimensionality. Then, the Krylov subspace reduction can

be performed efficiently, leading to substantial model size reductions: full order, converged UVLM systems for a full

vehicle are typically in the range of O(105) states and they are reduced to O(10) states.

The coupling between the linear structural and aerodynamic models is trivial, since the inputs and outputs of both

systems are expressed in the structural modal coordinates. The aeroelastic system is also of a sufficiently small size that

stability (by computing the system eigenvalues) and other linear analyses can be performed very efficiently.

The stability properties of the wing are then computed by finding the eigenvalues of the linearized system matrix

for each combination of the test parameters (namely angle of attack, U, and free stream velocity, *∞) to find the

aeroelastic modes damping and frequency characteristics, which will be used to define the flutter envelope. A schematic

of this solution process is shown in Fig. 1 and the linearized system is recomputed at each condition given the changes

introduced into the structural and aerodynamic systems by the large deflections.

B. Modal Rotation Method

A static mathematical model of the Modal Rotation Method (MRM) has been presented in Ref. [43], and was recently

extended for a dynamic aeroelastic solution in Ref. [44]. It is developed for computing nonlinear large deformations of

flexible, slender structures. While the MRM is not limited to analyzing beams, it solves the structural deformations

along a reference line. For wing structures, this line runs over the wing-span, typically along the mid-chord, the leading

or trailing-edge. The modes are described in segments over the reference line. The segmentation and reference line

concepts are illustrated in Fig. 2. The MRM formulation is based on curvature mode shapes that are computed in a

free-vibration analysis from a linear finite-element model. The curvature modes are interpolated to segments along the

reference line. Provided that this line is divided into sufficiently small segments, the change in the rotation in each
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segment is small. This allows for a linearized, modal based evaluation of the rotation change in each segment:

{3\} = [q3\ ]{b} (3)

and their summation over the structure (over the reference line) using nonlinear kinematics:

{*8} = {*8−1} + ['8]{3;8} (4)

where {3\} is a vector of angle changes (curvatures), [q3\ ] is a matrix of curvature mode shapes, {*8} is a displacement

vector, and ['8] is a rotation matrix of the 8-th segment which is based on the summation of the local curvatures

(represented via Euler angles) from the root to the segment. To accurately model the internal bending moments, the

MRM applies an iterative procedure that updates the location and orientation of the applied external loads based on the

deformed shape via external correction moments:

{Δ"8} = {"loc8 } − {"08} −
=∑

9=8+1
{Δ" 9 } (5)

where {"loc8 } is the internal moment in the deformed configuration {"08} is the internal moment acting on the

undeformed configuration and = the total number of segments.

Fig. 2 Illustration of the segmentation and two arbitrary reference lines used in the MRM [43].

The MRM is coupled with an aerodynamic model, based on the rigid configuration, to compute static aeroelastic

deformations and the flutter velocity about the static equilibrium. Two methods are proposed to update the structural

data of the deformed structure, alter the unsteady aerodynamic matrices, and obtain a flutter solution for the deformed

wing. One is based on the discrete mass and aerodynamic properties of the wing and the other only on modal data, thus

providing a nonlinear solution that is based only on linear modal data. The curvature-based representation yields a

generalized stiffness matrix that does not change with the deformation [45]. Updating the generalized mass matrix is
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done by representing the deformed mode shapes as a combination of the baseline mode shapes

[qdef] ≈ [q] [�] , (6)

This yields an expression for the deformed generalized mass matrix that is based directly on the modal mass matrix of

the undeformed structure:

[�"def] = [�>] [q>]︸      ︷︷      ︸
[q>def ]

["] [q] [�]︸  ︷︷  ︸
[qdef ]

= [�>] [�"] [�]

. (7)

where [�"] = [q]> ["] [q]. For the update of the deformed aerodynamic matrices, we assume that the relation

between local incremental angle of attack and the local forces does not change with large deformation. This is equivalent

to the strip theory assumption that the local strip characteristics are unaffected by the deformation, although we note that

the baseline model does not have to be generated by a strip theory. Under this assumption, updating the aerodynamic

matrix is done similarly to the update of the mass matrix, yielding:

[&��,def (8:)] = [�>] [q>]︸      ︷︷      ︸
[q>def ]

[��� (8:)] [q] [�]︸  ︷︷  ︸
[qdef ]

= [�>] [&�� (8:)] [�]

(8)

where [��� (8:)] is the discrete aerodynamic influence coefficient matrix of the undeformed wing, assumed to be

unknown explicitly and unchanged due to the deformation, and [&�� (8:)] = [q]> [���] [q] is the generalized

aerodynamic coefficient matrix. Unlike the SHARPy formulation that evaluates the aerodynamic model at each

deformation, in the current MRM formulation the aerodynamic model is only evaluated once. The aerodynamic forces

rotate and move with the deformation, but the AIC matrix is assumed constant. This increases computational efficiency

but may lead to inaccuracies at larger deformations as will be shown in the results section. Given the deformed,

linearized stiffness, mass, and aerodynamic matrices about a static equilibrium at prescribed flow conditions, flutter can

be evaluated with any frequency-domain flutter solution technique, such as the :-method used in the current study.

III. Case Study: Pazy Wing
The Pazy wing [29] is a highly flexible wing which has been recently designed for wind tunnel aeroelastic experiments

to serve as a benchmark for flexible wing studies. A diagram is provided in Fig. 3a; it has a chord length of 100 mm,

a span of 550 mm, and a NACA 0018 airfoil rib profile. The wing structure is made of an Aluminum 7075 spar, of
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dimensions 550 mm (length) by 60 mm (width) by 2.25 mm (thickness), and a Nylon PA2200, 3D-printed, chassis. The

wing is covered with Oralight foil, a polyester which is typically used in radio-controlled drones. A 300 mm long and

10 mm diameter wing-tip rod is 3D printed as part of the chassis. The rod is used for attaching weights (via drilled holes)

that can modify the dynamic properties of the structure and alter the flutter speed. Overall, the wing weighs 0.32 kg

(wing tip rod included) without the base with which it attaches to the wind tunnel floor. The built-up experimental

specimen is shown in Fig. 3b.

The build of the Pazy wing model analyzed computationally in this paper is referred to as Pre-PazyWingModel. This

first prototype was used in the experimental static tests which will be referred to herein. A similar experimental model,

with minimal modifications (mainly due to manufacturing and to enable new measurement devices), has subsequently

been built and tested in the wind tunnel [29]. However, the differences between the two models are sufficiently small such

that the use of the Pre-Pazy wing model was deemed acceptable to assess the aeroelastic characteristics in preparation of

the flutter experimental campaign.

(a) Pazy wing schematic diagram (b) Pazy wing experimental model.

Fig. 3 Pazy wing dimensions and experimental model

A. Finite Element Model

The Pre-Pazy wing has been modeled in Solidworks and analyzed using MSC Nastran. The finite element model is

shown in Figure 4. Two different models were constructed: one without the skin and one with the skin. In addition, two
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subsequent models that also include an additional 10 g mass 40 mm downstream from the wingtip have been used to

explore its effect on flutter in the zero angle of attack case (see Sec. V.B). The models have been fine-tuned against

ground vibration test measurements as described in Ref. [29]. However, these are assumed straight and do not include a

small initial bending curvature present in the manufactured wing.

Fig. 4 Finite-element model (skin off).

B. Model Reduction

SHARPy’s structural module uses one-dimensional beams, whose sectional properties are defined by 6-by-6 stiffness and

mass matrices. To obtain these, the 3D FEM can be loaded in several directions to find the associated equivalent beam

stiffness coefficients, whereas the inertial properties at the beam nodes can be derived from the FE model’s full lumped

mass matrix. Ref. [46] describes the development of the equivalent beam model for its use in UM/NAST (University of

Michigan Nonlinear Aeroelastic Simulation Toolbox) using their Enhanced FEM2Stick (EF2S) framework. UM/NAST

employs 4-by-4 equivalent sectional stiffness and mass matrices are obtained along a beam reference line (located at

44.1% chord). The difference in the stiffness matrices between UM/NAST and SHARPy lies in the shear terms included

only in the latter, which have been modeled with infinite stiffness with no impact on the modal characteristics of the

beam.

No structural damping has been modeled, which can significantly modify the post-flutter characteristics limiting the

amplitude of oscillations of a divergent flutter mode to stabilize them into an LCO. In the case of very flexible wings,

damping may change with large deformations. LCOs may be initiated by classical flutter mechanisms but the reasons

for their bounded amplitude may be less clear [17]. This was observed in [18], where the use of nonlinear damping

profiles as a function of response amplitude successfully managed to numerically replicate in-flight observations of

LCOs. These profiles were verified later experimentally [19]. Other ways to introduce damping models can be found

in [47–49].

The Pazy wing’s Nylon ribs have a NACA0018 airfoil shape which is symmetric, therefore modeled as a flat plate of

vortex panels in SHARPy. For static simulations, the wake is modeled by infinitely long horseshoe vortices whereas,
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for dynamic ones, the circulation shed by the bound vortices is convected downstream from the deformed wing and

retained, resulting in a wake sheet of discrete vortex panels of constant circulation that keep a history of the aerodynamic

unsteady effects. The aerodynamics of the skin-on and skin-off models are identical.

For consistency between the baseline models, the MRM structural model was based on a coupled 6-by-6 beam model

built in Matlab with the stiffness coefficients from [46] and, like in SHARPy, infinitely rigid shear terms. Twenty mode

shapes were extracted from 100 FE nodes along the beam and interpolated to 400 segments along the reference line over

the wingspan. A similar analysis based directly on the FE model without the beam reduction can be found in [44].

The MRM aerodynamic model is based on the doublet-lattice method. A rigid analysis of the undeformed wing was

conducted in ZAERO [50]. For the static aeroelastic analysis, the integrated forces per strip were used to generate a strip

model, with the aerodynamic normal force coefficient slope and center of pressure location varying along the span as

shown in Fig. 5. The generalized aerodynamic coefficient matrices of the undeformed structure, [&ℎℎ], were obtained

in ZAERO at several reduced frequencies and used as a database for the flutter analysis of the deformed wing.

Fig. 5 Spanwise distribution of the sectional normal force coefficient slope and center of pressure locations,
computed from ZAERO for the undeformed structure and used in the MRM model.

C. Modal Analysis

A modal analysis of the unloaded Pre-Pazy wing has been performed to validate the sectional coefficients of the

equivalent beam models against the full 3D FEM in which the frequencies are compared. Tables 1 and 2 show the

original FEM, UM/NAST [46], SHARPy and MRM frequencies. Since the SHARPy and MRM models are derived from

the UM/NAST model it is this data that we use to compare our models against. For a performance evaluation of the

one-dimensional beam model compared to the full 3D FEM the reader is referred to [46], although the good agreement

between the full 3D FEM and the one-dimensional beam model justifies its use. Turning to the models used herein, the

SHARPy and MRM models, with maximum errors of 0.7% against the UM/NAST model in the 3rd out-of-plane (OOP3)

bending mode can be considered acceptable.
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Table 1 Modal frequencies comparison with the skin fitted.

Mode NASTRAN [Hz] UM/NAST [Hz] SHARPy [Hz] MRM [Hz]
1st OOP bending OOP1 4.67 4.68 4.69 4.67
2nd OOP bending OOP2 30.68 30.82 30.87 30.69
1st torsion T1 43.57 43.51 43.71 43.40
3rd OOP bending OOP3 87.97 88.82 88.19 87.64

Table 2 Modal frequencies comparison without the skin.

Mode NASTRAN [Hz] UM/NAST [Hz] SHARPy [Hz] MRM [Hz]
1st OOP bending OOP1 4.42 4.42 4.43 4.41
2nd OOP bending OOP2 29.02 29.11 29.15 28.99
1st torsion T1 41.53 41.44 41.63 41.34
3rd OOP bending OOP3 83.34 83.92 83.34 82.78

IV. Static Results
The static tests performed include structural-only simulations and steady aeroelastic simulations and are used to compare

SHARPy and the MRM models. The experimental results shown for both the structural tests and the wind tunnel tests

have been obtained from Ref. [51] and Ref. [29]. In the comparison against the experimental data, it must be noted

that the manufactured Pre-Pazy wing had a slight initial curvature which had a small effect on the structural tests

(Sec. IV.A and Sec. IV.B), yet it has not been accounted for in the one-dimensional beam reduction process [46], and

thus in the SHARPy model. The MRM models included this initial curvature by using a bent reference line, however, the

modes employed in the MRM method are those of the straight wing configuration. The justification for the use of the

undeformed mode shapes is that the small changes in the initial geometry (approximately 4% span) have a small effect

on the linearized system’s modal properties, as will be shown in Sec. V.A (Fig. 10).

A. Bending structural tests

Static bending tests have been performed to compare the stiffness properties of the equivalent beam models to

experimental results [51] and to explore the effect of the different modeling features across SHARPy and the MRM;

namely the use of the undeformed geometry versus including the initial deformation on the reference line only (as the

modes are those of the straight wing configuration). Therefore, we will refer to these numerical results by the modeling

features rather than the code used to derive them.

The bending test is performed by placing a dead load at the wing tip at the mid-chord position, which is also the

station at which deflection is measured. Numerical results obtained using the undeformed model (SHARPy) and that

including the jig shape deformation (MRM) are compared to the experimental data set in Fig. 6. The initial set-up for

the experimental procedure differed for this test between the skin on and skin off specimens, where the former was

set-up with the initial curvature facing upwards and the latter facing downwards and this changed the bending stiffness,
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in particular at large deflections.

First, to visually aid the comparison between models and observe the effect of the initial curvature on the gradient

and nonlinear behavior, the offset in the initial deformation has been removed from Fig. 6 and, in turn, it is tabulated in

Tab. 3.

In the skin on case in Fig. 6a, it can be observed how the nonlinear geometrical stiffening appears first on the model

not including the deformation. This is as expected since, it being a geometrical effect, installing the wing with its

curvature opposing its self-weight introduces a delay in these effects appearing. In terms of the gradient on the linear

part of the curve, the undeformed model presents a 5% stiffer response.

Turning to the skin off case in Fig. 6b, the difference in gradient between the computational models is not as

apparent, yet there is an 8% difference with the experimental dataset’s gradient. In addition, the differences in the

nonlinear behavior are significantly less obvious than in the previous case. However, the stiffening does appear under

a lighter load in the deformed curvature case, since it is now that one that starts with a larger zero-load deformation.

The experimental results show greater compliance than the deformed curvature model, although this could be due to

experimental uncertainty in the measurements which is not available.

The effect of the skin in increasing the stiffness is clear from the gradient and zero-load deflections in Tab. 3. From

the undeformed model we can extract that the skin increases the stiffness by approximately 11%. Regarding the inclusion

of the deformed geometry on the beam reference line, given the ≈ 5% difference in the gradient of the linear part in the

most different condition (skin on test), we have the confidence in that neglecting the initial zero-load deformation will

not negatively impact subsequent analyses, and will make the model simpler for others to use.

The data series shown in Fig. 6 are available in the supplemental materials in the folder 01_Bending.
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Fig. 6 Wing tip, mid-chord vertical displacement comparison under a dead load between undeformed reference
line model (SHARPy), the model with initial curvature included (MRM) and experimental results.
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Table 3 Linear bending curve slope for a linear regression coefficient of 0.999 for the bending test up to 1 kg
load and static deflection under self-weight for a static deflection bending test under self-weight and 1 kg tip
load at the center of the wingtip chord.

With skin Without skin
Gradient [cm/kg] Static deflection [cm] Gradient [cm/kg] Static deflection [cm]

Straight ref. line
-10.43 -1.57 -11.57 -1.79

(SHARPy)
Initial curvature incl.

-11.14 0.83 -11.46 -3.72
(MRM)
Experiment -11.09 0.89 -12.64 -4.04

B. Torsional structural tests

Torsional tests were performed on the manufactured wing [51] and compared to the numerical results. This test involved

a dead weight being placed at the wing tip, 80 mm ahead of the leading edge. Note that the wing tip rod, shown in Fig. 3b,

to which the load is attached is modeled as a rigid member. In this test, both the skin on and skin off experimental

set-ups had the specimens installed with the initial curvature facing upwards. Figure 7 shows the wing tip, mid-chord

vertical displacements for all models, which are in good agreement, with the static offsets removed as explained in

Sec. IV.A. Figure 8 shows the wing tip twist angle, \tip, which was approximated as

\tip = arctan
(
ILE − ITE

GLE − GTE

)
, (9)

where I and G refer to the vertical and horizontal coordinates of the deformed wing, respectively, measured in an inertial

frame with H along the span of the undeformed wing. LE and TE denote the leading and trailing edges, respectively.

The response shown by both numerical models is consistent with that explained in Sec. IV.A accounting for by the initial

jig deformation. In addition, the comparison to the experimental data set is again good, considering that the twist angle

as computed by (9) involves measuring several displacements and the subtractions involved propagate the uncertainty.

The shift observed in the experimental data set beyond the 1.0 kg load in Fig. 8b is attributed to a measurement error.

However, the gradient of the curve up to the 1.0 kg point is in good agreement between the undeformed reference line

(SHARPy), including the curvature in the reference line (MRM) and the experimental data set.

The results shown in Fig. 7 and Fig. 8 are provided in the Supplemental Materials in folder 02_Torsion.

C. Steady aeroelastic simulations

This simulation replicates a wind tunnel test in which the wing is clamped vertically at a set angle of attack and placed

in a steady, uniform flow. The wing is fixed to the wind tunnel floor by means of a round base attachment (see Ref. [29,

Fig. 18b]) which is rigid and the wing aluminum spar is bolted to it such that there are no deflections inboard of the

span zero location. Aerodynamically, the round base does not generate lift and, even though it may have an effect, it is
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Fig. 7 Wing tip, mid-chord vertical displacement comparison under a twisting dead load between SHARPy,
MRM and experimental results.
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Fig. 8 Wing tip twist angle under a tip load (negative twist indicates leading edge down).

likely small and cannot be included in our current aerodynamic models. In addition, no correction has been applied to

include wind tunnel wall effects since the distance of the specimen to the walls is considered sufficient to neglect these.

Following from the results of the structural tests, the numerical models use a straight reference line given the small

effect of the initial curvature; thus, in terms of structural properties the SHARPy and MRM beam models are equivalent

and we refer to them by the code name rather than modeling features.

The results obtained from SHARPy use the nonlinear structural solver and UVLM with an infinite horseshoe wake

(which deforms with the wing) with symmetry boundary conditions at the wing root (base of the spar) simulating the

wind tunnel floor. The MRM uses the aerodynamic model of the rigid (undeformed) wing configuration. The wing is

tested at several angles of attack and free stream velocities, with full simulation details in Table 4, and compared to the

wind tunnel tests.

Figure 9 shows the wing tip out-of-plane displacements at the midchord expressed in an inertial frame of reference
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Table 4 Steady aeroelastic simulation conditions and SHARPy/ZAERO panel discretization.

Angle of attack 5◦, 7◦

Free stream velocity 1 − 60 m/s
Density 1.225 kg/m3

Chordwise panels 16 (SHARPy), 20 (ZAERO)
Spanwise panels 32 (SHARPy), 40 (ZAERO)
Wake panels Infinite horseshoe (SHARPy)
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Fig. 9 Wing tip out-of-plane deflections at various angles of attack and free-stream velocities.

with origin at the wing root and aligned with the flow (the structure rotates to simulate the angle of attack). Numerical

results are shown for both skin on and skin off models in order to show the uncertainty in the stiffness introduced by

modeling the Oralight skin present in the wind tunnel test specimen. The displacement shows a linear relationship

with dynamic pressure below 1000 Pa (40.4 m/s) and in this region the results from all computational models and the

experimental results are in good agreement. At the higher velocities, once deflections increase beyond 30%, the dihedral

effect in the aerodynamics becomes the major difference between SHARPy and the MRM, although its effect is small

as the MRM displays just a slightly more compliant response, with the displacement approximately 5% above that of

SHARPy at 60 m/s. The general trend gives confidence in the validation of the static aeroelastic model paving the way to

the dynamic results, which are presented next. In addition, the experimental results fall within the skin on and skin

off numerical predictions, showing that the use of these two models is adequate to gauge the contribution to the wing

stiffness of the Oralight skin. Finally, the results support not modeling the wind tunnel floor attachment and neglecting

any blockage effects. All results in Fig. 9 are contained in the Supplemental Materials 03_StaticAeroelastic folder.
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Fig. 10 Linearized beam’s modes of vibration frequencies at a deformed condition when subject to a wing tip
vertical follower force.

V. Dynamic Results
The previous results show good agreement between SHARPy, the MRM and the experimental results for static cases. To

verify the inertia properties of the model, we will compare the vibration modes of the deformed wing under a follower

force using the computer models only∗. Then, we proceed with a flutter prediction analysis for the wing in the wind

tunnel fixed in a vertical position at various angles of attack to evaluate the variation in flutter speed. In addition, for the

zero angle of attack case only, we also test the effect of a 10 g mass at the trailing edge of the wing tip section to evaluate

its impact. This mass is modeled as a lumped point mass with no inertia.

A. Deformed wing modal analysis

A modal analysis is performed on the deformed Pazy wing by placing a vertical follower force at the wing tip node

(located on the beam reference line at 44.1% of the chord). This illustrates the change in the natural modes of vibration

of the structure as the wing deforms, which will have a significant impact on the flutter mechanics, as will be seen in

the next subsection. The applied follower force at the wing tip node is aligned with the local vertical axis, therefore,

in the linearization of the structural system there are stiffening terms that arise due to the dependency of this force

on perturbations to the structural degrees of freedom (by means of changes to the frame of reference on which it is

defined) [34].

Figure 10 compares the deformed structural frequencies between SHARPy and the MRM for both the skin on and

skin off cases. The structural change of shape, in this case parametrized by the vertical wing tip deformation, causes two

clear mode switches. Of particular importance is the drop in frequency of the 1st torsional mode, which crosses the 2nd

out-of-plane bending mode at approximately 25% spanwise deformation, and the drop in frequency of the 1st in-plane
∗In some cases it is possible to measure those as was done in Ref. [28] however in the Pazy wing such a methodology was not possible because

the deflection under self weight was too small to affect the frequencies
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mode. The out-of-plane bending modes remain fairly constant in frequency, with the OOP1 seeing a slight increase in

frequency caused by the stiffening terms arising from the linearization of the wing tip follower force. We note that these

results are only indicative as aerodynamic loading produces different equilibrium shapes than these and thus would

skew the frequency versus wing tip displacement relation. These results are provided in the Supplemental Materials

04_DeformedModal folder.

B. Zero angle of attack wing flutter prediction

At zero degree angle of attack, there is no structural deformation with increasing wind speed. Therefore, the flutter

boundary of the wing can be predicted using a conventional linear analysis software like NASTRAN. In SHARPy the

aeroelastic system is linearized around the straight wing shape (zero deformation) to simulate the vertical mount on the

wind tunnel. The linear UVLM and structural models at this condition are obtained as detailed in Sec. II.A. The UVLM

is non-dimensionalized with respect to the free-stream flow, making it independent of velocity [41] while translating

that dependency in velocity into a time scaling in the structural model. Consequently, a single aerodynamic model can

be built which is valid across all incompressible flight velocities (as in the doublet-lattice method). It is then coupled to

a structural model that needs updating at each wind speed condition through its mass and stiffness matrices, that had

been scaled with the reference time (dependent on the free stream velocity) as updating the structural model at every

wind speed is significantly more efficient than updating the linear UVLM. This is due to the required discretization to

achieve convergence which leads to UVLM systems of 105 states, compared to the structural system’s dimension, which

is twice number of structural modes retained, in this case only six modes.

However, as explained in Sec. II, the linear UVLM system is reduced using a Krylov sub-space method, which

matches the steady state gain of the system’s transfer functions. The resulting aeroelastic state-space model is small

(42 states: 30 aerodynamic and 12 structural — corresponding to 6 modes —), and can be quickly evaluated for the

desired wind speeds. The stability analysis is performed by computing the eigenvalues of the system, shown in Fig. 11b,

between 10 and 100 m/s at a density of 1.225 kg/m3. Fig. 11a shows the corresponding V-g plot with the calculated

frequency and damping at each velocity. In SHARPy, the wing is discretized with 16 chordwise panels, 32 spanwise

panels (16 3-noded finite element beams) and a 16-chord wake.

The MRM undeformed flutter prediction is based on a : method analysis that uses the modal structural properties

and the generalized aerodynamic matrices obtained from ZAERO. Results have been verified against a 6 method

analysis conducted internally in ZAERO [50, 52, 53]. The highest : value in the current MRM analysis is 1.5, which is

sufficiently high considering the flutter reduced frequencies, which are lower than 0.1. The plot results will be presented

for a minimal velocity of 20 m/s and 43 Hz, which corresponds to a : value of approximately 0.6.

For the results presented in this and subsequent sections, the denoted damping ratio corresponds to viscous damping,

Z , where for an eigenvalue of the system given by _ = f ± 9l3 , the natural frequency is l= =
√
f2 + l2

3
and the
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Fig. 11 Stability diagrams of the reference configuration at zero angle of attack.

damping ratio Z = f/l=, thus a positive value for Z indicates an unstable system. Damping values obtained from the

6-method used by the MRM are converted to the viscous damping convention as 6 ≈ 2Z . Due to relatively low structural

damping that was measured in the GVT (about 0.2%) in the current work the structural damping was not examined.

However, its effect on the wing flutter was studied separately in [54].

The flutter analysis is performed for both skin on and skin off models to evaluate the sensitivity to structural

properties and, in particular, stiffness. This can be used to estimate the uncertainty in the flutter speed prediction due to

inaccuracies in the structural models as the Oralight skin fitted on the wind tunnel specimen is complex to model. The

major contribution from the skin appears in the stiffness properties, in particular the out-of-plane bending stiffness which

is, on average along the span, 11% larger than in the skin off model. Also, due to the linear nature of the constitutive

relations of the beam models, the contribution to the stiffness is likely overestimated, as these models are unable to

capture the local buckling of the skin on the suction side as soon as the wing deforms. Thus, by comparing these two

models (skin on vs skin off ) we obtain a range of results where we expect to find the experimental ones.

The stability analysis for the wing at zero angle of attack in Fig. 11 shows that the increased airspeed causes a

reduction in frequency of the torsional mode (T1), whose eigenvalue coincides with the second out-of-plane (OOP2)

bending mode and results in the first flutter instability. This occurs both in the skin on and skin off models at very similar

speeds, listed in Table 5, since the added stiffness of the skin on case (predominantly in out-of-plane) increases the

zero-velocity separation between OOP2 and T1 by just 0.5 Hz (4%), and this translates into a flutter speed increase of

2 m/s (3.1%) between both cases.

Beyond this first instability, the torsional mode continues to drop in frequency, causing the flutter mode to cross
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Fig. 12 Stability diagrams at zero angle of attack with a 10 g wingtip trailing-edge mass. Results from SHARPy.

back over to the left-hand plane (the “hump” in Fig. 11). However, prior to the first flutter mode crossing back over the

imaginary axes, a second flutter instability has occurred, this time a coupled torsion and first out-of-plane bending mode.

The comparison between SHARPy and the MRM highlights the differences between the eigenvalue analysis of the

linearized state-space and the :-method. Although the predicted flutter speed is acceptably similar between the two

methods (the relative error between SHARPy and the MRM in the flutter speed is less than 1.6%), at speeds other than

flutter, the results also include differences arising from the chosen solution method given that the :-method assumes

zero damping, therefore, only approximates the problem when the conditions are different, while the UVLM-based

eigenvalues correspond to the actual linearization of the physical system including the damping. An implication of this

is that actual occurrence of flutter may be more abrupt that it would be predicted by standard the :-method, which

poses an additional challenge on the experimental campaign. Note that although the :-method is frequency-based and

typically sampled for constant reduced frequencies, an interpolation has been performed to obtain results at constant

velocity intervals. Therefore, the velocity vector associated to each mode is different and, in the case of the OOP1 mode,

the MRM results are limited to 65 m/s.

Additionally, for the purposes of the wind tunnel campaign, we explore the effect of including the wingtip mass on

the stability properties shown in Fig. 12. With the mass added at the trailing edge of the wing tip, the torsional mode is

damped to the point that it does not cross the imaginary axis, hence the first flutter mode (T1-OOP2) is suppressed.

However, after T1 switches with OOP2, it does not go as far into the left-hand plane in Fig. 12b as compared to the

nominal case. Therefore, the effect of the trailing edge mass is to significantly increase the flutter speed of the wing by

suppressing the first unstable mode, thus considerably delaying the onset of the second flutter mode, as seen in Table 5.
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To sum up, for the straight wing flutter in the nominal condition, Table 5 outlines the flutter speed at zero degrees

obtained using SHARPy and compared against the results from ZAERO coupled with the MRM∗ showing good agreement.

Note that the flutter instability with the trailing edge mass attached corresponds to a first bending and first torsion flutter

mode, as opposed to the nominal case in which flutter is a first torsion with second out-of-plane bending mode.

Table 5 Predicted flutter speed of the wing at zero angle of attack.

Nominal Trailing edge mass
SHARPy with skin 65.0 m/s 89.1 m/s
SHARPy without skin 63.0 m/s 84.0 m/s
ZAERO / MRM with skin 66.1 m/s 89.4 m/s
ZAERO / MRM without skin 63.4 m/s 85.2 m/s

These results may be found in the Supplemental Materials 05_StraightWingFlutter folder.

C. Flutter prediction for the deformed wing

Predicting the flutter speed for the deformed wing configuration is a more complex problem given that at the new

reference point the steady forces at non-zero angles of attack may impact the stability of the wing [3] and the large

deformation changes the structural dynamics. This was clearly shown in Fig. 9 where, for example, the deflection of the

wing set at 5 degrees angle of attack changes from 10% to 30% of span between 30 and 50 m/s causing the dynamics of

the structure to change significantly, with the first torsional mode at approximately 25 Hz as opposed to the in-vacuo,

undeformed 42 Hz, shown in Fig. 10.

Therefore, computing the flutter speed of the deformed wing becomes an iterative procedure. In SHARPy, the system

is first linearized around an initial guess value for the flutter speed and the flutter speed is estimated using the linear

system as described in the previous section. Then, the nonlinear equilibrium condition at this computed flutter speed is

found, the system linearized and the flutter speed estimated again. This fixed-point iteration continues until the flutter

speed estimation using linear methods converges to the speed at which that system was linearized and its nonlinear

shape computed, which has been found to converge in 5-10 iterations for the Pazy wing cases. We will refer to this point

as the matched flutter point as this process is analogous to the iterations on Mach number used in subsonic aeroelastic

analyses. This approach is the most efficient should the flutter speed be the objective metric to be found. However,

the dynamics at points other than the flutter speed are also of interest in order to produce velocity-frequency-damping

data across the envelope. Therefore, the parameter space was sampled in 1 m/s speed increments and at each point the

system linearized and the eigenvalues found, thus producing the damping data which will show the onset and offset of

instability. The flutter prediction has been under the same conditions as those in the previous section.

In the case of the MRM, a non-matched :-method flutter solution was conducted on the system, linearized about
∗In an undeformed case, the MRM simplifies to a :-method analysis with ZAERO based aerodynamic matrices and is equivalent to ZAERO

flutter analysis.
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a statically deformed shape, at prescribed flow conditions (angle of attack and free stream velocity). The matched

solution is obtained by interpolating the results of the :-method to the prescribed velocity at which the equilibrium was

evaluated. By doing this at increasing prescribed velocities a matched + − 6 plot can be obtained. Alternatively, if only

the flutter velocity is of interest, the iterative fixed point iteration procedure described in the previous paragraph can be

used. The analysis used the fully modal MRM approach, in which the solution is based only on modal (generalized)

inertial and aerodynamic matrices, without the need for an explicit (discrete) representation of the two [44].
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Fig. 13 Stability diagrams for the skin-off wing at 1 and 5 degrees angle of attack.

The effect of large deformations on flutter can be illustrated by means of stability plots obtained for two values of the

root angle of attack (1 and 5 degrees) in Fig. 13 and 14 for the skin-off and skin-on models, respectively. Both wing

models are considered to have a plausible flutter boundary given the uncertainty introduced through the modeling of the

Oralight skin.

The first effect that the angle of attack, and thus increased deformation, has on stability is to decrease the flutter

speed. At higher angles of attack, the torsional mode observes a much steeper drop in natural frequency which advances

the coalescence with the second out-of-plane bending mode. In addition, the cross-over of the two modes occurs at a

lower speed and the first unstable flutter region is much shorter, as shown by the narrowing “hump” in the positive

damping ratio region. Contrarily to the case at zero angle of attack, this shortening of the hump caused by the wing

deformation results in a region of stability beyond the first flutter speed. Note also that the second flutter mechanism

follows a similar trend: the increased deformation due to a larger angle of attack brings forward the coalescence of the

torsional and first out-of-plane bending modes and therefore reduces the flutter velocity.

We must highlight that the numerical stability analysis in this work is solely based on linear theory, therefore, once

an eigenvalue crosses the imaginary axis (damping ratio larger than zero), a divergent flutter mechanism would be
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Fig. 14 Stability diagrams for the wing with the skin fitted at 1 and 5 degrees angle of attack.

predicted, where infinitesimal perturbations would grow unbounded. Nonlinear effects (like geometrical stiffening,

added internal damping or dynamic stall) may appear once deformations acquire a significant magnitude, which are

not captured, and may result in the oscillations remaining fixed in amplitude settling in a stable limit cycle oscillation

(LCO). For very flexible wings, like the Pazy wing, it may well be the case that the wing is able to twist and deform until

limited by aerodynamic stall, preventing a destructive flutter [23]. In addition, “hump” modes, and in particular those

involving OOP2, are more susceptible of being LCOs rather than flutter. In this section, dealing only with linear results,

it is cautious to refer to these instabilities as flutter; in the following section detailing the experimental results, LCOs

will be readdressed.

Figure 15 summarizes the effects of deformation and free stream velocity by showing the unstable flutter regions,

one for each flutter mechanism, and the lines of constant root angle of attack show the wing deformation as the airspeed

increases. It can be seen how increasing the root angle of attack brings forward the first flutter mechanism, albeit also

making the region on instability considerably smaller (i.e. narrowing the “hump”). This is because at higher angles

of attack, a smaller increase in velocity is required to increase the deflection such that the aeroelastic torsional mode

crosses towards the left-hand plane of the imaginary axis. This is illustrated by the steep “stabilization boundary” of

the first flutter mode, which is fairly constant around 25% wing tip spanwise deformation. Note that at sufficiently

low airspeeds, the lower bound of the first flutter unstable region would be set by a (static) stall line which, since the

aerodynamic models of choice do not model, has not been included. The effect of aerodynamic nonlinearities at high

angle of attack on the flutter characteristics of a very flexible wing have been explored in [22, 23].

The onset speed of the second flutter mechanism is also initially seen to decrease with increased deflection and angle

of attack. The reduction in onset speed with angle of attack is not monotonic and, beyond 5 degrees angle of attack, the
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SHARPy prediction shows a slight increase in the flutter speed with angle of attack. The stability envelope for the skin off

model provides the most conservative flutter scenario for a wind tunnel test and, as will be shown in Sec. V.D, can

be used for the design of experiments to reach the second flutter instability region without excessive deflections and

spending minimal time in the first flutter region. In general, the effect the skin has in these models (assuming linear

elastic properties and neglecting buckling in the suction side) is to raise the flutter speed prediction by approximately

4% yet, given the uncertainties in the stiffness properties of the skin on model, the skin off results should be used for

wind tunnel tests design.

Having explained the physical processes behind the changes to the flutter boundary as a result of large deflections,

we now turn to a comparison between methods as it is in these deformed, dynamic cases where the differences in the

calculation method and the aerodynamic models become most apparent. Some differences may be attributed to the use

of an aerodynamic grid based on the undeformed wing in the MRM approach. This is observed in Fig. 15, where the

agreement in the flutter boundary is excellent for deformations up to 30% span (the first flutter instability) for the skin

off and skin on conditions, as opposed to the second flutter mode shown which differs substantially at the larger wing tip

deflections. In the specific cases shown in Fig. 13a and Fig. 14a, the relative error in the 1st flutter mode speed at 5

degrees (≈ 20% span-wise deflection) is less than 2% for both skin models, compared to the larger error for the second

flutter speed that differs by 12% in the 5 degree case (albeit with an ≈ 50% span-wise deflection). The differences in the

damping of these aeroelastic modes can be attributed to the difference in the solution methods, as explained for the

straight wing flutter case in Sec. V.B, as well as the inclusion of the deformed aerodynamic bound and wake vortex

lattice in SHARPy. Similarly, the frequency matching is excellent except for the OOP1 mode at high speeds. The mode

frequencies are dominated by the deformed geometry of the wing, as seen in the Sec. V.A, which is accurately captured

by both methods. However, the differences in the frequency behavior of the OOP1 aeroelastic mode where SHARPy

predicts it to increase frequency with velocity in contrast to the MRM prediction where it stays approximately constant,

can be attributed to the change of dihedral effect caused by the deformation, which is captured by the linearized SHARPy

UVLM but not the MRM implementation of the linearized aerodynamic system, and is most affected by the OOP1

mode shape. Note that by change of dihedral only the aerodynamic solution is considered, since the follower force effect

with large deformations is captured by both models. For comparison, in the zero degree angle of attack case in Fig. 11b

where there is no deformation, the OOP1 mode approaches the real axis as velocity increases. Once deformation is

introduced by means of non-zero angle of attack to the linearized aerodynamic model, the imaginary part of the OOP1

mode actually increases (Fig. 13b and Fig. 14b).

This effect has also been observed in Ref. [42], where the UVLM was also linearized around the straight wing

configuration. It was there observed that the frequency of the OOP1 mode decreases with wing deformation when it is

obtained using the undeformed wing aerodynamics, while the frequency would increase, as it is observed here, when the

linearized aerodynamics are obtained around the deformed equilibrium. In the MRM, as in SHARPy, the linearized
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aerodynamic matrices can be updated at each iteration based on a panel model that fits the deformed shape. That,

however, would degrade the computational speed and simplicity of the MRM. The most powerful advantage of the

MRM framework is that it accurately captures a highly deformed wing’s flutter boundary with only the modal data

inputs and an aerodynamic database from a single analysis of the straight wing. Additionally, a beam model was used to

generate the modal data for the MRM in the current study for consistency with the other frameworks. We note that the

MRM does not rely on a model reduction [43], which may require considerable effort and possibly loss of accuracy for

complex structural models.

These results are provided in the Supplemental Materials 06_DeformedWingFlutter folder.
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Fig. 15 Flutter boundaries and regions, with contour lines showing wing tip deflection at a given root angle of
attack. Arrow lines indicate two experimental velocity and angle of attack profiles used in the wind tunnel tests.

D. Comparision with wind tunnel data

The stability envelope presented in the previous section has supported the planning of wind tunnel experiments to

explore the first unstable region (T1-OOP2) without incurring excessive airspeeds or deformations. The full test details

and results are presented in [55] and only a representative subset of them are used herein to study the capability of

the two numerical methods described here to predict the aeroelastic behavior of very flexible wings. This paper, by

presenting the Pazy wing, and initial tests of its structural and aeroelastic behavior, will, hopefully, be the foundation

for future works that will study the capabilities of the present and other simulation techniques and the physics of this

nonlinear system that is rich in experimental, physical, and simulation challenges.

As noted in Sec. III, the wind tunnel test specimen differs slightly from the Pre-Pazy computational model used

for this study; however, the small differences between them and the use of skin on and skin off models in an effort to

quantify modeling uncertainty in the Oralight skin make the use of experimental data adequate for our purpose.
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Two of the tests in [55] have been used for this work, performing velocity sweeps at several angle of attack values.

The tests used are those conducted with angle of attack values between seven and five degrees (airspeed increasing

and decreasing, respectively), and between five and three degrees. In each test, the angle of attack was fixed, and the

airspeed was continuously increased until wing oscillations started, relying on the wind tunnel natural turbulence to

perturb the wing. The airspeed was further increased until the oscillations ceased and the system stabilized. As the wing

stabilized at a higher airspeed, the angle of attack was reduced, holding the airspeed fixed. At the new angle of attack,

where the wing was still in the stable region, the airspeed was then slowly reduced crossing again through the unstable

region until airspeed was reduced to zero. The test angle of attack and velocity trajectories are shown on the stability

envelope in Fig. 15; in green for the test between five and three degrees and in blue for the seven to five degrees test.

Although the linear analyses are limited to predicting a divergent flutter, the likelihood of the wing entering an LCO

as previously described (given it is a “hump” mode with OOP2 contribution and the very flexible nature of the wing)

alongside the possibility of exiting the unstable region swiftly by reducing angle of attack or velocity meant that these

tests could be conducted with a relatively low risk of structural failure as a result of classical flutter.

Figure 16 shows an example test, starting at 7 degrees angle of attack. Figure 16a shows the airspeed and angle of

attack versus time, and Fig. 16b shows the airspeed and strain measured by a Fiber Bragg Grating optical fiber at the

front spar, 127 mm from the root. Based on the strain data, at 7.2 degrees angle of attack, with the airspeed increasing,

oscillations started at 39 m/s and stopped at 47 m/s, where the onset occurs abruptly and the offset in a more gradual

manner. In addition, the amplitude of the strain in the predicted flutter region is relatively constant (and does not show

tendency to grow unboundedly), thus indicating that the wing is entering a stable limit cycle oscillation. Similarly, at 5

degrees angle of attack, with the airspeed decreasing, LCO started at 48 m/s and stopped at 36 m/s. This test effectively

illustrates the “hump” mode predicted by the numerical models, where for a constant angle of attack the instability is

bounded in airspeed.

The onset of LCO, which can be captured by the linear stability boundary, is shown in Tab. 6 for all available tests.

They are compared to the predicted lower and upper bounds from our simulations, which have been obtained from

the skin off and skin on models, respectively. It can be seen that despite the slight model mismatch and experimental

uncertainty (which has not been accounted for), all test results are within less than 1 m/s from the predicted boundaries.

Despite the models not including any internal structural damping, LCOs may be caused by other source of

nonlinearities such as geometrical effects, as would be seen by time marching the aeroelastic nonlinear equations.

Note that the simulations do not capture the LCO offset, that is, the stabilization of the wing as it leaves the

unstable region. Capturing this hysteretic behavior in the nonlinear dynamics of the wing needs either time-domain

harmonic-balance, or asymptotic analyses, possibly including dynamic stall, which were not carried out in this study.

Moreover, while the LCO onset occurs at a distinct airspeed and is straightforward to predict, Fig. 16b shows that the

offset occurs gradually over a range of airspeeds, thus indicating that it also depends on the rate of change of the root
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Fig. 16 Wind tunnel data for the seven degrees angle of attack test procedure.

Table 6 Predicted and observed onset of instability speed for different angles of attack and airspeed trend.

Angle of Attack [deg] Airspeed trend Range of predictions [m/s] Observed Onset [m/s]
3 Increasing 47.0 - 49.3 49
3 Decreasing 55.8 - 58.4 55
5 Increasing 40.8 - 42.9 43
5 Decreasing 47.3 - 49.3 48
7 Increasing 36.7 - 38.5 39

angle of attack in the test. This behavior is common: where the onset of an LCO matches that of classical flutter, the

offset is harder to predict and oscillations usually persist at airspeeds below that at which they started [56].

VI. Conclusions
We have evaluated, compared and validated, using two different nonlinear aeroelastic toolboxes (SHARPy and MRM),

the structural static and dynamic response of a very flexible wing. The agreement between tools for the different models

and correlation with static experimental results have given confidence in using these models to support the planning of

wind tunnel experiments to explore the flutter mechanisms of this wing. The two identified flutter modes’ dependency

on the wing deformation provide an excellent example to showcase the need for nonlinear aeroelastic analysis tools.

Both the MRM and SHARPy capture well these effects for low-to-moderate wing deformations and accurately predict the

first flutter velocity. However, it has been seen how at high deformations corresponding to the second flutter velocity,

aerodynamic models linearised on the deformed wing become necessary. These are currently not implemented in

the MRM for the sake of simulation speed and minimization of the modeling complexity. However, linear stability

analysis tools like the once employed cannot capture nonlinear effects like limit cycle oscillations which, as seen in the

experiments, the wing did enter. Although the characteristics of the wing did suggest that the first unstable mode would
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actually result in an LCO, this opens the door to further research to include in said stability analysis nonlinear effects,

both structural and aerodynamic, for which the Pazy case can serve as validation.

The complex modeling of the Oralight skin introduces some uncertainties into these analyses which, thus far, have

been tackled by using two limit cases. By using skin on and skin off models a flutter speed range is provided that offers

insight into the effect of model stiffness uncertainty. Structural damping has been neglected in this study but its effect

on the Pazy wing was studied in [44]. Including different damping profiles would modify the flutter predictions and,

in particular, post-flutter behavior. The Pazy wing case therefore provides an adequate test bed on which to explore

different damping models and the effect on the damping profile of neighboring wing sections rubbing against each other

at large deflections, which is proposed as possible further study.

In addition, the wind tunnel test campaign designed using the results in Sec. V produced excellent results in the

onset on instability speed comparison, despite the use of a slightly modified test specimen. All experimental instability

speeds lie within 1 m/s of the numerically predicted boundary, thus validating the methods with SHARPy and the MRM

in the prediction of flutter for very flexible wings.

The good correlation between test results and simulation predictions using two alternative aeroelastic simulation

capabilities, SHARPy and MRM, demonstrates the capability of these methods to capture by simulation the complex

nonlinear aeroelastic behavior of highly flexible wings in the subsonic speed regime. The flutter/LCO mechanisms

displayed by the Pazy wing presented here offer interesting insights into the way high deformation of wings affects their

aeroelastic behavior. The cases described here invite follow-on research work by others and provide a rich experimental

and numerical database for the validation of current and future nonlinear aeroelastic simulation methods. Thus, the

models used here and computer scripts have been archived for future use by the aeroelasticity community. More test

results are presented in Ref. [55] and new test results of nonlinear aeroelastic systems will be presented in the future.

Research Data
With the objective of making this a benchmark case that can be used to validate and test future aeroelastic simulation

tools, the SHARPy model, scripts and results are all made available online. The SHARPy results have been obtained

using version 1.2, which is included alongside the simulation scripts in the repository listed in Table 7. All results

presented herein can be downloaded from the Zenodo archive and are made available under the Open Data Commons

Open Database License†. Any rights in individual contents of the database are licensed under the Database Contents

License ‡. All license details are provided with the results.

The wing model used herein is fully described in [46], where the inertia and stiffness distributions are provided. The

SHARPy equivalent model is included in the repository listed in Table 7.
†http://opendatacommons.org/licenses/odbl/1.0/
‡http://opendatacommons.org/licenses/dbcl/1.0/
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Table 7 Online repositories for models, scripts and results.

URL
AePW3 results database https://doi.org/10.5281/zenodo.5560962

SHARPy simulation scripts https://doi.org/10.5281/zenodo.5793295

The repositories in Table 7 are additionally provided with this article as Supplemental Materials, and all the results

presented in this work are contained in the aepw3-results-database folder and then as specified in the text in the

relevant section.
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