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Recent studies highlight linkages among the architecture of

ecological networks, their persistence facing environmental dis-

turbance, and the related patterns of biodiversity. A hitherto

unresolved question is whether the structure of the landscape

inhabited by organisms leaves an imprint on their ecological

networks. We analyzed, based on pyrosequencing profiling of

the biofilm communities in 114 streams, how features inherent to

fluvial networks affect the co-occurrence networks that the

microorganisms form in these biofilms. Our findings suggest that

hydrology and metacommunity dynamics, both changing pre-

dictably across fluvial networks, affect the fragmentation of the

microbial co-occurrence networks throughout the fluvial network.

The loss of taxa from co-occurrence networks demonstrates that

the removal of gatekeepers disproportionately contributed to

network fragmentation, which has potential implications for the

functions biofilms fulfill in stream ecosystems. Our findings are

critical because of increased anthropogenic pressures deteriorat-

ing stream ecosystem integrity and biodiversity.

stream networks | hydrological regime

Streams and rivers sculpt the continental surface, forming
fluvial networks (1), within which the biodiversity ranks

among the highest on Earth (2). The dendritic nature of fluvial
networks has been shown to affect the spatial and temporal
patterns of microbial, invertebrate, and fish biodiversity (3–8).
Ecological theory and observations posit that the local environ-
ment governs the dynamics and diversity of ecological commu-
nities in headwaters, the smallest and most abundant streams in
fluvial networks. In contrast, dispersal ensures that communities
further downstream are shaped not only by their immediate
environment but also by upstream processes (3–9). Thus, the
dynamics of the metacommunity, which comprises all inter-
connected communities in a landscape (10), are inextricably
linked to the organization and hydrology of the fluvial network
(5–8). This perception is essential to understand, predict, and
manage streams and rivers and their resistance and resilience to
human alterations across scales (that is, from patches to the
catchment) (11).
Ecological interactions are often usefully represented as net-

works (12). For example, analyses of food webs and mutualistic
(e.g., pollination) networks have demonstrated that network
organization can be linked to network persistence, to disturbance
(12–16), or to species coexistence and richness (17). Microbial
communities are so diverse and poorly studied that mapping out
the interactions on the basis of biological knowledge is currently
impossible for all but the simplest of habitats. Therefore, co-
occurrence networks are increasingly used to infer microbial
interactions (18, 19) in soils (20), oceans (21), lakes (22), and
even in global genomic surveys (23).
A key question is whether the organization of microbial co-

occurrence networks and their response to disturbance reflect

physical characteristics inherent in fluvial networks such as
geomorphology (1), resilience of the hydrological regime (24),
and metacommunity dynamics (3–8). This question is important
because microorganisms, often encapsulated in biofilms attached
to the streambed, fulfill critical ecosystem functions in streams
and rivers (25), which have an ongoing history of being perturbed
by human activity (11, 26). We addressed this question by using
co-occurrence networks based on 454 pyrosequencing data (8) of
the 16S rRNA gene from benthic biofilms from 114 streams of
the prealpine Ybbs catchment (Fig. 1) (8, 27). Our dataset
comprised 955,691 sequences constituting 1,005 operational
taxonomic units (OTUs) affiliated with 126 bacterial families,
from which we constructed co-occurrence networks at OTU level
and computed their fragmentation.
We computed the fragmentation as the relative fraction of

disconnected compartments within a co-occurrence network
(Materials and Methods) as a basic descriptor of network
topology. Fragmentation patterns were explored as a function
of fluvial network hydrology, which we suitably described
using a probabilistic model based on daily rainfall and
streamflow (24, 28) and leaning on the concept of meta-
community ecology (10).

Significance

Microbial communities orchestrate most biogeochemical pro-

cesses on Earth. In streams and rivers, surface-attached and

matrix-enclosed biofilms dominate microbial life. Despite the

relevance of these biofilms for ecosystem processes (e.g., me-

tabolism and nutrient cycling), it remains unclear how features

inherent to stream and river networks affect the fundamental

organization of biofilm communities in these ecosystems. We

combined co-occurrence analyses of biofilms based on next-

generation sequencing with a probabilistic hydrological model,

and showed how fragementation of microbial co-occurrence

networks change across stream networks. Our analyses offer

potential insights into the response of microbial community

organization and persistence to human pressures that in-

creasingly change the hydrological regime and biodiversity

dynamics in fluvial networks.

Author contributions: S.W., K.B., A.R., and T.J.B. designed research; S.W., K.B., G.A.S., S.C.,

E.B., C.Q., W.T.S., A.R., and T.J.B. performed research; S.W., G.A.S., S.C., E.B., and T.J.B.

contributed new reagents/analytic tools; S.W., K.B., G.A.S., S.C., E.B., C.Q., W.T.S., and T.J.B.

analyzed data; and S.W., A.R., and T.J.B. wrote the paper.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1To whom correspondence may be addressed. Email: andrea.rinaldo@epfl.ch or tom.battin@

univie.ac.at.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.

1073/pnas.1411723111/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1411723111 PNAS | September 2, 2014 | vol. 111 | no. 35 | 12799–12804

E
N
V
IR
O
N
M
E
N
T
A
L

S
C
IE
N
C
E
S

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1411723111&domain=pdf
mailto:andrea.rinaldo@epfl.ch
mailto:tom.battin@univie.ac.at
mailto:tom.battin@univie.ac.at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1411723111/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1411723111/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1411723111


Results

Fluvial Network Hydrology. In fluvial networks, the scaling re-
lationship between the hydrological regime and catchment size
mechanistically links fluvial network topology to biological inputs
from terrestrial ecosystems into streams and to both environ-
mental and ecological stability therein (1, 29). To explore how
the hydrological regime as a potential source of disturbance
to benthic and microbial life in streams (29, 30) changes across
the Ybbs network, we adopted a probabilistic model (24, 28)
(Materials and Methods).
Notably, we quantified the hydrologic regime at stream reach

level via a dimensionless parameter (λ/k) relating the frequency
of runoff-forming rainfall events, λ (d−1), to the mean duration
of the flow pulse released from the catchment after an effective
rainfall event, 1/k (days). λ/k essentially depends on catchment-
scale morphological, hydrological, and climatological attributes.
For each stream, we also evaluated the coefficient of variation of
daily flow (CVQ). The model revealed that the hydrological re-
gime changed from upstream to downstream. For instance, the
hydrological responsiveness ranged from 0.75 d in upstream to
4.8 d in downstream catchments, which translates into λ/k values
increasing from 0.4 to nearly 2.5 in the respective catchments
(Fig. 2A). Values of CVQ ranged from 0.94 in the smallest to 0.48
in the largest streams (Fig. 2B). These numerical values suggest
that pronounced variability in discharge and ephemeral regimes
(i.e., zero-flow days exist) and fast hydrological response to
rainfall events characterize small streams in the upstream
catchments. In contrast, reduced fluctuations in discharge and
slower hydrological response to rainfall events characterize
larger streams with persistent streamflows.

Fragmentation of Microbial Co-occurrence Networks Across a Fluvial

Network. In a next step, we explored co-occurrence patterns of
biofilm communities (Materials and Methods) at three different
spatial scales in the Ybbs network. First, we constructed com-
prehensive co-occurrence networks from 50 upstream sites (that
is, catchments smaller than the largest first-order catchment with
an approximate size of 5 km2; referred to as small streams
hereafter) and from 64 downstream sites (catchments larger than

5 km2; referred to as large streams hereafter) in the Ybbs catch-
ment (Fig. 3 A and B). This apportionment agrees with previous
work showing that the mean local diversity (that is, alpha diversity)
of benthic biofilms and its dispersion change from upstream to
downstream (8). We found that the fragmentation of the co-
occurrence networks was significantly lower in small (f = 0.54)
than in large (f = 0.68) streams (Table 1). The Jaccard similarity
(0.72; Materials and Methods and Table S1) between both co-
occurrence networks suggests high similarity and supports the
appropriateness to compare both networks. The higher number of
nodes (that is, OTUs; n = 595) and edges (n = 1,299) in the co-
occurrence network from the small streams compared with the
large streams (281 nodes and 362 edges) (Fig. 3 A and B and
Table S1) agrees with the previously reported patterns of higher
alpha diversity upstream in the Ybbs network (8).
Next, we assessed how the fragmentation of co-occurrence

networks of biofilm communities may change with catchment
size as a continuous and scalable parameter that varies with the
hydrologic regime (Fig. 3C). To do so, we divided sampling sites
into six bins based on log-scaled catchment size to take into
account the relative distribution of small versus larger streams
in fluvial networks. An even larger number of bins would com-
promise the statistical rigor of the co-occurrence networks
because they would be derived from fewer communities. Our co-
occurrence networks were computed from 10 to 15 individual
communities, all of them upstream of confluences (Materials and
Methods). We found generally elevated fragmentation (f rang-
ing from 0.78 to 0.82) of biofilm co-occurrence networks in
the small (0.1–3.2 km2) and large (8.3–20.4 km2) catchments
but significantly lower fragmentation (f = 0.73) in midsized
catchments (3.6–8.3 km2) (Fig. 3D). We note that the lower
fragmentation of co-occurrence networks in midsized streams is
not related to spatial clustering of these streams in the Ybbs
network (Fig. S1). We also note that the use of Strahler order
instead of catchment size as a binning criterion yielded similar
patterns of fragmentation.
To further explore the fragmentation patterns, we evaluated

the contribution of individual biofilm communities to the frag-
mentation of mean co-occurrence networks randomized over the
entire Ybbs network (Materials and Methods). We found that the
contributions of biofilms from the various streams to the mean
co-occurrence networks varied broadly from upstream to down-
stream (Fig. S2). However, midsized streams (catchment size:
3.6–8.3 km2) were the only streams that significantly (P <

0.05, two-tailed t test) decreased the fragmentation of mean co-
occurrence networks (Table S2). This analysis suggests that
biofilm communities in the midsized streams drive at least in part

Fig. 1. The Ybbs network. The River Ybbs catchment (254 km2, Austria) and

its fluvial network suitably extracted from a digital elevation model. We

sampled benthic biofilms from 50 and 64 streams upstream (green circles)

and downstream (red circles), respectively.

321

λ/k CV
Q

10

A B

Fig. 2. Hydrological regime of the fluvial network of the Ybbs River. Maps

showing the distribution of the hydrologic parameter defining the hydrologic

regime (λ/k) (A) and of the coefficient of variation of daily streamflow (CVQ) (B)

throughout the River Ybbs fluvial network as derived from the probabilistic

model (Materials and Methods). λ/k < 1 indicates ephemeral streams with the

presence of zero-flow days, and λ/k > 1 indicates perennial streams.
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the lower fragmentation of the large co-occurrence network
derived from all upstream communities (Fig. 3A). We note that
the difference in fragmentation between small and large streams
(Fig. 3 A and B) is not driven by the number of nodes (that is,
taxa richness) (Fig. S3).
Finally, at a smaller scale we studied the possible effect of

confluences on co-occurrence patterns of biofilm communities.
Confluences are the nodes of fluvial networks, where water,
sediments, and biodiversity from different catchments mix and
marked increments in total contributing area occur. We con-
structed co-occurrence networks for biofilms sampled upstream
and downstream of confluences in the small (<5 km2) and large
(>5 km2) catchments, respectively. We found that fragmentation
of co-occurrence networks was significantly higher in biofilm
communities downstream than upstream of confluences; this
pattern was consistent for both small and large streams (Table 1).

Betweenness Centrality and Fragmentation of Co-occurrence

Networks. We analyzed the responsiveness of co-occurrence
network fragmentation to random removal of nodes as this may
provide insights into the susceptibility of co-occurrence networks
of biofilms to disturbance. Here we specifically assess con-
sequences of removal of nodes (that is, OTUs), that are con-
tained in a large fraction of shortest edge paths between distinct
nodes and which thus have a high betweenness centrality (31).
Such nodes are also termed gatekeepers (32), which interact
simultaneously with different compartments of the network
through transfer of energy and matter, for instance; they are
thought to be crucial for ecological network structure and per-
sistence because they literally hold the network together (14, 32,
33). We found that betweenness centrality among the nodes was
heterogeneously distributed in the co-occurrence networks,
which indeed indicates the presence of gatekeepers (Fig. 4A).
We iteratively computed the fragmentation upon random removal
of single OTUs from the largest connected component of the
network (the so-called giant component) of eight co-occurrence
networks with more than 75 nodes in the giant component
(Table S1). The positive relationship between fragmentation and
betweenness centrality suggests that the removal of OTUs with
higher betweenness centrality from the co-occurrence networks
contributes disproportionately to their fragmentation (Fig. 4B).

Discussion

The present study links co-occurrence patterns in microbial
communities to potential real-world agents of disturbance in
a fluvial network. It expands our current understanding on the
relationship between organization and fragility of theoretical and
mutualistic networks (14–17) to microbial co-occurrence net-
works. We suggest hydrological disturbance and metacommunity
dynamics as potential controls on the co-occurrence patterns
of benthic biofilm communities in fluvial networks. Not un-
expectedly, the probabilistic hydrological model shows how the
hydrological regime, as a major control on benthic microbial life,
changes from upstream to downstream as catchment size
increases. What may run counter to the logical perception is the
nonlinear response of co-occurrence network fragmentation
along this hydrological gradient. In fact, we anticipated frag-
mentation to parallel decreasing flow-induced disturbance
downstream. For instance, the hydrological regime in small
streams is characterized by notable temporal fluctuations and
even by zero flow days (λ/k < 1). It is well known that changes in
flow rates can physically disturb (e.g., by abrasion and erosion)
benthic biofilms (30) and affect their functioning (34) and
community succession (35). Farther downstream, temporal flow
variability becomes reduced because of the larger contributing
area, which may alleviate physical stress on benthic biofilms. This
scenario would be in line with observations on food chain length
that scales with catchment size and flow variability in streams (29).
We postulate mechanisms linked to hydrology and meta-

community dynamics, as supported by theoretical and empirical

Fig. 3. Microbial co-occurrence networks based on 454 pyrosequencing of

benthic biofilm communities. Co-occurrence networks from communities in 50

upstream (<5 km2; first to third stream order) (A) and 64 downstream (>5 km2,

second- to fifth-order streams) sites (B). Fragmentation of the co-occurrence

networks from upstream communities is significantly lower than that from

downstream communities (Table 1). The size of the nodes is scaled to their

betweenness centrality. Giant components are indicated in green for both co-

occurrence networks; other colors denote smaller components. (C) Fragmen-

tation patterns differ from patterns of CVQ (triangles) and λ/k (squares) across the

bins of catchment size (as in D). (D) Fragmentation (f; 95% confidence interval) is

highest in small and large streams but significantly lower inmidsized streams. Co-

occurrence networks were computed from 10, 10, 14, 15, 14, and 14 communities

for the six bins of catchment size (log scale). We used only sites upstream of

confluences to avoid dependencies and effects of confluences (see text).

Table 1. Summary statistics for co-occurrence network fragmentation (f)

Catchment type Position in catchment Fragmentation f, 95% CI P from randomness Jaccard similarity index

Catchment Small (<5 km2) 0.54 (0.50; 0.60) 0.5 × 10−6 0.72

Large (>5 km2) 0.68 (0.66; 0.73) 0.2 × 10−6

Small catchment Upstream from confluence 0.48 (0.43; 0.54) 0.1 × 10−4 0.76

Downstream from confluence 0.79 (0.74; 0.81) 0.1 × 10−7

Large catchment Upstream from confluence 0.64 (0.64; 0.72) 0.2 × 10−8 0.79

Downstream from confluence 0.78 (0.75; 0.81) 0.3 × 10−7

Upstream (<5 km2) and downstream (>5 km2) networks refer to the networks in Fig. 3 A and B. For pairwise comparison, non-

overlapping 95% CI indicate significantly different fragmentation. See Materials and Methods for bootstrapping and deviation from

randomness. The Jaccard similarity refers to the degree of shared edges between the respective co-occurrence networks.
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evidence (3–10), to drive the observed patterns of co-occurrence
network fragmentation. Although hydrological variation is in-
deed elevated in small headwater streams, the constrained
contributing area of these catchments limits the size of the
metacommunity, from which local biofilm communities assem-
ble in these streams. Along with the relative isolation of such
headwater streams in fluvial networks (5, 8), we assume that this
leads to dispersal limitation in small compared with large
streams. We propose that the combined effects of hydrological
regime and dispersal limitation lead to biofilm communities of
relatively distinct and idiosyncratic composition in small streams.
Besemer et al. (8) showed that these effects may increase beta
diversity in headwaters, which in turn may reduce the strength
and detectability of co-occurrence patterns across these streams.
In midsized streams, the size of the upstream metacommunity

increases and local community assembly may become relieved
from dispersal limitation. These conditions seem favorable to
stronger co-occurrence patterns (that is, lower fragmentation) of
biofilm communities, implying elevated biotic interactions (18)
or species sorting mediated by the local environment (36) in
these streams. The notion of elevated interactions is indirectly
supported by theory and experimental observations showing el-
evated biodiversity in more connected communities that occupy
a central position in fluvial networks (6, 7); biodiversity may in
turn promote interactions in microbial communities (37). Previous
work reporting maximal values of alpha diversity in midsized
streams of the Ybbs network (8) further corroborates this notion.
Farther downstream, we assume that metacommunity dy-

namics rather than hydrology become a more important control
on the co-occurrence patterns of biofilms. As contributing area
increases, the metacommunity from where microorganisms
can immigrate increases as well (5–8). At the same time, the

hydrological stochasticity in the abundant and rapidly responding
streams in the upstream catchments (i.e., high values of λ/k) and
hence the microbial diversity they transport downstream may
shape the composition and dynamics of the downstream meta-
community. Thus, asynchronous contributions of microbial di-
versity from these upstream catchments may affect dispersal and
assembly dynamics of local communities downstream, likely via
neutral processes (that is, demographic stochasticity) (10), and
the co-occurrence networks they form.
The co-occurrence patterns that we have revealed as poten-

tially related to metacommunity dynamics and hydrology at the
scale of the entire catchment apparently hold true at the scale of
stream confluences. The larger contributing area downstream of
a confluence constitutes a step jump in metacommunity size
(potentially scaling with the contributing area of a catchment)
and concomitantly in dispersal of microorganisms mixing at the
confluence from each of the upstream catchments. Mixing may
carry the signatures of hydrological and microbial processes oc-
curring in each of the contributing catchments and affecting
community assembly and co-occurrence downstream of the
confluence. Biotic interactions, including competition, are com-
monly thought to increase co-occurrence in microbial networks
as they refer to common resources and environmental conditions
(12, 18, 19). The fact that we found elevated fragmentation
downstream of confluences points to stronger influence of sto-
chastic processes (e.g., neutrality) (10), rather than competition,
organizing the biofilm communities. The higher fragmentation
downstream of confluences may be reinforced by elevated
physical disturbance related to flow patterns and sedimentary
dynamics (38), for instance, which continuously rework and re-
distribute microbial niches downstream of confluences.
Taken together, our findings insinuate that the inverse gra-

dients of hydrology and metacommunity paired with a discrete
and step-wise influence of confluences generate the observed
pattern of biofilm co-occurrence network fragmentation.
Ecological network theory predicts that communities of tightly

connected species should be more fragile (12, 14, 39). Network
organization counteracts this trend leading to robust species-rich
communities, yet at the expense of pronounced fragility due to
selected removal of nodes from the network (12, 14, 39). How-
ever, empirical studies that explore effects of real-world distur-
bance on co-occurrence patterns of microbial communities are
few (19, 40). In this study, we randomly removed single nodes
from the co-occurrence networks and assessed the impact on the
network fragmentation. Given that the interactions between the
hundreds of microbial taxa (as OTUs) are not understood, no
mechanistic assumptions were made for this simulation. Our
findings suggest that the loss of gatekeepers contributes dispro-
portionately to co-occurrence network fragmentation, which es-
sentially agrees with reports on food web and mutualistic
networks (where mechanistic assumptions are made) showing
high fragility of these networks upon selective removal of species
(13, 15, 38). Sequencing data allowed us to identify gatekeepers
as being affiliated with Saprospiraceae and Sphingomonadaceae
(Fig. 4C). These OTUs had high betweenness centrality values
(up to 0.5 and 0.15, respectively) and were consistently present in
the giant component of the co-occurrence networks. This is
notable as these are typical freshwater families, often dwelling in
sedimentary environments and associated with surfaces. They
comprise members known to degrade aromatic compounds (i.e.,
Novosphingobium sp.) and to confer physical structure to the
communities (i.e., Haliscomenobacter sp.), properties which
appear advantageous to microorganisms forming biofilms in
streams where dissolved organic carbon is often aromatic and
humic and where flow-induced erosion can be high. The loss
of these gatekeepers may have adverse consequences for the
integrity and function of biofilm communities.

A

B

C

Fig. 4. Fragmentation, persistence and betweenness centrality of biofilm

co-occurrence networks. (A) Random removal of nodes from the co-occur-

rence network generates a positive relationship between betweenness

centrality (CB) and fragmentation (f). This suggests that the removal of

gatekeepers (that is, higher CB) contributes disproportionately to frag-

mentation. The analysis is based on 1,818 nodes in nine co-occurrence net-

works (giant component); error bars depict SE. (B) Frequency distribution

showing the heterogeneous contribution of the various nodes to be-

tweenness centrality (CB) and the disproportionally low contribution of

gatekeepers to co-occurrence networks. Statistics were done on the re-

spective giant components. (C) Depiction of the giant component of the co-

occurrence network of the downstream communities (Fig. 3D). The size of

the nodes is scaled to CB to indicate their gatekeeping properties; coloring

is according to compartment structure. Gatekeeping nodes that consistently

occurred in all networks are indicated.
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The need to perceive streams and rivers as networks or mac-
rosystems consisting of connected and interacting systems is in-
creasingly recognized (4, 11, 41). Our findings are relevant in
that context because they suggest the type of linkage that governs
the organization of microbial communities in relation to flow
dynamics across fluvial networks. Distinct anthropogenic pres-
sures, such as interbasin water transfer, damming, and mountain
top mining and valley filling (26), but also climate change effects
on the hydrological regime and its resilience (24) alter funda-
mental attributes of fluvial networks. It is imperative therefore to
understand the consequences of these for microbial interactions
and for the persistence of biofilm communities, which are critical
for ecosystem processes.

Materials and Methods
Study Sites and Sampling. We sampled benthic biofilms from 114 streams

upstream and downstream from confluences in the river Ybbs (Austria) (8, 27)

at base flow in winter. For details on sampling and field measurements, see

SI Materials and Methods.

Probabilistic Hydrological Model of the Ybbs Fluvial Network. To characterize

the hydrological regime of the Ybbs River network, we adopted a probabi-

listic characterization of temporal discharge dynamics by coupling a sto-

chastic analysis of daily rainfall events to catchment transport dynamics (24,

28). The model expresses the probabilistic structure of discharge in terms of

three parameters, namely. α, λ, and k, which describe the magnitude and

frequency of discharge-producing rainfall events and the characteristic re-

sponse time of the catchment (that is, the time needed by effective rainfall

inputs to reach the outlet), respectively. The ratio λ/k identifies the shape of

the probability distribution and the hydrological regime (Supporting In-

formation). For the Ybbs River network, we assumed spatially uniform

rainfall, where λ = 0.53 d−1 (that is, on average there is a rainfall event ef-

fectively producing discharge almost every 2 d) and α = 9.61 mm. The re-

sponse time k is assumed to increase as a power law relation with total

contributing area 1/k ∝ A1/3 as a direct result of the fact that drainage area,

and thus, the channel paths determining hydrograph recession rates pre-

dictably increase downstream (Supporting Information).

Sequencing. DNA was extracted from microbial biomass (8), and the V4 and

V5 regions of the 16S rRNA gene were amplified using the primers 515F 50-

GTGNCAGCMGCC GCGGTAA-30 and 926R 50-CCGYCAATTYMTTTRAGTTT-30

(Invitrogen) (42). Equal amounts of the barcoded PCR products were se-

quenced at the Centre for Genomic Research (Liverpool, United Kingdom)

on a 454 GS20 FLX Titanium platform. See ref. 8 and SI Materials and

Methods for details on the bioinformatics. The final dataset consisted of

955,691 sequences which constituted 1,005 OTUs and were affiliated to 126

bacterial families.

Co-occurrence Networks and Fragmentation. OTUs affiliated with families

were used to construct the co-occurrence networks. We filtered out OTUs

present in fewer than three sampling sites involved in the particular network

inference. Then the dataset was Hellinger-transformed. All possible Spearman

rank correlations between OTUs across sampling sites and corresponding

P values were calculated. We corrected the false discovery rate according to

Benjamini-Hochberg (43). We considered a valid co-occurrence event to be

robust if the Spearman correlation coefficient ρ > j0.6j and statistically sig-

nificant at P < 0.01 (20).

Co-occurrence network fragmentation (f) was calculated as the ratio of

the number of disconnected subgraphs (CL) to the overall number of nodes

(N) in each network as log(CL)/log(N). Values of f range between 0 and 1

independent of network size and display an elevated resolution for less

fragmented networks. Relative fragmentation patterns remained robust

when various levels of filtering stringency were applied (Table S3). Co-

occurrence networks were bootstrapped, and the computed fragmentation

was validated against randomness as described in SI Materials and Methods.

The degree of shared edges between the between the analyzed co-occurrence

networks was assessed using the Jaccard similarity index (Supporting In-

formation) as the ratio of the intersection of samples (similar edges) against

their union (all present edges). We also assessed the relative contribu-

tion (%) of distance biofilm communities to the fragmentation of mean

co-occurrence networks randomized over the Ybbs catchment based on

39 sites randomly chosen from 77 cites upstream of the confluences

(Supporting Information).

To assess the relative contribution of OTUs to overall CB of a respective

network, we examined the frequency distribution of CB using co-occurrence

networks according to a minimal size criterion (>75 nodes) for the giant

component. We conducted an in silico experiment and tested how random

removal of nodes affects community fragmentation, f, of the giant com-

ponent of the co-occurrence networks. OTUs with a potential gatekeeper

function were identified by combining graph-topological and pyrose-

quencing data. Further details are provided in SI Materials and Methods.
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