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Abstract: This paper presents a new approach for the 
simultaneous identification of rotor flux components in the 
rotor reference frame and electrical parameters of a vector 
controlled induction motor, for real-time implementations, 
using an extended Kalman filter (EKF) and a reduced 
order model structure for lower computational effort. The 
proposed new method requires the measurement of motor 
speed, stator voltages and currents signals. Using a motor 
model structure with four electrical parameters, the 
estimation of flux space phasor and rotor parameters is 
presented. The estimation is subsequently further extended 
to include the motor stator parameters and the results are 
analyzed as well as robustness. Simulated and 
experimental studies highlight the improvements brought 
by this new approach, mainly, a simple and reduced state 
equation, the introduced scalar output equation and lower 
computational cadency, by using lower sampling 
frequencies in the proposed rotor reference frame. 
 
 
1 Introduction 
During the last decades we have witnessed the 
development of high performance control methods of the 
induction motor. Most of them require the knowledge of 
the electrical parameters of the motor model, which can 
vary significantly during the normal operation because of 
well-known physical phenomena. Thus, uncertainties and 
parameter variations can deteriorate control performance. 
The effects of parameter sensitivities on the performance 
in vector control schemes and the possibility of 
identification of the changes in motor parameters while the 
drive is in its normal operation have been given in [1]. 
Therefore, it is necessary to estimate and track the 
parameters values in real-time operation. A variety of 
algorithms for parameter identification based on the least 
squares method, observer theory, and so forth, has been 
proposed in the relevant scientific literature. Among them, 
the Kalman filter-based algorithms have been 
demonstrated to be the best for processing noisy discrete 
measurements while obtaining accurate estimates [2]-[8]. 
The extended Kalman filter is a recursive, optimal, real-
time data processing algorithm for nonlinear systems for 
both state and parameters estimation [9] of a dynamic 
system in a noisy environment. The fundamental 
components either of the PWM voltages or currents 
generated by an inverter are considered as deterministic 
inputs or outputs depending on the model structure, and the 
wideband harmonic components are included in the noise 

vectors of the state space model structure as suggested in 
[10]. A lot of work has already been developed on this 
subject. Many cases are treating single parameter 
identification, namely rotor time constant or rotor 
resistance, with rotor flux estimation for indirect vector 
control purposes. Two approaches are commonly used: full 
order models [2], [6], [8] or reduced order models 
motivated by a reduced computational effort [3], [7] and 
[8]. In both types the stator reference frame is used. Two of 
them, [4] and [7], are related to the identification of all the 
parameters in the rotor and stator reference frame, 
respectively. 
In this paper the authors present a new approach for rotor 
flux components and physical parameters estimation 
algorithms which are based on a reduced order state space 
model with a single (scalar) output equation in the rotor 
reference frame, using an EKF technique. 
 
2. Induction motor model 
The well-known and established dq dynamic model of the 
induction motor, in a general reference frame, is 
represented by its stator and rotor space phasors voltage 
equations and stator and rotor flux expressed in terms of 
stator and rotor currents space phasors, like in [10]. 
Considering the squirrel-cage induction motor equations, 
in the rotor reference frame, and eliminating stator flux and 
rotor currents space phasors followed by some algebraic 
manipulations one can obtain: 
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A discrete-time state-space model can be obtained by 
assuming that the series expansion of the matrix 
exponential function is performed and only the first terms 
are considered as defined in [11]: 
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where Ts is the sampling period. This, together with an 
output equation, usually [ ]Tsqsd kiki )()( , composes a so-
denominated full-order state-space model. It is clear that 
the stator quantities in the above state equation can be 
measured directly. Therefore, one can reduce this state 
equation, by considering only the flux components in the 
state vector, as follows: 
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And the output equation can be set as follows: 
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This is usually classified as a reduced-order model. It is 
important to notice here that both equations in the above 
output equation have the same structure with the same 
states (parameters) and the same signals (voltages and 
currents components) but shifted in time. Therefore, they 
contain the same information for identification purposes. 
So we will use only one of them, for instance, the first one 
and the new output equation becomes: 
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It is worth noting that, to the authors’ knowledge, this is 
the first time that such simplification is performed and 
transforms the initial model in a single and therefore scalar 
output model structure. 
We can easily identify in the last term of the above 
equation, the first derivative of the d component stator 
current which corresponds to the Euler formula. Instead, 
the following better approximation to the first derivative, 
will be used, based only on past values: 
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3. Extended Kalman Filter (EKF) 
The EKF is used here to estimate the rotor flux dq 
components and physical parameters of the induction 

motor, modeled as above. The EKF can be used for both 
state and parameter estimation by treating the above 
physical induction motor parameters as additional states 
and forming an augmented state vector. As a result, even if 
the original state space model is linear, the augmented one 
is nonlinear because of inter-multiplication of states. The 
EKF deals directly with this nonlinear augmented model. 
Here the application of the EKF to the simultaneous 
estimation of rotor flux together with induction motor 
parameters produces a (2+nθ)-order extended state-space 
model with the following state vector: 

[ ] [ ] === TT
eee kkkxkxkxkxkx )()()()()()()( 412161 θθ LL  

 [ ]T
rqrd kkk )()()( θψψ=  (7) 

The subscript e denotes the extended or augmented state 
vector. For the estimation of nθ parameters, nθ extra 
equations are obtained by assuming a random walk to their 
adaptation: 
 )()()1( krkk jjj θθθ +=+  (8) 
Consider the stochastic discrete-time nonlinear state-space 
model [9]: 
 ( ) )()(),(),()1( krkkukxfkx see +=+ θ  (9) 
 ( ) )()(),()( krkkxhky m+= θ  (10) 
 ( ))0(),0()0( θxxx ee =  (11) 
It is usually assumed that the process noise rse(k) and 
measurement noise rm(k) are white, zero-mean Gaussian 
and independent sequences. 
The associated EKF algorithm is given as follows. 

1. Determination of the initial conditions. 
Prediction process: 
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Correction process: 

5.  ( ) =
∂

∂=
+ )|1(ˆ)(

)()(
kkx

T
e

ee

e
kx
kxhkH  

 ( ) ( )
)|1(

)(
)(),(

)(
)(),(

kkx
TT

e
k

kkxh
kx

kkxh

+











∂
∂

∂
∂=

)θ
θθ  (15) 

6. [ ] 1
)()|1(ˆ)()()|1(ˆ)1(

−
+++==+ m

TT RkHkkPkHkHkkPkK  (16) 
7.  ( )kkkxhky e ),|1(ˆ)1( +=+)  (17) 
8.  [ ])1()1()1()|1(ˆ)1|1( +−++++=++ kykykKkkxkkx ee

))  (18) 
9.  [ ] )|1(ˆ)()1()1|1( kkPkHkKIkkP ++−=++

)
 (19) 

10. Go to step 2 



 

 

The following sections will present the results and analysis 
of robustness of identifying rotor flux components plus 
two, three or four physical parameters of the three-phase 
squirrel cage induction motor per phase equivalent circuit 
as presented in [10], in the rotor reference frame. 
 
4. Simulation Results 
The above-proposed algorithm has been developed in the 
Matlab with Simulink environment and tested under a 
vector control scheme. The rotor-referred stator voltages, 
stator currents and angular speed are sampled at 
2,5ksamples/sec. Elliptic low-pass pre-filters of fifth order 
with a 500Hz cutoff frequency have been used. These 
simulation conditions were chosen to be the same as the 
experimental ones [12]. 
A trial of simulations shows that it must be born in mind 
that several important and difficult aspects arise when 
trying to estimate simultaneously rotor flux and all 
induction motor parameters with a reduced order model. 
On one hand the noise covariance matrices must be 
correctly set, the state-vector and error covariance matrix 
initialized, the state vector properly scaled, and on the 
other hand, the signals must be persistent and the model 
structure identifiable. 
All induction motor state-space model structures with state 
vector including fluxes or currents and direct or modified 
physical parameters of the machine, will have significant 
different sizes of state variables. When the model structure 
contains parameters with different orders of magnitude, it 
is mandatory to scale the variables so that the parameters 
are all roughly the same magnitude. On the contrary, if we 
do not scale the state vector states (in this case), significant 
estimation errors occur for small size variables and some 
numerical difficulties may arrise. To overcome this 
problem, the following scaled state vector has been 
selected: 
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As a result, the diagonal initial values of the state 
covariance matrix and the diagonal elements of the noise 
covariance matrices will approximately have the same 
values and the same conclusion is applicable to the initial 
values of the state variables. 
The EKF has been started with the following initial 
conditions: 
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It should be noticed that the measurement matrix Rm is no 
more a matrix but a scalar value because the system output 
becomes a scalar equation instead of a matrix one. 
As to the initialization of the noise system matrix, the same 
improvements were also introduced. To get a good trade-
off between starting period of parameters convergence and 
tracking of time-varying parameters, the filter dynamics 
(and in the sequel the noise covariance matrices Rm and Rs) 
should be properly tuned during these two phases. It is 
known that the larger the ith diagonal entry of Rs is, the 

more quickly the filter will modify the estimate of the ith 
component (flux or parameter) of the state vector in the 
light of the measurements. In other words, the larger the 
correction gain is, for any given Rm, the more jittery the 
behaviour of the filter will be, and more drastically the 
state estimate will be modified to take new measurements 
into account. This behaviour expresses a lack of 
confidence in the predicted state estimate. Conversely, for 
any given Rs, the larger of covariance of measurement 
noise Rm is, the smaller the correction gain will be and the 
less the new measurements will be taken into account to 
update the state estimate. This expresses a lack of 
confidence in the new measurements. So, it is possible to 
get a satisfactory compromise between the state update 
dynamics when starting the algorithm in which the state 
variables are far away of their real values, and the 
dynamics for tracking the time-variant states after that 
transient period. In this work, a simple approach was 
created to do this, by using an exponential function to 
control each ith diagonal element corresponding to 
parameters, as follows: 
 [ ])()()()(8181)( kfkfkfkfeediagkRs −−=  (22) 
where: 
 ( )1.0)2exp(71)( +−×−= skTekf  (23) 
The introduction of this new exponential control caused a 
significant decrease of convergence time as well as better 
long-term stability of the estimated values, without 
significant bias. The following figures show the results of 
the robustness study of three algorithms for flux estimation 
in all of them extended to rotor parameters τr and LM 
estimation in the first one, to τr, LM and Ls’ estimation in 
the second one and, finally, extended to all four parameters 
in the last one. Studies of characteristics of EKF in 
estimating the rotor resistance and magnetizing inductance 
in the synchronous reference frame were made in [5]. 
Figures 1 to 5 show the errors, in percentage, of the 
estimated parameters with respect to the parameters 
assumed as known and with respect to the angular velocity. 
Figures 1 and 2 show that the maximum error in the rotor 
parameters estimates is about 10%, when stator parameters 
vary from -50% to 50% of their real values. 
The figure 4 corresponds to the simultaneous estimation of 
rotor fluxes and rotor parameters as well as estimation of 
Ls’. In this case the estimation of rotor parameters is robust 
enough with respect to errors in stator resistance, but the 
error in estimated value of Ls’ is larger than 10% when the 
error in Rs is more than 40%. 

 
Fig. 1: Sensitivity of τr and LM to variations in parameter Ls’. 



 

 

 
Fig. 2: Sensitivity of τr and LM to variations in parameter Rs. 

 
Fig. 3: Sensitivity of τr and LM to variations in velocity ω. 

 
Fig. 4: Sensitivity of τr, Ls’ and LM to variations in parameter Rs. 

 
Fig. 5: Sensitivity of τr, Ls’ and LM to variations in velocity ω. 

Figures 3 and 5 show that, for errors less than 10% in the 
estimated parameters, the error in the angular velocity 
should be less than 10%. 
The simulation results, demonstrate that the simultaneous 
identification of rotor fluxes and rotor parameters is 
feasible with good enough robustness with respect to errors 
in stator parameters and angular velocity, but precise 
knowledge and time update of stator parameters is also 
convenient. 
By means of simulation tests we have concluded that the 
EKF algorithm can be extended to stator parameters 

estimation but its robustness presents some difficulties, as 
we will refer in the next section. 
 
5. Experimental Results 
For simulation and experimental purposes a 3kW squirrel-
cage induction motor was used with the following nominal 
rated parameters: 400V, 6.6A, 1430 rpm, 50Hz and 2 pole 
pairs. The following electrical parameters were obtained 
by classical methods: stator resistance 2.9Ω, rotor 
resistance 1.7Ω, stator and rotor inductances 240.3mH and 
magnetising inductance 230mH. 
The voltage, current and speed signals are available in the 
range of ±10V in both rotor and stator reference frames by 
using the AD2S100 analogue vector processor. The 
hardware [12] provides an adjustable cutoff frequency by 
means of an accurate analogue elliptic low-pass filter, 
MAX7411, to avoid aliasing errors. Data was collected by 
using the 16 bits National Instruments PCI-6035E data 
acquisition card and the module SC-2040 with 8 S/H for 
simultaneous acquisition, at a sampling rate of 2.5kHz. The 
EKF algorithms were developed in MATLAB language and 
calculations were made off-line. 
Errors in the 12 bits resolution mechanical angle, obtained 
from an incremental encoder followed by a counter, were 
simulated. The signals in the stator reference frame are 
converted to the rotor frame at the rate of the least 
significant bit. Residuals errors do not affect rotor 
parameters estimates but further software low-pass 
filtering is required to avoid divergence of stator 
parameters estimates. In [13] an interesting work is shown 
with respect to error in the rotor flux angular position due 
to finite resolution of different sensors, and the influence 
of different problems as a result of numerical processing 
data by the computer on the system performances. 
The EKF algorithms initialization considerations presented 
in the above section should also be applicable here. The 
identification test run consists of a start-up with load 
torque set to 11Nm, that is to say, about half rated load. 
The induction machine is controlled by the ABB industrial 
frequency converter ACS-601-0006-3 and therefore the 
vector control scheme developed in MATALAB and the one 
implemented by ABB do not coincide. Therefore also here 
some sensitivity tests were made relatively to sensitivity of 
rotor only parameter estimation or all, rotor and stator, 
parameter estimation. Figures 6 and 7 show the variation 
on estimated scaled τr and LM parameters with respect to 
uncertainty in stator parameters. 

 
Fig. 6: Sensitivity of τr to variations in Rs and Ls’. 



 

 

 
Fig. 7: Sensitivity of LM to variations in Rs and Ls’. 

From figures 6 and 7 we can see that the variation in the 
estimated scaled values of τr and LM parameters with 
respect to uncertainty in stator parameters is, in the worst 
case, about 35% and 23%, respectively. 
The following figures (8 to 12) show the dynamic 
behaviour of the algorithm when all parameters and rotor 
flux components are estimated. 

 
Fig. 8: Estimated τr (0.5/τr). 

 
Fig. 9: Estimated Ls’ (100Ls’). 

 
Fig. 10: Estimated LM (10LM). 

 
Fig. 11: Estimated Rs. 

 
Fig. 12: Estimated flux dp components. 

Estimated values of the electrical parameters are obtained 
by averaging the last 10 iterations. The results are: 
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To conclude the identification process it was necessary to 
validate the identified model through some validation test 
to evaluate the performance of the EKF algorithm. The 
validation test was based on the simulation of a modified 
induction motor model, with the estimated parameters, by 
injection of the measured voltages and angular velocity 
and subsequent comparison of simulated and measured 
stator current dq components. 
The results are shown in figures 13 and 14 and as can seen 
the simulated and experimental currents are very similar 
(practically equal). So the EKF algorithm for full 
parameters and fluxes estimation is capable of fitting 
adequately this input-output data set with this identified 
model. 
Simulation and experimental tests have shown that some 
care must be taken to avoid erroneous convergence of 
stator resistance. 

 
Fig. 13: d components of measured and estimated currents. 



 

 

 
Fig. 14: q components of measured and estimated currents. 

Indeed slightly different estimated values of this parameter 
can occur when different values of the respective diagonal 
element of the state covariance matrix are selected, what 
does not happen with the other parameters. 
With the model structure adopted in this work it is very 
simple and not fastidious to implement a second order 
discrete-time model of the state-space induction motor 
model. Simulation and experimental tests have shown that 
first and second approximations of the discrete state 
equation (3) give approximately the same results provided 
that in the output equation (5) an adequate choice for the 
first derivative of stator current d component is adopted, 
like the one defined by equation (6). The expression used 
in equation (5) for the first derivative gave bad estimated 
results. 
The results of this identification procedure show that the 
estimation robustness of rotor fluxes and rotor parameters 
is improved provided that we have good enough 
information about stator parameters. If this is not true it is 
possible and convenient to extend de estimation algorithm 
to Ls’ or even to both stator parameters Ls’ and Rs with 
some loss of robustness with respect to model validity 
domain, that is to say, relative to dynamics of signals, load 
torque and speed range. 
 
6. Conclusions 
In this paper the application of some algorithms based on 
EKF is proposed to rotor flux and electrical parameters 
estimation of an induction motor. A new approach is 
presented to the reduced order model with four electrical 
parameters and a single (scalar) output equation. The rotor 
reference frame is selected in which the state equation 
results more simple and low sampling frequencies are 
possible since the signals’ frequency range is lower than in 
the stator reference frame. The EKF is applied to 
simultaneous estimation of flux and two, three or four 
parameters and its robustness is analyzed by simulated and 
experimental results. Experimental results show that the 
algorithm described in this paper is also adequate for on-
line estimation of physical induction motor parameters and 
is not restricted to steady state operation being capable to 
operate in transient conditions. As the EKF can deal with 
time-varying linear plant model structures, the rotor flux 
and the parameters can be estimated while the rotor speed 
is varying and tracking of parameters can be done. 
Therefore, these approaches are useful for auto-tuning and 
adaptive direct field-oriented induction motor control. 
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