THE JOURNAL OF ANTIBIOTICS

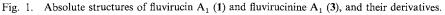
FLUVIRUCINS A₁, A₂, B₁, B₂, B₃, B₄ AND B₅, NEW ANTIBIOTICS ACTIVE AGAINST INFLUENZA A VIRUS

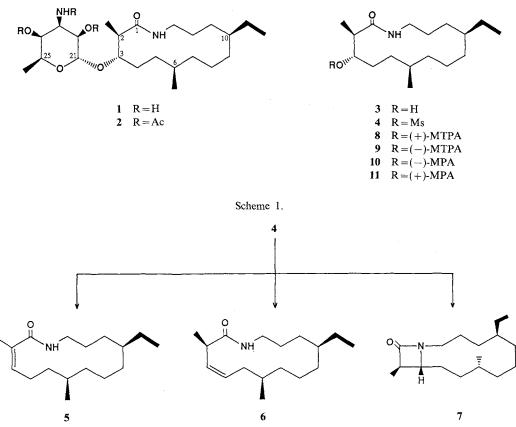
III. THE STEREOCHEMISTRY AND ABSOLUTE CONFIGURATION OF FLUVIRUCIN A₁

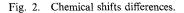
NOBUAKI NARUSE, MASATAKA KONISHI and TOSHIKAZU OKI

Bristol-Myers Squibb Research Institute, 2-9-3 Shimo-meguro, Meguro-ku, Tokyo 153, Japan

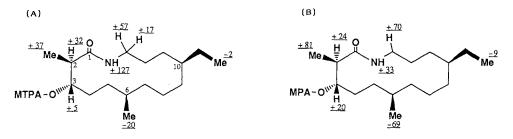
YOSHINOBU INOUYE and HIROSHI KAKISAWA*


Department of Chemistry, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305, Japan

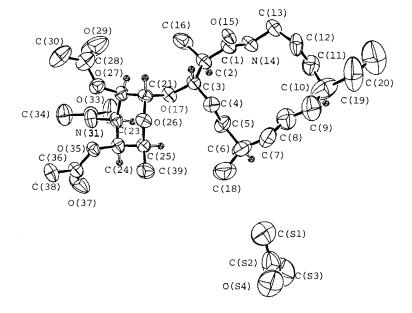

(Received for publication January 14, 1991)


Fluvirucin A_1 was established as (2R,3S,6R,10S)-3-[(3-amino-3,6-dideoxy- α -L-talopyranosyl)oxy]-2,6-dimethyl-10-ethyl-13-tridecanelactam by chemical, spectroscopic, and X-ray crystallographic analyses.

Fluvirucins are new antibiotics isolated from the fermentation broth of unidentified actinomycete species and show potent inhibitory activity against influenza A virus.^{1,2)} The structure 1 was proposed for the major component, fluvirucin A₁, based on various spectroscopic and chemical properties. The 14-membered macrocyclic lactam was the first such aglycone from a natural source but there remained a question that no direct connectivity between C-11 and C-12 was observed in the 2D-incredible natural abundance double quantum transfer experiment (INADEQUATE) spectrum. The stereochemistry of the sugar part was established as 3-amino-3,6-dideoxy-L-talose but that of the aglycone remained uncertain. We report here several spectroscopic and chemical properties of 1 and a single crystal X-ray analysis of triacetyl derivative 2 of 1 to confirm the structure and the absolute configuration of the 14-membered macrocycle. Hydrolysis of fluvirucin $A_1(1)$ with methanolic hydrogen chloride afforded an aglycone, named fluvirucinine A_1 (3) together with two anomeric sugars.²⁾ When a mesylate 4 derived from 3 was treated with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in N,N-dimethylformamide at 100°C for 4 hours, three dehydration-products 5, 6, and 7 were isolated in 36, 13, and 22%, respectively (Scheme 1). Both 5 and 6 have an olefinic double bond and the structures were easily elucidated by ${}^{1}H$ NMR spectroscopy. The remaining 7 contained a β -lactam skeleton (IR 1740 cm⁻¹) and the small coupling constant (J=2.2 Hz) between the adjacent protons on the 4-membered ring requires these two hydrogens to be trans. As the β -lactam ring can be considered to derive through an SN₂-displacement mechanism, the stereochemistry of the original C-2 and C-3 substituents is estimated as trans. The large coupling constant between C2-H and C3-H in 4 (J=10.3 Hz) or an acetate of 3 (J=9.4 Hz)² supports this assignment.


As the C3-OH may be equatorially oriented, application of the $MOSHER^{3)}$ or TROST method⁴⁾ to determine the absolute stereochemistry was investigated. The results, shown in Fig. 2, are in accord with the prediction that the absolute stereochemistry of C-3 is *S*, though most of the protons on the 14-membered ring could not be assigned due to the overlap of the signals. The configuration of remaining C-6 and C-10

R-(+)- and *S*-(-)-MTPA esters: $\Delta \delta$ in Hz (400 MHz) = $\delta(S) - \delta(R)$ (A), *R*-(-)- and *S*-(+)-MPA esters: $\Delta \delta$ in Hz (400 MHz) = $\delta(R) - \delta(S)$ (B).


could not yet be clarified by a chemical or spectroscopic method.

We finally tried a single crystal X-ray analysis of 2 to confirm unambiguously the structure and the absolute configuration of the 14-membered macrolactam. 2 was recrystallized from acetone to give colorless rods with one equivalent of acetone as solvent of crystallization. The crystallographic data are summarized as follows: monoclinic, $P2_1$; a = 8.317(1), b = 28.472(3), c = 8.132(1)Å, $\beta = 110.43(1)^\circ$, V = 1805(5)Å³, Z = 2; $D_m = 1.14(1)$, $D_{calc} = 1.13$ g/cm³.

Several direct attempts with various starting phase-sets estimated from a convergence map failed to

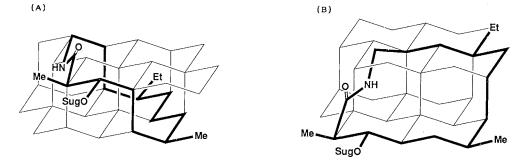
Fig. 3. ORTEP drawing¹⁰⁾ of the major conformer of **2** with thermal ellipsoids scaled at the 50% probability level and numbering scheme.

H-Atoms are calculated and are represented by circles of radius 0.1Å.

solve the structure. The RANTAN approach in MULTAN11/82⁵⁾ finally succeeded in location of 20 atoms (the sugar part) on the *E*-map. Successive weighted Fourier syntheses revealed the position of the remained non-hydrogen atoms except an ethyl group. The structure was refined by the full-matrix least-squares method (SHELX76).⁶⁾ The atomic scattering factors were taken from International Tables for X-Ray Crystallography.⁷⁾ All numerical calculations were carried out on a Facom M780/20 computer at the Science Information Processing Center, University of Tsukuba.

After isotropic refinement on 37 atoms, weighted D-Fourier syntheses found the ethyl group and solvent (acetone). Isotropic refinement on all non-hydrogen atoms converged the *R* factor to 0.154; at this stage a disorder was found around the 14-membered ring. Two conformations were estimated with an occupancy of 0.7 and 0.3. Since several bond-lengths in the disordered part, however, had not been converged to the normal values, the bond lengths in the minor part were fixed to 1.540 Å with e.s.d. = 0.001 in the final stage. One reflection (020) considered to suffer to a secondary extinction was omitted. Final blocked full-matrix least squares with anisotropic for non-hydrogen atoms and isotropic for those in the minor disordered part converged the *R* factor to 0.098 ($_wR$ =0.100, S=3.72). Final weighting scheme was $\omega = 2.9/[\sigma^2(Fo) + 0.0012F^2]$. The ratio of maximum least-squares shift to error was less than 0.1.

Molecular structure of the major conformer with atomic numbering scheme is shown in Fig. 3.[†]


The 14-membered lactam skeleton 1 was unequivocally confirmed including the substituents correctly positioned. Since the absolute configuration of the sugar had been elucidated as 3-amino-3,6-dideoxy-L-talose,²⁾ those on the aglycone were established as 2R, 3S, 6R, 10S. The definition of 2R, 3S is accord with the result obtained by chemical and spectroscopic methods as mentioned above.

[†] Atomic parameters, selected bond lengths, and tortion angles of the 14-membered lactam and the sugar are deposited in Cambridge Crystalographic Data Centre.

THE JOURNAL OF ANTIBIOTICS

Fig. 4. Diamond-lattice representations.

Major (A) and minor (B) conformations.

The characteristic feature of the crystal structure is that the 14-membered lactam ring is not in a single conformation. The large thermal parameters and abnormal bond lengths of several atoms[†] show that other conformational isomers are still possible together with disorder of the ethyl group. Two conformations obtained are shown schematically on the diamond lattice in Fig. 4. The C13-N14-C1-C2-C3 regions of both conformers are essentially same with C3-O-sugar in an equatorial position. The difference is detected in three -CH₂-CH₂- units (-C4-C5-, -C7-C8-, and -C11-C12-). The conformations are not in accord with those of the 14-membered lactone antibiotics, erythromycin A^{8} or oleandomycin derivatives.⁹ The difference may arise by the presence of many substituents in the latter cases, in which the conformation should be fixed by the steric environment of the substituents.

Experimental

The mp's are uncorrected. IR spectra were determined on a Jasco IR-810 spectrometer. ¹H NMR spectra were recorded on a Jeol JNM-GX 400 (400 MHz) and chemical shifts were obtained relative to $CDCl_3$ as an internal standard.

Mesylate (4)

A mixture of 200 mg of 3 and 1 ml of methanesulfonyl chloride in 10 ml of dry pyridine was stirred at room temperature for 16 hours. After the whole had been poured onto ice-water, products were extracted with EtOAc (70 ml × 2). The organic layer was washed with 1 m HCl, a satd NaHCO₃ soln, and water (each 50 ml × 2) and was dried over anhydrous Na₂SO₄. Evaporating the solvent gave 220 mg of 4 as solids. Crystallization from CHCl₃ - MeOH afforded a pure 4. MP 216~217°C; IR v_{max} (KBr) cm⁻¹ 1320, 1160; ¹H NMR (CDCl₃ - CD₃OD) δ 4.91 (1H, dt, J=10.3 and 4.3 Hz, 3-H), 3.71 (1H, m, 13-H), 3.08 (3H, s, 3-OMs), 2.69 (1H, dq, J=10.3 and 6.8 Hz, 2-H), 2.64 (1H, m, 13-H), 1.27 (3H, d, J=6.8 Hz, 2-CH₃), 0.91 (3H, d, J=6.8 Hz, 6-CH₃), 0.87 (3H, t, J=7.3 Hz, 10-CH₂CH₃).

Anal Calcd for $C_{18}H_{35}NO_4S$:C 59.80, H 9.76, N 3.87, S 8.87.Found:C 59.55, H 9.77, N 3.74, S 9.21.

DBU Treatment on 4

To a suspension of 184 mg of 4 in 10 ml of DMF, there was added 1.5 ml of DBU and the mixture was heated at 100°C for 4 hours. After the whole had been cooled to room temperature, EtOAc was added up to 150 ml and the solution was washed with 1 \times HCl, a satd NaHCO₃ soln, and water (each 100 ml × 2). The organic layer was dried over anhydrous Na₂SO₄ and evaporated to dryness to give a pale yellow solids. Chromatography on silica gel (toluene - MeOH, 19:1) afforded 5 (48.5 mg), 6 (17.7 mg), and 7

(29.5 mg) as white solids.

5: MP 163~165°C; IR v_{max} (KBr) cm⁻¹ 1660; ¹H NMR (CDCl₃) δ 5.62 (1H, br s, NH), 5.40 (1H, ddq, J=9.0, 6.4 and 1.3 Hz, 3-H), 3.44 (1H, ddt, J=13.3, 2.1 and 6.8 Hz, 13-H), 3.26 (1H, m, 13-H), 2.20 (1H, ddt, J=13.3, 4.7 and 9.0 Hz, 4-H), 1.94 (1H, m, 4-H), 1.89 (3H, s, 2-CH₃), 0.88 (3H, d, J=6.8 Hz, 6-CH₃), 0.86 (3H, t, J=7.3 Hz, 10-CH₂CH₃). NOESY spectrum showed a cross peak between C2-CH₃ and C3-H.

Anal Calcd for C₁₇H₃₁NO: C 76.92, H 11.77, N 5.28.

Found: C 76.97, H 11.95, N 5.25.

6: MP 172~174°C; IR v_{max} (KBr) cm⁻¹ 1660; ¹H NMR (CDCl₃) δ 5.61 (1H, br s, NH), 5.53 (1H, ddd, J=11.7, 10.3 and 3.8 Hz, 4-H), 5.42 (1H, ddd, J=11.7, 9.0 and 1.9 Hz, 3-H), 3.53 (1H, m, 13-H), 2.97 (1H, m, 13-H), 2.91 (1H, dq, J=9.0 and 6.8 Hz, 2-H), 2.16 (1H, ddd, J=13.7, 4.4 and 3.8 Hz, 5-H), 1.83 (1H, dt, J=13.7 and 10.3 Hz, 5-H), 1.22 (3H, d, J=6.8 Hz, 2-CH₃), 0.93 (3H, d, J=6.8 Hz, 6-CH₃), 0.84 (3H, t, J=7.3 Hz, 10-CH₂CH₃).

Anal Calcd for C₁₇H₃₁NO: C 76.92, H 11.77, N 5.28.

Found: C 76.82, H 11.88, N 5.17.

7: MP 77~78°C; IR v_{max} (KBr) cm⁻¹ 1740; ¹H NMR (CDCl₃) δ 3.75 (1H, dt, J=14.3 and 8.2 Hz, 13-H), 3.10 (1H, dt, J=8.8 and 2.2 Hz, 3-H), 2.70 (1H, dq, J=2.2 and 7.3 Hz, 2-H), 2.66 (1H, ddd, J=14.3, 7.8 and 3.3 Hz, 13-H), 1.24 (3H, d, J=7.3 Hz, 2-CH₃), 0.89 (3H, d, J=6.6 Hz, 6-CH₃), 0.86 (3H, t, J=7.3 Hz, 10-CH₂CH₃).

Anal Calcd for C₁₇H₃₁NO: C 76.92, H 11.77, N 5.28. Found: C 76.77, H 11.88, N 5.28.

R-(+)- and $S-(-)-\alpha$ -Methoxy- α -(trifluoromethyl)phenylacetyl Esters 8 and 9

A mixture of 13 mg of 3, $150 \,\mu$ l of α -methoxy- α -(trifluoromethyl)phenylacetyl chloride (*R*-(+)-MTPAC1), 1 ml of Et₃N, and 10 mg of 4-dimethylaminopyridine (DMAP) in 2 ml of dichloromethane was stirred at room temperature for 16 hours. EtOAc and ice-water were added to the solution and the whole was stirred for 1 hour. After had been separated, the organic layer was washed with 1 M HCl, satd NaHCO₃ soln, and water. After concentrating under reduced pressure, the crude products were purified by preparative TLC (toluene - MeOH (17:3) followed with hexane - acetone, 9:1) and column-chromatography on Sephadex LH-20 (MeOH) to afford 15 mg of 8 as white solids. The S-(-)-MTPA ester 9 was prepared as similar procedure.

8: MP 185~187°C; ¹H NMR (CDCl₃) δ 7.57 (2H, m), 7.42 (3H, m), 5.45 (1H, dd, J=8.1 and 4.3 Hz, NH), 5.26 (1H, dt, J=3.4 and 8.1 Hz, 3-H), 3.75 (1H, ddt, J=13.7, 1.7 and 8.1 Hz, 13-H), 3.59 (3H, s), 2.50 (1H, m, 13-H), 2.44 (1H, dq, J=8.1 and 7.3 Hz, 2-H), 1.72 (1H, tt, J=13.9 and 3.4 Hz, 4-H), 1.06 (3H, d, J=7.3 Hz, 2-CH₃), 0.85 (3H, t, J=7.3 Hz, 10-CH₂CH₃), 0.84 (3H, d, J=7.3 Hz, 6-CH₃).

9: MP 184~186°C; ¹H NMR (CDCl₃) δ 7.54 (2H, m), 7.41 (3H, m), 5.76 (1H, dd, J=8.1 and 4.3 Hz, NH), 5.27 (1H, dt, J=3.4 and 8.6 Hz, 3-H), 3.79 (1H, ddt, J=13.7, 1.7 and 8.1 Hz, 13-H), 3.54 (3H, s), 2.64 (1H, m, 13-H), 2.52 (1H, dq, J=8.6 and 7.3 Hz, 2-H), 1.73 (1H, tt, J=13.9 and 3.4 Hz, 4-H), 1.15 (3H, d, J=7.3 Hz, 2-CH₃), 0.84 (3H, t, J=7.3 Hz, 10-CH₂CH₃), 0.79 (3H, d, J=6.8 Hz, 6-CH₃).

R-(-)- and S-(+)- α -Methoxyphenylacetic Acid (MPA) Esters 10 and 11

A mixture of 14 mg of 3, 53 mg of R-(-)-MPA, 10 mg of DMAP, and 1-ethyl-3-(3diethylaminopropyl)carbodiimide hydrochloride in 5 ml of dichloromethane was stirred at room temperature for 16 hours. After concentrating under reduced pressure, 40 ml of EtOAc was added and the whole was washed with a 5% citric acid soln, water, a 5% NaHCO₃ soln, and water (each 30 ml × 2). After evaporating the solvent, the residue was purified by preparative TLC (toluene - MeOH, 17:3) and column-chromatography on Sephadex LH-20 (MeOH) to afford 11.5 mg of 10 as white solids. S-(+)-MPA ester 11 was prepared by a similar procedure.

10: MP 220 ~ 221°C; ¹H NMR (CDCl₃) δ 7.44 (2H, br d, J=7 Hz), 7.35 (3H, m), 5.70 (1H, br dd, J=7.3 and 4.7 Hz, NH), 5.05 (1H, dt, J=2.7 and 8.8 Hz, 3-H), 4.77 (1H, s), 3.63 (1H, m, 13-H), 3.43 (3H, s), 2.83 (1H, dddd, J=13.5, 7.3, 4.7 and 2.1 Hz, 13-H), 2.39 (1H, dq, J=8.8 and 6.8 Hz, 2-H), 1.09 (3H, d, J=6.8 Hz, 2-CH₃), 0.83 (3H, t, J=7.3 Hz, 10-CH₂CH₃), 0.62 (3H, d, J=6.8 Hz, 6-CH₃).

11: MP 250~252°C; ¹H NMR (CDCl₃) δ 7.45 (2H, br d, J=7 Hz), 7.37 (3H, m), 5.62 (1H, br dd,

J=7.3 and 4.7 Hz, NH), 5.00 (1H, dt, J=2.6 and 6.8 Hz, 3-H), 4.78 (1H, s), 3.65 (1H, ddt, J=13.3, 2.6 and 7.3 Hz, 13-H), 3.42 (3H, s), 2.66 (1H, dddd, J=13.3, 8.6, 4.7 and 2.1 Hz, 13-H), 2.33 (1H, quint, J=6.8 Hz, 2-H), 0.88 (3H, d, J=6.8 Hz, 2-CH₃), 0.86 (3H, t, J=7.3 Hz, 10-CH₂CH₃), 0.79 (3H, d, J=7.3 Hz, 6-CH₃).

Crystallographic and Diffraction Data Collection of 2

The crystals were grown from an acetone solution as colorless rods. MP $246 \sim 247^{\circ}$ C (changed to opaque above 148° C due to the solvent loss).

Anal Calcd for C₂₉H₅₀N₂O₈·C₃H₆O: C 62.72, H 9.21, N 4.57. Found: C 62.21, H 9.18, N 4.57.

The densities (D_m) were measured by flotation in aqueous KI solution. The unit-cell dimensions were refined by least-squares refinement from 25 reflections with $11^\circ < \theta < 13^\circ$ on an Enraf-Nonius CAD4 automated kappa-axis diffractometer with graphite monochromated Mo K α radiation (50 kV and 26 mA). The diffraction intensities were measured for a single crystal of about $0.4 \times 0.3 \times 0.3$ mm³ on the diffractometer up to $2\theta = 60^\circ$; $2\theta - \omega$ scan, the scan rate with $4^\circ \min^{-1}$ in θ , the ω scan width = $0.6 + 0.35 \tan \theta$. Three standard reflections were measured after every 2 hours. The intensities were corrected for Lorentz, polarization, and decay (-1.2% in intensity) but not for absorption. Systematic absence (k = 2n) indicated unambiguously the space group P2₁. Of 5,345 unique reflections, 3,453 of independent structure factors with $|Fo| > 3\sigma$ (Fo) were used for structure determination.

References

- NARUSE, N.; O. TENMYO, K. KAWANO, K. TOMITA, N. OHGUSA, T. MIYAKI, M. KONISHI & T. OKI: Fluvirucins A₁, A₂, B₁, B₂, B₃, B₄ and B₅, new antibiotics active against influenza A virus. I. Production, isolation, chemical properties and biological activities. J. Antibiotics 44: 733 ~ 740, 1991
- NARUSE, N.; T. TSUNO, Y. SAWADA, M. KONISHI & T. OKI: Fluvirucins A₁, A₂, B₁, B₂, B₃, B₄ and B₅, new antibiotics active against influenza A virus. II. Structure determination. J. Antibiotics 44: 741~755, 1991
- OHTANI, I.; T. KUSUMI, M. O. ISHITSUKA & H. KAKISAWA: Absolute configurations of marine diterpenes possessing a xenicane skeleton. An application of an advanced Mosher's method. Tetrahedron Lett. 30: 3147~3150, 1989
- 4) TROST, B. M.; J. L. BELLETIRE, S. GODLESKI, P. G. MCDOUGAL & J. M. BALKOVEC: On the use of the O-methylmandelate ester for establishment of absolute configuration of secondary alcohols. J. Org. Chem. 51: 2370~2374, 1986
- 5) MAIN, P.; S. J. FISKE, S. E. HULL, L. LESSINGER, G. GERMAIN, J. P. DECLERCQ & M. M. WOOLFSON: MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data. Department of Physics, University of York (England), 1982
- SHELDRICK, G. M.: SHELX76. Program for Crystal Structure Determination. University of Cambridge (England), 1976
- 7) CROMER, D. T. & J. T. WABER: International Tables for X-Ray Crystallography. Vol. 4. p. 99, Kynoch Press, 1974
- ADACHI, T.; S. MORIMOTO, Y. WATANABE, N. KAMIYA & H. IWASAKI: Crystal and molecular structure of (14R)-14-hydroxy-6-O-methylerythromycin A. J. Antibiotics 42: 1012~1014, 1989
- OGURA, H.; K. FURUHATA, Y. HARADA & Y. IITAKA: Stereochemistry of macrolides. 3. X-ray crystal structure analysis of 11,4"-bis[O-(p-bromobenzoyl)]oleandomycin. J. Am. Chem. Soc. 100: 6733 ~ 6737, 1978
- 10) JOHNSON, C. K.: ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, U.S.A., 1976