
Flux balance analysis of biological
systems: applications and challenges
Karthik Raman and Nagasuma Chandra
Submitted: 28th November 2008; Received (in revised form): 6th February 2009

Abstract
Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quan-
titative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of
metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance
analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are
scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichio-
metric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has
been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect
of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as
a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and
thermodynamic constraints, and finally addresses the challenges that lie ahead.Various use scenarios and biological
insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification,
are also discussed. Genome-scale constraint-based models have an immense potential for building and testing
hypotheses, as well as to guide experimentation.

Keywords: network reconstruction; metabolic network analysis; objective functions; genome scale modelling;
reactome modelling

INTRODUCTION
Systems biology, being a more holistic approach

to study biological systems than the traditional

reductionist approach, involves modelling and

analysis of metabolic pathways, regulatory and

signal transduction networks for understanding

cellular behaviour. Cellular metabolism is often

altered in disease, leading to an increased recognition

of the importance of metabolic analysis in drug

discovery. Metabolic engineering and related bio-

technological applications benefit immensely from

a systems view of the metabolism. The extreme

complexity of cellular systems poses several chal-

lenges for a systematic analysis of various biochemical

reactions taking place in a cell. A wide spectrum of

techniques has been applied for the simulation and

analysis of biochemical systems. These include

stoichiometric techniques that rely on reaction

stoichiometry and other constraints, kinetic pathway

modelling using comprehensive mechanistic models,

interaction-based analyses, Petri nets and qualitative

modelling formalisms [1, 2]. A pre-requisite for

utilizing these techniques is the availability of a

detailed description of the possible components of a

pathway and their inter-connections. While com-

plete genome sequences provide pointers to such

information, databases containing well-annotated

pathways are still largely under development and

not always easily available. At the present time,

therefore, the first step of pathway modelling is a
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careful curation of models from existing pathway

databases and biochemical data buried in literature.

Once an in silico model of the cell has been

constructed, various genotypes, in terms of the

genes that are present in the model can be analysed

and the corresponding phenotypes, which pertain to

the behaviour of the cell can be used to infer various

aspects of cellular metabolism and function. The

reconstruction and simulation of biological networks

has applications in industrial biotechnology, drug

discovery as well as for improving the functional

annotation of micro-organisms and understanding

cellular metabolism.

Several techniques are available for the modelling,

simulation and analyses of pathways and networks

involved in metabolism, regulation or signalling.

Models vary in the level of detail that can be

incorporated into them, which influence the accu-

racy of simulation results and the nature of insights

that can be obtained from them. In this context, a

simple classification of the modelling techniques

would be: (a) interaction-based modelling involving

graph-based representations of networks (static

models), (b) constraint-based modelling involving

stoichiometry (static models) and (c) mechanistic

modelling, involving kinetic parameters as well as

stoichiometry (dynamic models) [2].

Kinetic data available for the simulation of

networks are quite scarce, limiting the number and

size of systems in different species that can be studied

through this approach. A useful alternative to

mechanistic modelling techniques is constraint-

based modelling. Constraint-based methods enforce

cellular limitations on biological networks such

as physico-chemical constraints, spatial [3] or

topological constraints, environmental constraints

or gene regulatory constraints [4]. This review

focuses on flux balance analysis (FBA), a constraint-

based approach for modelling metabolic networks.

CONSTRAINT-BASEDMODELLING
Reconstruction of metabolic networks
Metabolic reconstruction is a process through which

the various components of the metabolic network of

a biological system, viz. the genes, proteins, reactions

and metabolites that participate in metabolic activity

are identified, categorized and inter-connected

to form a network. Most often, the system is a

single cell of interest and building on the geno-

mic sequence as a scaffold, reconstructions can

incorporate hundreds of reactions that approximate

the entire metabolic activity of a cell. A compre-

hensive review of metabolic reconstruction has been

published in [3]. Table 1 lists some resources useful

for metabolic reconstruction and analysis.

Genome-wide annotations of protein sequences

obtained through bioinformatics analyses are avail-

able for hundreds of organisms, providing excellent

starting points for reconstruction of metabolic net-

works. The draft models obtained from these

are refined and enriched by incorporating genetic,

biochemical data and known metabolic functional

data [5], the reconstructed models containing

stoichiometric information for proteins in the

metabolic networks. Flux-based analyses, which

primarily require only stoichiometric information,

can be more readily applied for the study of

metabolic networks. The study of fluxes through

such networks is informative and can give interesting

insights even in the absence of detailed kinetic

information. Metabolic fluxes can be seen as a

fundamental determinant of cell physiology as they

show quantitatively, the contributions of various

pathways to overall cellular functions. A common

way of relating the cell genotype to phenotype is by

analysing the metabolic fluxes [6]. Constraint-based

analyses of reconstructed metabolic networks have

proved to be quite effective in various applications

such as metabolic engineering [7–9], prediction of

outcomes of gene deletions [10], drug-target identi-

fication, as reported in [11] and in the elucidation of

cellular regulatory networks [12].

Flux balance analysis (FBA)
One specific example of metabolic modelling using

a constraint-based approach is FBA, which uses linear

optimization to determine the steady-state reaction

flux distribution in a metabolic network by max-

imizing an objective function, such as ATP produc-

tion or growth rate [13]. FBA involves carrying out

a steady state analysis, using the stoichiometric matrix

for the system in question. An important assumption

is that the cell performs optimally with respect to

a metabolic function, such as maximization of

biomass production or minimization of nutrient

utilization, on the premise that selection pressures

during evolution guide systems towards optimality.

Once an objective function is fixed, the system of

equations can be solved to obtain a steady state flux

distribution. This flux distribution is then used to

interpret the metabolic capabilities of the system.
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Figure 1 gives an overview of the steps involved in

performing an FBA. Essentially, it involves four steps:

(i) system definition, (ii) obtaining reaction stoichio-

metries, (iii) defining biologically relevant objective

function and addition of other biochemical

constraints and (iv) optimization. To define the

system, the individual reactions in the model are

listed in detail in terms of the metabolites involved,

the genes and the corresponding enzymes involved

in catalysing the reactions, as well as compartmen-

talization and reversibility. Transport reactions

involved and external metabolites, which account

for those metabolites which will be in exchange with

the rest of the system, such as carbon sources

for growth, co-factors that are ubiquitous, or end-

products from a pathway or components of the

biomass, are also identified at this stage. External

metabolites are essentially Next, the dynamic mass

balance of the metabolic system is described using

the stoichiometric matrix Sm�n, relating the flux rates

of enzymatic reactions, vn�1 to time derivatives of

metabolite concentrations, xm�1 as dx=dt ¼ Sv
where v ¼ ½v1 v2 � � � vni b1 b2 � � � bnext �

T; vi signi-

fies the internal fluxes, bi represents the exchange

fluxes in the system, ni is the number of internal

metabolites and next is the number of external

metabolites in the system. At steady state,

dx/dt¼Sv¼ 0. Therefore, the required flux dis-

tribution belongs to the null space of S. Since there

are many more reactions than metabolites (n>m),

the system is under-determined (with n–m degrees of

freedom), necessitating the imposition of additional

constraints to obtain meaningful solutions of steady

state flux distributions [13].

In general, constraints may be of four types [4]:

(i) physico-chemical constraints, (ii) spatial or

topological constraints, (iii) condition dependent

environmental constraints and (iv) regulatory

Table 1: Resources formetabolic reconstruction and software tools for FBA

Resource URL Description

Metabolic reconstruction
Kyoto Encyclopaedia of

Genes and Genomes (KEGG)
http://www.genome.jp/kegg/ Pathway databases for several organisms

BioCyc http://www.biocyc.org Pathway databases for several organisms
PEDANT http://pedant.gsf.de/ Genome annotations
Reactome http://www.reactome.org/ Curated database of biological processes in humans
Biomodels.net http://www.biomodels.net/ Kinetic models of pathways, many published models

from literature
BRENDA http://www.brenda-enzymes.info/ Biochemical and molecular information on enzymes
SABIO-RK Database http://sabio.villa-bosch.de/ System for the analysis of biochemical pathways ^

reaction kinetics

Software tools
Constraint-based reconstruction

and analysis (COBRA) toolbox
http://www.bioeng.ucsd.edu/research/
research_groups/gcrg/downloads/
COBRAToolbox/

Interfaces with MATLAB for extensive analysis of
networks using FBA;
performs gene deletions ^ single and multiple
(can interface with LINDO,GLPK, CPLEX)

MetaFluxNet http://mbel.kaist.ac.kr/lab/mfn/ Metabolic flux analysis
CellNetAnalyzer http://www.mpi-magdeburg.mpg.de/

projects/cna/cna.html
Structural and functional analysis of cellular networks

SNA: Stoichiometric
network analysis

http://www.bioinformatics.org/
project/?group_id¼546

Mathematica toolbox for stoichiometric
network analysis

Yana http://yana.bioapps.biozentrum.uni-wuerzburg.de/ Network reconstruction, visualization and analysis
PathwayAnalyser http://sourceforge.net/projects/pathwayanalyser FBA and MoMA of metabolic networks; gene

deletion studies
Systems Biology ResearchTool http://www.bioc.uzh.ch/wagner/software/SBRT/ Multiple methods for analysing stoichiometric networks
SBML Software Guide http://sbml.org/SBML_Software_Guide Resource list for software tools, model databases

Solvers for FBA/MoMA
LINDO http://www.lindo.com/ Commercial solver for optimization problems
CPLEX http://www.ilog.com/products/cplex/ Commercial optimization software package
GNU linear programming

toolkit (GLPK)
http://www.gnu.org/software/glpk/ Solver for LP problems

Object oriented quadratic
programming (OOQP)

http://pages.cs.wisc.edu/�swright/ooqp/ Solver for QP problems

Flux balance analysis of biological systems 437
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/10/4/435/297333 by guest on 21 August 2022

http://www.genome.jp/kegg/
http://www.biocyc.org
http://pedant.gsf.de/
http://www.reactome.org/
http://www.biomodels.net/
http://www.brenda-enzymes.info/
http://sabio.villa-bosch.de/
http://www.bioeng.ucsd.edu/research/
http://mbel.kaist.ac.kr/lab/mfn/
http://www.mpi-magdeburg.mpg.de/
http://www.bioinformatics.org/
http://yana.bioapps.biozentrum.uni-wuerzburg.de/
http://sourceforge.net/projects/pathwayanalyser
http://www.bioc.uzh.ch/wagner/software/SBRT/
http://sbml.org/SBML_Software_Guide
http://www.lindo.com/
http://www.ilog.com/products/cplex/
http://www.gnu.org/software/glpk/
http://pages.cs.wisc.edu/


constraints. A detailed discussion of the various

possible constraints and their mathematical represen-

tation has been reported elsewhere [4]. To solve the

under-determined system, additional flux constraints

can be imposed through the measurement of certain

fluxes. More commonly, additional constraints are

imposed by defining lower and upper bound for the

fluxes. For example, the lower and upper bounds of

the fluxes can be constrained as follows:

0 < vi <1
�1 < bi <1

:

which necessitates all internal irreversible reactions to

have a flux in the positive direction and allows

exchange fluxes to be in either direction. Practically,

a finite upper bound can be imposed, which may also

be decided based on the knowledge of cellular

thermodynamics or actual measurements [13].

Constraints on particular exchange fluxes, nutri-

ent uptake rates, consumption of ATP, phosphate-

oxygen ratio may also be defined, depending on the

in silico strain being analysed. Other constraints such

as regulatory and thermodynamic constraints that can

improve the predictive capability of FBA have been

discussed in a later section.

Given that the measurement of fluxes is a tedious

task, it is also possible to solve for a flux distribution

by assuming that the under-determined metabolic

network is optimized with respect to a certain

objective [13–15]. This enables the formulation of

the under-determined system as an optimization

problem. The next critical step is to define an

objective function that captures the biochemical goal

of the system itself. A linear objective function results

in a linear programming (LP) problem:

max
v

cTv s: t: S � v ¼ 0

where c represents the objective function composi-

tion, in terms of the fluxes.

A variety of objective functions have been used in

flux balance models [16]. The most common

objective function involves the maximization of

growth, or biomass, which allows for a wide range of

predictions consistent with experimental observa-

tions [17, 18]. It has even been demonstrated that

Escherichia coli tends to evolve towards maximization

of biomass [19], although under some conditions, the

behaviour of cellular systems is incompatible with

biomass maximization [15, 20]. The biomass is

usually represented as a stoichiometrically balanced

reaction, describing the formation of biomass from

various cellular components, as well as various

co-factors, which are required to drive the process.

Details of how a biomass objective function is

determined are described in [5]. Other objective

functions include: (i) minimization of ATP produc-

tion, used to determine conditions of optimal

metabolic energy efficiency [21, 22], (ii) minimiza-

tion of nutrient uptake, (iii) maximization of

Figure 1: An outline of themajor steps involved in FBA.
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metabolite production, particularly to determine

production capabilities of a particular cell, (iv)

maximization of biomass and metabolite production

[7] and (v) optimal metabolite channelling, by

minimization of the absolute norm of the flux

vector, or the Euclidean norm (quadratic objective

function).

The choice of objective function is also influ-

enced by the end goal of the study. Objective

functions can be used to explore the capabilities and

limitations of biochemical networks [13] and even

for the analysis of metabolic network robustness [18,

23]. Sauer and co-workers have examined the

predictive capacity of 11 linear and non-linear

objectives functions, by evaluating the accuracy of

FBA-based flux predictions through rigorous com-

parison to 13C-based flux data from E. coli grown

under six environmental conditions [24]. The

different objective functions for FBA have also

been mathematically defined and illustrated well in

[24]. In a study of the mycolic acid pathway in

Mycobacterium tuberculosis, we have evaluated two

different objective functions describing the produc-

tion of mycolic acids, illustrating how the biology

is better captured by an objective function that

accounts for the production of one or more

mycolates rather than one necessitating the produc-

tion of all mycolates [11].

Next, in the optimization phase, the set of mass

balance constraints (along with other additional

constraints), for a given objective function, are

solved to obtain the steady state flux distribution. A

variety of solvers can be used to solve LP problems.

The COBRA Toolbox for MATLAB, developed by

Palsson and co-workers [25], interfaces with a variety

of these solvers, such as LINDO, CPLEX and

GLPK. Table 1 lists some of the software tools and

solvers useful for performing FBA. It is possible

that sometimes, multiple optimal solutions may

be obtained for a system. These alternate optimal

solutions can be analysed to identify redundancies in

the metabolic network [26]. In Haemophilus influen-
zae, a high degree of redundancy was found,

especially for pathways involved in the production

of non-essential amino acids, where 49 externally

indistinguishable states were observed (on average),

for a particular exchange flux [26].

Minimization of metabolic adjustment (MoMA)
A variant of FBA called MoMA that refers to

the Minimization of Metabolic Adjustment adopts

a quadratic optimization function, resulting in a

quadratic programming (QP) problem [15, 27].

MoMA, a flux-based technique has the same

stoichiometric constraints as FBA, but relaxes the

optimal growth flux for mutants and seeks an

approximate solution for a sub-optimal growth flux

state, which is nearest in flux distribution to the

unperturbed (‘wild’) state [15]. An important feature

of MoMA is that the wild-type flux distribution used

need not be obtained by performing an FBA; an

experimentally determined flux distribution could

serve better. Thus, objective functions for optimiza-

tion, which at times may not reflect the physiological

situation very accurately, can be circumvented using

MoMA. MoMA also does not assume optimality of

growth or any other metabolic function. Church and

co-workers show that MoMA correctly identifies

some lethal gene deletions in E. coli, which were

not identified by FBA [15].

Another approach, in a similar vein, is known as

regulatory on-off minimization (ROOM) [28],

which attempts to minimize the number of significant

flux changes from the wild-type flux distribution.

The ROOM formulation requires the solution of a

Mixed Integer Linear Programming (MILP) problem

ROOM affords Furthermore improvements over

FBA/MoMA; for instance, in an E. coli pyruvate

kinase (pyk) knockout, ROOM predictions were

much closer to experimentally observed values than

those from FBA/MoMA [28]. ROOM also out-

performed MoMA in lethality predictions on

Saccharomycescerevisiae; ROOM predictions concurred

with FBA for all genes identified as viable by FBA

but falsely classified as lethal by MoMA.

Analysis of perturbations
The most common perturbation studied using FBA

is the deletion of one or more genes from the system.

Gene deletion studies can be performed by con-

straining the reaction flux(es) corresponding to the

gene(s) [and therefore, of their corresponding

proteins(s)], to zero. Effects of inhibitors of particular

proteins can also be studied in a similar way, by

constraining the upper bounds of their fluxes to any

defined fraction of the normal flux, corresponding

to the extents of inhibition.

FBA gives a general idea of the metabolic

capabilities of an organism; gene deletion studies

using FBA yield information on the criticality of

genes for the growth/survival of an organism. The

analysis of perturbations using flux balance models
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of metabolic networks provides a handle to analyse

the lethality of individual gene deletions, as well as

double knock-outs, to identify pairs of genes that

are indispensable [29], as well as to determine and

analyse synthetic genetic interactions [30].

FBA can also be employed to analyse the growth

of an organism in various media (various carbon

sources) and also the dependence on nutrient uptake

rates. Such perturbations can give further insights

into the metabolic capabilities of a system. For

example, the growth of E. coli on glucose, under

both aerobic and anaerobic conditions, as well as on

a medium containing both glucose and lactose has

been reported in [31], highlighting the differences in

the utilization of different carbon sources and

secretion of metabolites. The model GSMN-TB

[32] analyses the fluxes of M. tuberculosis grown on

a Middlebrook 7H10 medium, predicting lethality.

The online web service for the model permits

various perturbations to the medium and can predict

gene essentiality under different media conditions.

ENHANCEMENTSTO FBAMODELS
Incorporation of regulatory information
The first attempts to integrate regulatory information

into metabolic networks were made by Palsson and

co-workers, who integrated regulatory constraints

into FBA models (regulatory FBA; rFBA), using

Boolean logic operators [12, 31, 33, 34]. The

regulatory constraints essentially represent temporary

flux constraints that arise due to a specific environ-

ment rather than physicochemical constraints that

represent more fundamental restrictions. Integrated

metabolic and transcriptional regulatory models

consist of two interconnected components that

represent metabolism and regulation. While the

functional state of the metabolic component is

represented by steady-state reaction fluxes, the

functional state of the regulatory network at steady

state is represented by a Boolean function, indicating

the expression of each gene. The combined

functional state of the entire system in a given

environment, referred to as the metabolic-regulatory

steady state (MRS), is described by a pair of

consistent metabolic and regulatory steady states,

which satisfy both the metabolic and regulatory

constraints [35].

rFBA essentially involves the prediction of

a regulatory and a metabolic steady state for short

successive time intervals. For each interval,

a regulatory state consistent with the metabolic

steady state of the previous interval is computed,

followed by an FBA to find a steady state flux

distribution consistent with the current regulatory

state. A new metabolic state could potentially lead to

a new regulatory state, and the process is further

iterated. An important limitation of this approach is

that only a single metabolic state is chosen

(arbitrarily) at each time interval from a space of

possible solutions provided by FBA. This arbitrary

choice leads to only a fraction of the space of

dynamic flux profiles being explored. Nonetheless,

rFBA provides a first glimpse, albeit qualitative,

of the transcriptional events in the cell and their

integration with metabolism. An excellent example

of the advantage of rFBA over FBA has been

illustrated in [31], where the growth of E. coli on

glucose and lactose has been studied. FBA predicts

a concurrent uptake of lactose and glucose, resulting

in a rapid depletion of substrates and a higher growth

rate, as well as a secretion of acetate and formate.

Whereas, rFBA predicts a shift in gene expression,

with the up-regulation of the lactose uptake and

degradation machinery, alongside key galactose

metabolism enzymes, enabling the system to use

lactose as a carbon source following the depletion

of glucose.

Ruppin and co-workers have proposed an alter-

native to rFBA, namely the steady state regulatory

FBA (SR-FBA) [36], which attempts to compre-

hensively characterize the steady-state behaviours in

a genome-scale integrated metabolic-regulatory

network. To identify an MRS, SR-FBA involves

the solution of an MILP, formulated by translating

the Boolean regulatory constraints and the mapping

between genes and reactions to linear equations.

Applying SR-FBA to study the metabolism of E. coli,
Ruppin and co-workers have analysed the effects of

metabolic and regulatory constraints on metabolic

behaviour. While metabolic constraints were found

to determine the flux activity state of a majority of

the genes, the role of transcriptional regulation was

also found to play a role in determining the state of

about 13–20% of the genes. While a large majority

of these genes were direct targets of transcription

factors, the rest were not directly regulated, indicat-

ing that transcriptional regulation can indirectly

determine the activity of reactions that are not

subjected to transcriptional factor regulation, by

regulating associated pathway reactions. Thus, this

study further emphasizes the need to obtain an
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integrated view of the metabolic-regulatory network

in a cell, also illustrating the versatility of FBA, for

addressing such problems.

Incorporation of thermodynamic
constraints
In traditional FBA, thermodynamic constraints are

somewhat naively accounted for, in the specification

of reaction reversibility. At this level of detail,

dependence of reversibility on intracellular con-

ditions, which may change in response to environ-

mental changes are not accounted for. Qian and

co-workers have proposed an alternative method,

involving an energy balance analysis, through the

imposition of non-linear constraints, which arise

from the introduction of free energy changes into

the constraints [37]. The energy balance analysis was

also able to explain some of the incorrect essentiality

predictions by FBA, earlier reported for E. coli [38].

Holzhütter and co-workers have proposed a method

to include metabolite concentrations into FBA, to

ensure thermodynamic realisability [39], overcoming

the conventional reliance of FBA on the intuitive

assumptions of reversibility of biochemical reactions.

The incorporation of the additional constraints

results in an MILP problem, with a quadratic scoring

function. Applying their method to the metabolic

network of E. coli iJR904 [40], they show that

increasing network complexity entails increasing

sensitivity of predicted flux distributions to variation

of standard Gibb’s free energy changes and metabo-

lite concentration ranges.

Bi-level optimization
Prediction of gene deletion strategies for enhancing

the production of specific metabolites has been

reported using OptKnock [7, 41], which extends

FBA to solve for the optimal flux distribution that

simultaneously optimizes two objective functions,

biomass growth as well as the secretion of a target

metabolite, using a bi-level optimization technique.

In more complex systems such as mammalian

systems, which perform multiple functions, multi-

objective optimizations may be required to identify

optimal flux distributions. Yarmush and co-workers

have proposed a multi-objective optimization

approach to perform both FBA and energy balance

analysis to obtain optimal solutions, also demonstrat-

ing its application for analysing metabolic control

in hepatocytes. Hepatocytes perform several meta-

bolic functions at various levels depending on

the environmental conditions. The authors have

proposed that the multi-objective FBA of the system

can be used in the design of an optimal bio-artificial

liver support device [42].

APPLICATIONSOF FBA
Flux balance models of metabolic pathways enable

the simulation of systems under varying experimental

conditions. Such models have value in a variety of

applications, such as optimization of bio-processes

in industries, identification of drug targets and an

improved annotation of genomes. Figure 2 depicts

the various extensions to FBA, as well as the multiple

applications of FBA.

Analysis of genome-scale metabolic
networks (GSMNs)
GSMNs have been constructed and analysed using

FBA, for various organisms in the past, including

bacteria, archaea and eukaryotes. Reconstructions of

human metabolism have also been reported [43, 44].

Table 2 summarizes some examples of the available

studies on GSMNs, indicating the organism studied

as well as the major insights obtained. GSMNs can

also be readily subjected to a wide array of analyses.

Large-scale gene deletion studies for organisms

such as S. cerevisiae [10, 45] and E. coli [38] have

been reported in literature. GSMNs thus have a wide

range of applications, from improving the under-

standing of microbial metabolism and the capabilities

of a metabolic network (for metabolic engineering

applications), to insights obtained from gene deletion

analyses, which can be applied for the identification

of potential drug targets, in case of pathogenic

organisms [32, 46]. With the availability of

high-throughput transcriptomics data, which can

be integrated with GSMNs and analysed using

techniques such as rFBA, better predictions of

metabolic capabilities and phenotypes will be

possible.

Flux coupling analyses
It is possible to derive further insights from

reconstructed networks, by an examination of their

structure and topology based on convex analysis.

Methods such as elementary flux mode analysis [47]

and extreme pathway analysis [48] have been in

vogue for analysing large metabolic networks and

have been reviewed elsewhere [49]. Flux Coupling

Finder (FCF), a method to analyse different types of
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coupling that can exist between fluxes in GSMNs

has been proposed Maranas and co-workers [50].

The analysis enables the global identification of

‘blocked’ reactions, which are incapable of carrying

flux under a certain condition, equivalent knock-

outs—the set of all possible reactions whose deletion

forces the flux through a particular reaction to zero,

and sets of affected reactions—reactions whose fluxes

are forced to zero if a particular reaction is deleted.

It is easy to envisage applications for flux coupling

analyses in metabolic reconstruction (refinement),

as well as for detailed analyses of reconstructed

networks. The FCF procedure applied to stoi-

chiometric models of Helicobacter pylori, E. coli and

S. cerevisiae indicated that 10%, 14% and 29% of their

respective reactions are blocked unconditionally.

This provides a ready list of the reactions that must

be ‘refined’ in the network.

Drug target identification
In silico gene deletion studies help in identifying

those enzymes in a metabolic network, which

when deleted, adversely affects the fluxes across the

entire network. Joyce and Palsson have given a good

overview of using genome-scale in silico models to

evaluate gene essentiality [51]. Gene deletions that

are lethal can serve as a first list of putative drug

targets, which can be further characterized by

sequence analyses and structural studies. We have

earlier constructed a model of mycolic acid bio-

synthesis in M.tuberculosis, analysing genes essential to

the pathway, which led to the identification of seven

new possible targets, apart from InhA, an already

well known target [11]. Desaturases illustrate exam-

ples of such potential drug targets, whose prediction

is strengthened by different types of computational

target identification approaches [52, 53] and by

an experimental study that revealed potent anti-

mycobacterial activity by two lead compounds

NAS-91 and NAS-21, owing in part to their ability

to inhibit mycolic acid biosynthesis [54]. In a separate

study, hard-coupled reaction sets in the genome-

scale reconstruction of M. tuberculosis have been

analysed for predicting potential drug targets [46].

The hard-coupled reaction sets mapped to several

known drug targets, as well as potential targets from

processes such as mycolic acid biosynthesis,

mycothiol synthesis and menaquinone synthesis.

Beste et al. [32] have used a GSMN of M. tuberculosis
to identify essential genes, again providing important

Figure 2: Extensions and applications of FBA.
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Table 2: Details of some examples of GSMNs analysed using FBA, along with network statistics and insights
obtained

Organism Genes Meta-
bolites

Reactions Analysis and insights References

H. influenzae 296 343 488 � Definition of six different optimal metabolic phenotypes [78]
� Variation of metabolic ‘genotype’

H. influenzae 400 451 461 � Genome-scale extreme pathway analysis [79]
� Network refinement
� Prediction of co-regulated/co-expressed gene products
� In silico gene deletionsçminimal substrate, normal host conditions

Escherichia coli 660 436 720 � In silico gene deletions [38]
Escherichia coli 904 625 931 � Genome-scale proton balancing [40]

� Analysis of metabolic gaps, dead-ends
� Improved phenotype predictions

E. coli 1260 1039 2077 � Thermodynamic consistency analysis [72]
� Growth rate predictions
� In silico gene deletions

Helicobacter pylori 291 340 388 � Minimal media identification [80]
� In silico gene deletions
� Extreme pathway analysis

Saccharomyces cerevisiae 708 584 1175 � Analysis of metabolic capabilities [77]
� Prediction of metabolite productions

S. cerevisiae 750 646 1149 � Compartmentalized GSMN [10]
� In silico gene deletion and analysis

Staphylococcus aureus 619 571 640 � Minimal media identification [75]
� In silico gene deletions
� Sensitivity of growth rate to oxygen uptake on different carbon sources
� Potential drug targets

Methanosarcina barkeri 692 558 509 � Prediction of cellular phenotypes [74]
� Characterization of methanogenic growth
� Improved genome annotation

Bacillus subtilis 844 988 1020 � Gap analysis [73]
� Growth rate predictions
� In silico knockouts
� Functional assignment to genes (improved genome annotation)

Homo sapiens 1496 2712 3311 � Importance of comparison highlighted [43]
� Metabolic gap analysis
� Coupled reaction sets, potential drug targets predicted

Mycobacterium tuberculosis 726 739 849 � Model integrated with experimentally determined data [32]
� In silico knockouts
� Growth rate predictions
� Online resource available for simulations

M. tuberculosis 661 828 939 � Growth rate predictions [46]
� In silico knockouts
� Hard-coupled reaction sets identified; mapped to drug targets

B. subtilis 534 456 563 � Includes enzymatic and genetic regulation [81]
� Functional organization of genetic and metabolic regulatory networks

Aspergillus niger 871 1047 1190 � Model validated with data on yields, fluxes and transcription [82]
� Prediction of yields, intracellular distribution of carbon fluxes and

physiological responses
P. aeruginosa 1056 760 883 � Genome annotation refinement [58]

� Growth predictions (on various carbon sources)
� In silico gene essentiality

P. putida 815 888 877 � Gap analysis [55]
� Growth rate predictions, flux variability analysis
� Model validated with data from continuous cell cultures,

high-throughput phenotyping data, 13C-measurement of internal fluxes,
specifically generated knock-out mutants
� Auxotrophy predictions
� Potential metabolic engineering strategies from in silico gene deletions
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clues to the identification of drug targets. Systems-

level analyses such as FBA can be a very

useful starting point in the ‘pipeline’ of drug target

identification, as has been illustrated by us

recently [52].

Metabolic engineering
Papin and co-workers have reported a reconstruction

of Pseudomonas putida [55], an organism that has

a proven potential in environmental and industrial

biotechnological applications due to its metabolic

versatility, stress resistance and amenability to

genetic modifications. They have used FBA and

flux variability analysis to analyse the potential of the

metabolic network of the organism, as well as

identifying key parameters such as growth yield,

network robustness and gene essentiality. By validat-

ing the model with data from experimental

cell cultures, the authors have provided a valuable

framework for biotechnological applications using P.
putida. An excellent application of systems biology in

metabolic engineering, with commercial potential,

has been illustrated by Stephanopoulos and

co-workers, for improving lysine production in a

strain of Corynebacterium glutamicum, by the coordi-

nated over expression of two genes, encoding

pyruvate carboxylase and aspartate kinase [9, 56].

Stephanopoulos and co-workers have also reported a

genome-wide FBA of E. coli to discover putative

genes impacting network properties and cellular

phenotype, for re-engineering lycopene synthesis

[8]. Targets identified using this model improve

product synthesis on the basis of increased availability

of metabolic precursors and cofactor balancing. For

lycopene biosynthesis, a triple knock-out construct

was identified that exhibited almost a 40% increase

over an engineered high-producing parental

strain [8].

Refinement of metabolic networks
The study of metabolic networks through FBA

also finds application in the refinement of the

knowledge on metabolism of an organism, as well

as the reconciliation of conflicting knowledge in

the literature. The ‘metabolic gaps’ as well as

inconsistencies with experimental data that may be

observed during simulations of metabolic networks

may help to refine the networks and consequently,

to improve the knowledge on the metabolism of an

organism. Palsson and co-workers have proposed

an optimization-based algorithm to predict the

missing reactions required to reconcile disagreements

between reconstructed metabolic networks and

experiment [57]. Papin and co-workers have con-

structed a GSMN of Pseudomonas aeruginosa, also

illustrating the application of FBA for ‘gap analysis’,

to identify and resolve ‘knowledge gaps’ in the

metabolic network [58]. A systematic network

analysis has a potential to identify and potentially

resolve gaps in the knowledge of metabolic

networks.

Predicting novel regulatory mechanisms
Palsson and co-workers have described the analysis of

an integrated model of metabolism and transcrip-

tional regulation in S. cerevisiae [34]. By identifying

the discrepancies between predicted growth pheno-

types and experimentally observed phenotypes,

which arise from missing regulatory effects in

the model, they have shown that it is possible

to investigate novel regulatory mechanisms. This

study also highlights how modelling can direct

experimentation.

CHALLENGESAND FUTURE
PERSPECTIVES
Limitations of FBA
In general, the solution obtained by FBA is only as

good as the constraints used to build the model [13].

Therefore, it is very important to invest a lot of time

and effort in a quality reconstruction of metabolic

networks, including the selection of constraints.

It has been shown, for the genome-scale metabolic

reconstruction of P. putida that the structure of

the metabolic network is the critical factor in

determining the accuracy of FBA predictions, and

the objective function detailing biomass composition

has a lesser influence [55]. FBA suffers from incom-

plete annotation of the proteins in a genome,

although it can provide clues to enhance the current

knowledge. Furthermore, FBA focuses only on part

of the entire genome of an organism, involving

mostly enzymes, which catalyse the various meta-

bolic reactions in the cell. Due to the incomplete

nature of annotation, several reactions may appear to

have zero fluxes from FBA, since the reactions

involving metabolites, downstream or upstream from

these reactions may not have been characterized

(metabolic gaps).
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Challenges in reconstruction and
analysis of GSMNs
Most reconstructions rely fundamentally on the

availability of genome sequences and annotations.

For organisms with low sequence homology to other

organisms, such as Plasmodium falciparum, automated

reconstructions generally result in highly incomplete

GSMNs [5]. Furthermore, many organisms have

unique pathways, for example, the mycolic acid

pathway in M.tuberculosis, which need to be manually

curated, through extensive literature analysis [11].

A detailed account of the challenges in the

reconstruction of parasitic metabolic networks has

been discussed in [59].

Biologically relevant objective functions
One of the major challenges for FBA is the definition

of a biologically relevant objective function. While

the maximization of biomass production has

been commonly used as an objective function in

the genome-scale reconstructions of several prokary-

otes, phenotypes may be more accurately predicted

with more biologically relevant functions, partic-

ularly in case of higher organisms. Techniques such

as MoMA [15, 27] and ROOM [28], which alter the

objective for optimization, resulting in QP and

MILP formulations respectively, have already been

discussed earlier. A recent approach towards

resolving the problem of selecting a suitable

objective function is a framework proposed by

Papin and co-workers, known as the Biological

Objective Solution Search (BOSS) [60]. In this

framework, the biological objective is a new

stoichiometric reaction added to the stoichiometric

matrix, which is not confined to be a subset of the

existing reactions. This reaction is added to the

existing constraints and optimized, also minimizing

the difference between the resulting flux distribution

and available experimental data.

Srivastava and co-workers have described a simple

Bayesian-based method to quantitatively select a

single ‘most probable’ objective function out of

a choice of plausible biologically relevant alternative

objective functions, by comparison against experi-

mental data [61]. While the method provides a useful

approach to discriminate between objective func-

tions, it also emphasizes the need for experimental

flux data, which is required to compare predictions

using different objective functions. It must be

emphasized here, that a synergy between in silico
simulations and biochemical experiments can

indeed help in multiple ways to synthesize better

models of metabolic networks.

The choice of objective function cannot be made

independent of the conditions of simulation; for

instance, it would not be reasonable to use a biomass

maximization function to accurately predict the

fluxes for an organism that is grown under starvation

of nutrients. Sauer and co-workers have illustrated

for E. coli that no single objective function was

capable of predicting experimentally observed

fluxes under different conditions; it was important

to identify the most relevant objective for each

condition [24]. Thus, the choice of objective

function is quite important in the context of FBA,

and it is important to choose a biologically relevant

objective function. Improvement in methodology is

required in two ways: first, the identification of an

appropriate objective function and second, the

description the chosen function at high resolution,

which may require detailed large-scale quantitative

experimentation under various conditions.

Impact of high-throughput experiments
The importance of integration with experimental

data has already been emphasized in previous

sections. With the advance in high-throughput

techniques for estimating metabolomic data, it is

possible to generate large amounts of data for use in

FBA models; FBA can benefit from metabolomic

measurements, which could aid in identifying more

constraints. Furthermore, FBA can also cope with

the uncertainty and incompleteness in metabolomic

data, since it allows for the incorporation of partial

metabolic information [62]. The metabolic ‘gaps’

identified through FBA can also be useful in guiding

metabolomic experiments. With the advances in

high-throughput 13C flux analysis [63, 64], which

can be applied at a genome-scale to estimate

intracellular fluxes [65, 66], it is possible to generate

more data for hypothesis validation, improving

constraints in FBA models, as well as to aid in the

choice of objective functions. Lee and co-workers

have illustrated the use of even partial information

obtained from the 13C-labelling experiments to

generate mass balance equations for ‘artificial’

metabolites, which are used as additional constraints

during FBA [67]. The availability of genome-scale

transcriptomics data can be advantageous in

the integrated reconstruction of metabolic and

regulatory networks.
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Integration of metabolic, regulatory and
signal transduction networks
The complexity of biological function arises from the

concerted interplay between metabolism, regulation

and signal transduction. However, till recently, most

models of biological networks have focussed only on

one of these networks, rather than analysing the

complexity in its entirety.

Papin and co-workers have proposed an FBA–

based strategy, referred to as integrated dynamic

FBA (idFBA), that dynamically simulates cellular

phenotypes arising from integrated networks [68].

The idFBA framework requires an integrated

stoichiometric reconstruction of signalling, meta-

bolic, and regulatory processes. A major challenge for

such an integration is the fact that the various

processes operate on vastly different time-scales.

idFBA attempts to address this issue by including

slow reactions in a time-delayed fashion. Time is

discretized into small steps; at each step, an FBA is

performed. An incidence matrix IRs�tN is computed,

which keeps track of which of the Rs reactions are to

be included at a particular time-step t of tN, thereby

accounting for the difference in time scales for

the reactions. Based on the computed flux, the

constraints and the incidence matrix (for the next

time-step) are updated. The choice of objective

function for such an integrated system is also

important; idFBA utilizes BOSS [60] (described

earlier) to identify objectives for the integrated

system. The authors have shown the utility of

idFBA for analysing a portion of the high-osmolarity

glycerol response pathway in S. cerevisiae, generating

time-course predictions comparable to an equivalent

kinetic model. It appears that idFBA might serve to

improve the accuracy and versatility of constraint-

based analyses, at the same time avoiding the

stringent requirements of kinetic parameters and

detailed mechanisms, imposed by kinetic models.

Covert and co-workers have proposed another

method to simultaneously model the metabolic,

regulatory and signal transduction networks, by

integrating FBA with regulatory Boolean logic and

ordinary differential equations for describing signal

transduction [69]. They have used this approach,

called integrated FBA (iFBA), to create an integrated

model of E. coli, which combines a flux-balance-

based central carbon metabolic and transcriptional

regulatory model [31] with an ODE-based detailed

model [70] of carbohydrate uptake control. They

have shown that the iFBA framework better captures

the dynamics of the system, compared to either rFBA

or ODE modelling paradigms. This approach is an

improvement over rFBA in that the kinetic descrip-

tion is much more detailed; a dynamic picture of

the system is obtained, rather than just the final

steady state that would be obtained using rFBA.

Furthermore, certain enzymes, which would never

be part of a strictly optimal growth scenario, are

expressed and active since they are utilized for

important functions such as signal transduction,

though not for their metabolic contribution to

growth. Phenotypes for certain knock-outs, such as

galP and glk on glucose/glucose-6-phosphate, were

also much better predicted by iFBA, due to its ability

to account for the subtle effects of the dynamics

of internal metabolites such as glucose-6-phosphate.

Such methods provide interesting extensions to

the well-established FBA paradigm, giving a greater

impetus towards accurate prediction of phenotypes

from models of biological networks. More accurate

predictions from biological networks can be obtained

only by an integration of models of metabolism,

regulation and signal transduction.

CONCLUSIONS
Although it may be very desirable to have genome-

scale mechanistic models of microbial systems, the

lack of available metabolomic data and thermody-

namic quantities has rendered the probability of

achieving cell-scale kinetic models quite low [71].

Constraint-based models, particularly those using

FBA, have filled in the void admirably, enabling

analysis of several large systems, including entire

GSMNs for prokaryotes [32, 55, 72–75], eukaryotes

[10, 76, 77] and even the human [43, 44], with

wide-ranging applications from metabolic engineer-

ing [8, 55, 56] to drug discovery [11]. The potential

of FBA for addressing several biological problems is

now well-established, as evident from the number of

reports in literature (Table 2). The stage seems all set

to realize the promise in obtaining biological insights

of chosen sets of proteins, in a systematic manner.

However, several challenges remain in the

construction and analysis of constraint-based

models, particularly in terms of the accurate

definition of the metabolic network, the various

constraints, as well as the definition of biologically

relevant objective functions. It is very likely that

constraint-based models will continue to grow in

popularity and a wide spectrum of objective
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functions for analysis, with increasing biological

relevance, will be used to enable various types of

predictions on the capabilities of metabolic networks.

There have already been interesting advances in the

area of FBA, with the integration of regulatory

information as well as signalling networks into the

metabolic models. The integration of various types

of models—kinetic, constraint-based and topologi-

cal—to draw conclusions at various levels is another

exciting challenge ahead of modelling in systems

biology, which holds the key to many of the varied

applications of systems biology.
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