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Flux Flow Noise Power Spectra in the Presence of 
Local Pinning Interactions* 

F. Habbal and W. C. H. Joiner 

Physics Department, University of  Cincinnati, C~ncinnati, Ohio 

( R e c e i v e d  J a n u a r y  10 ,  1 9 7 7 )  

We derive expressions for the dc flux flow voltage and for the flux flow noise 
power spectrum in type H superconductors using a model in which flux bundles 
travel a distance I less than the sample width L before being stopped for finite 
times by local pinning interactions. The frequency dependence of the power 
spectrum is shown to be identical to our earlier derivation, where we assumed 
that pinning and release of flux bundles occurred in zero times, an assumption 
we now show tO be incorrect. This frequency dependence has been shown to 
lead to good agreement for experimentally measured transit times, which have 
repeatedly been shown to be too short when obtained from models of uninter- 
rupted flux transit across the sample width. The concept of a pinned fraction 
arises naturally in our model, and occurs because of two factors; first, in certain 
regions the Lorentz force is not sufficient to overcome pinning, and second, in 
regions where flux flow occurs, fluxoids will be held up for brief periods because 
of interaction with local pinning centers. The expressions for the noise power at 
zero frequency and the dc voltage are modified by factors that depend on 
averages of 1. 

1. INTRODUCTION 

Several studies of the flux flow state in type II superconductors have 
been made using measurements of the noise power spectra as an investiga- 
tive technique. 1-5 These spectra arise because fluxoids traversing a sample, 
either singly or in bundles, give rise to individual voltage pulses with a height 
proportional to the product of the flux bundle size and the velocity of the 
bundle, and a duration equal to the transit time of the bundle across the 
sample width. Clem has predicted that these spectra should depend on the 
geometry of the sample and the arrangement of the measuring circuit. 6'7 For 
a foil sample with width L much less than the probe separation d, the pulse 
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shape as observed by the measuring circuit can be approximated to be 
rectangular in shape. For such a pulse the power spectrum would be of the 
form 

/sin ~rrfrfl z 
dr (1) 

where qb is the magnitude of the moving flux entities, Vavis the dc voltage, df 
is the measuring bandwidth, and % is the transit time of fluxoids across the 
sample width. The noise spectra should thus yield a critical frequency 
f¢ = 1/% = v/L, where v is the fluxoid velocity. The fluxoid velocity, how- 
ever, can be calculated directly from the dc voltage Vav and the magnetic 
field B: 

Way 
v = (2) 

Bd 

Critical frequencies obtained from the noise spectra and from the velocities 
should therefore be comparable. 

Measurements made on polycrystal foil samples that do not have low 
defect densities have repeatedly led to noise spectra characterized by critical 
frequencies higher than predicted by Eq. (2). To overcome this difficulty, 
van Gurp i and Jarvis and Park 4 have used the concept of a pinned fraction of 
vortices p such that the velocity of the unpinned vortices is enhanced: 

Way 
v = (3) 

Bd(l -p)  

We have previously presented results in which we also observed noise 
spectra yielding higher critical frequencies than predicted by Eq. (2), 
although these critical frequencies increased linearly with Va,,/B as required 
by Eq. (2). 8 Our noise spectra also fell off at high frequencies as 1/f rather 
than the more rapid decrease predicted by Eq. (1), To overcome these 
difficulties, we applied a suggestion originally made by van Gurp 9 with 
respect to flux motion in type I superconductors. Thus we assumed that the 
flux did not directly transit the sample producing a pulse of length %. 
Instead, we assumed that the fluxoid motion is interrupted momentarily as 
fluxoids are temporarily held up at pinning centers. The fluxoid motion thus 
gives rise to subpulses, each of duration ~, and the total spectrum represents 
the total contribution from the various subpulses: 

W(f)=Ia:~g(z~)W(f~)d~'~ (4) 
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where 

sin ~'f~'i 2 W(f, ri)= 2dPVav(-----~Ti ) (5)  

g(~'i) is a distribution function for the ~'i and the limits of integration on the 
subpulse duration are expressed in terms of the unimpeded transit time %. 
Our assumption, following van Gurp, was that the fluxoids were held up for 
sufficiently short times at pinning centers so that the average transit time % 
was not altered. By using as a distribution function 

g(~-~) = 1/(,~ - /3)~c, a~c >T~ >/3're 

we fit the experimental data very well by using a and fl as adjustable 
parameters. In general, best fits are obtained for/3 = 0, whereas a = 1 for 
well-annealed samples, but decreases as grain sizes are reduced, thus 
producing shorter average subpulse times. See Fig. 1. 

1C~ e 

E" 
0 > 

"13 

l d  ~7 

, , , i ' ' ' ' 1  , , , , , , , , I  , , , ' . . . .  

T= 2.15 K 
" N ~  H= 1600. Oe 

-x  N Vd¢=500 ;U Volt 
"N x • Annealed 

o Unannealed 

• 0 0 

0 0 • 

0 • • 
0 • • 

101~ 1 . . . . . . . .  I I I . . . . . .  ~ . . . . . . .  
O 102 103 04 

FREQUENCY (Hz) 

Fig. 1. Noise power spectra for PbsoIn2o foil. Measurements are 
taken at H =  1600 Oe, V =  500/xV, and T = 2.15 K. Sample 
dimensions are: width L = 0 . 4 i  cm; probe separation d = 
2,3 cm; thickness 0.024 cm. Open points were taken before 
sample was annealed, and solid points after annealing eight 
days at 260 C. The solid curves represent best fits and yield 
a = 0.40 (unannealed) and ct = 1.00 (annealed)•/3 is approxi- 
mately zero in both cases. 
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Although the model has been successful in helping us interpret noise 
spectra, we now understand that it has been derived assuming an incorrect 
value for the height of the subpulses. Further, the idea of fluxoids held up for 
vanishingly small times at pinning centers is incorrect. The purpose of this 
paper is to present a more comprehensive model for fluxoid motion inter- 
rupted by pinning. The principal result of this model is that the form for the 
frequency dependence of the noise spectrum is as given by Eqs. (4) and (5), 
although the value of the spectrum at zero frequency W(0) is altered. We are 
led to an explicit expression for the pinned fraction, although our interpreta- 
tion of this concept is somewhat altered. An expression for the dc voltage as 
a function of current is also obtained which yields a nonlinear region at low 
currents as previously derived by Baixeras and Fournet.10 

2. D I F F I C U L T I E S  W I T H  P R E V I O U S  M O D E L  

As noted, the model of fluxoids being held at pinning centers for 
vanishingly small times is incorrect. This is because in the limit of zero 
stopping time, the end of one subpulse is exactly correlated with the 
beginning of the succeeding subpulse. The subpulses are therefore not 
statistically independent and interference terms would appear in the corre- 
lation function from which the noise spectrum is derived. Since the subpulses 
are not independent, the summation of their individual power spectra 
cannot be carried out as is done in Eq. (4). 

Since our observed spectra follow quite closely the functional form 
obtained with Eq. (4), we assume that the summation process is correct, but 
that the assumption of zero stopping time is incorrect. We therefore modify 
this assumption by associating two times with a given subpulse. For the ith 
pulse we let ~-~ be the actual time fhe flux is in motion and 0i be the time 
between the initiation of flux motion giving rise to the ith pulse and the 
initiation of the (i + 1)th pulse. Assuming that the fluxoids are held for 
random times upon pinning is equivalent to assuming that the pulses are 
statistically independent, or that the distribution function for the 0's can be 
written 

u(O) = (1/00) exp (-0/0o) (6) 

A second problem in the van Gurp model was that in the case of a flux 
bundle transiting the distance I~ between pinning centers, the expression for 
the voltage pulse for a flux bundle whose motion is uninterrupted was simply 
altered by replacing ~'c by ~-~ (i.e., it was assumed Vii =qb/r~). This is 
inappropriate because ~-~ is determined both by the velocity of the moving 
fluxoids and by the distance between pinning centers. The proper form for 
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the voltage generated by the ith pulse is therefore 

i i 

Vi=dPldL'ci for E Oj-1 ~ ' t ~  E O]--l'+Ti 
j=l j=l 

We note that this expression for V~ satisfies the necessary condition 

(7) 

3. CALCULATION OF THE PINNED FRACTION 

We have characterized a given subpulse associated with the motion of a 
group of fluxoids between two pinning centers by the parameters Oi, zi, and ti. 
We are assuming that li and ~-~ are independent variables, l~ being deter- 
mined by the physical distribution of pinning centers in the material, 
whereas for a given l~, the value of ~-~ will be determined by the driving force 
on the flux. For generality we should also assume that the size of the flux 
bundle qb~ can vary from one subpulse to the next. 

We note that the concept of a time of motion ~-~ and a stopping time 
0~ - ~-~ allows us to define two velocities for each subpulse. While the flux is in 
motion the velocity is given by 

~, = l , / ~ ,  = '~Jln ( 8 )  

where r/is the viscosity coefficient and J is the transport current density. One 
can also obtain the average velocity over the entire time associated with the 
ith subpulse: 

6i = l,/ O, = dP , ( J - J , )  /~ I (9) 

J~ represents a critical current density for the ith pinning event, which 
Yamafuji and Irie 11 have related to the relationship between v; and 13~. The 
distribution in times 0~ for a given applied current is therefore related to a 
distribution in l~, qb~, and J~. For the distribution function of J~ we use the form 

f(J/) = (l/J0) exp [ - ( J / -  J~)/J0], Ji >-Jc 

=0  J ,<Jc 

used by Baixeras and Fournet 1° in deriving the shape of the flux flow 
current-voltage characteristic. Jc is the minimum value of the critical current 
density required to produce flux motion, and Jo determines the spread in 
values of Jt. 

One can, at this point, introduce the concept of a pinned fraction. For 
the combination of parameters giving rise to the ith type of subpulse, and for 
a current in excess of J,, the pinned fraction will be the fraction of the time 
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Fig. 2. Curves showing pinned fraction p from Eq. (11) 
as a function of the normalized current J/Jc. The 
parameter Jo, which gives rise to the difference between 
the curves, represents the spread in local pinning 
strengths from the minimum value Jc. 

which such pulses on the average spend pinned. Thus, using Eqs. (8) and (9), 

p, =(O,-r,)/oi =J,/J, J>-4 00a) 

= 1, J < 4  OOb) 

For the sample as a whole, the pinned fraction will be, for a given driving 
current J, determined by the fraction of time each group spends pinned, as 
well as on the distribution of the Ji. Thus for J>-J¢, p = [.~ Pif(Ji) ddi, and 

P = ~ o  exp d J /+ Jc \ Jo ] ~oo exp - - - ~ o  ] dJi 

Jc +J0{1 - exp [ - ( J -  Jc)/Jo]} (11) 
P =  j 
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Although we have used the distribution function for f(J~) as used by Baixeras 
and Fournet, the pinned fraction we obtain at a given J is much larger than 
that which they find (see Fig. 2). The physical reason for this difference is 
their assumption that if J > J~, the ith group of fluxoids will definitely be in 
motion. In our model, such fluxoids will spend part of their time in motion 
and part of their time pinned. As a result, even in the linear flux flow region, 
we find that for a sample with J0 comparable to Jc a sizable fraction of the 
total flux is at any given time not in motion. 

4. CALCULATION OF THE DC VOLTAGE AND THE 
N O I S E  S P E C T R U M  

For identical pulses occurring at a rate n, the noise spectrum can be 
calculated (Carson's theorem) 12 from 

w ( f )  = 2n IFff)l 2 (12) 

where 

i l  ° t I f ( f ) l  2 = y(t) exp ( - 2 ~ f t )  dt (13) 
oo 

If we use for y (t) the voltage subpulses given by Eq. (7), then for a given type 
of subpulse characterized by specific values for the variables 0~, ~, l~, and ~5~, 

qb~l 2 {sin ~rf~-,~2 
IF~ (f)l 2 = - - ~  \ ~ ]  (14) 

and the associated power spectrum will be 

2 dpzl~ (sin ~fl-i) z (15) 
W/(f)= n i " ~  k "a'f'ri / 

With the assumption that the events are random, which is equivalent to 
assuming that the times O~ are statistically independent, we have for the total 
spectrum containing all subpulses 

W(f) = Y. W~(f) (16) 
i 

Assuming that values of 0i, ~'i, l~, and q~i are continuously distributed, the 
summation can be converted to an integral by using a distribution function 
"r(O~, %, l~, d~i) such that 

(17) 



90 F. Habbal and W. C. 14. Joiner 

where N is the total repetition rate for all subpulses. Assuming further that 
there is no coupling between 0~, r~, l~, and qb,, 

y(O~, r~, 1~, cb) = Ng  ("r~)h (li)k (cb,)u (0~) (Is) 

where u(Oi )=(1 /00)exp  (-Oi/Oo) is required for statistical independence 
and the distribution functions g(~',), h(l,), and k(q~,-) are separately nor- 
malized to unity, i.e., 

f ~  g(~) d~-~ = 1 
~r c 

where here the limits of integration have been expressed in terms of the 
transit time calculated from Eq. (2), rc = B dL/Va,,.  Using the fact that the 
integration over 0i yields unity, we obtain for the power spectrum 

2N (" '~max flmax W 

fS ~ ( sin ~f%~2 

2N 2 2 fB ~'~c (sin 7FfTi~2d,gi (19) 
W(f)=~--~(cb )(1 ) ~ g(%) \ 7r/r, / 

wher~ N is the total pulse rate for all events. 
The average voltage, on the other hand, is 

V.~=Z n,E~, 
i 

= i N / L ) f f ~ f  • i l ig( ,F, )h( l i )k  (l~)i)Id(Oi)d'F i d l  i dlff~ i dO i 

= N(Cb)(l)/L (20) 

The total pulse rate N is given by the product of the total number of flux 
bundles that exist within the sample M and (1/0~). Using Eq. (9) for 0,, 

= ~  (J-~)f(~) d J, 

J0[1 expl %'c)]} 
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and 

Vav=M(dP)z { J- Jc - Jo[1-exp ( -~o ~) ] } rlL (21) 

o r  

Vav=B(@)R"°" { I- Ic -lo[1-exp (-~oI~) ] } rl (22) 

where Rn and o-n are the normal-state resistance and conductivity. This is 
the same expression obtained by Baixeras and Fournet, even though, as we 
have noted, we have a different interpretation and a higher value for the 
pinned fraction than that which they calculate. Representative V-I curves 
are shown in Fig. 3. 

Finally we can write 

W(f) = 2 Vav ( ~ )  r"" (sin 1rf'ci~ 2 (23) 

0 

2 

00 5.0 10.0 
J/Jc 

Fig. 3. Normalized flux flow vol tage-current  characteristics as calculated 
from Eq. (22). The three curves differ because of the difference in the value of 
Jo. Compar ison with Fig. 2 shows that the value for the fraction of flux not  in 
mot ion at any instant  can be significant even well into the linear flux flow 
region. 
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o r  

w ( D  = - -  - -  ,-,c)] 1 2BR"°"~ (cbz) (12) {I-Ic -I°[1-exp (----~o / (qb)(I) 

J ~ -  \ qrf'/" i / 
(24) 

5. DISCUSSION 

The model we have presented of the flux flow state in which flux bundles 
transit a sample with their motion interrupted by pinning interactions is 
physically realistic. Although we have no specific a priori justification for 
assuming the subpulses are statistically independent, interference terms 
would appear between subpulses if this assumption were not correct. Our 
further assumption of an absence of coupling between %, li, and d/)i for 
subpulses also has no prior justification. Experimentally, the noise spectrum 
as expressed by Eq. (23) could not be used to determine whether coupling 
between ~i and l~ exists. However, the good fit we obtain to the experimen- 
tal data for the frequency dependence of the spectra would seem to indicate 
that ~-i is not coupled to l~ and ~ .  

The magnitude of the noise spectrum extrapolated to zero frequency is 
no longer simply proportional to the average flux bundle size; thus in some 
sense the noise spectra are reduced in their usefulness for determining this 
quantity. On the other hand, there is now a dependence on the distribution 
of distances that flux bundles travel before becoming pinned. The magnitude 
of the spectrum is in fact reduced by the factor (12)/L(l) from previous 
models. Therefore, there exists the possibility of extracting information 
about the distribution of distances flux bundles travel before becoming 
pinned. We note in this regard that preliminary measurements in a sample of 
PbSn in which the tin has precipitated so as to form a finely divided 
microstructure indicate that the noise level is very low so that l << L, thus 
verifying the noise reduction with short l which we predict. 

Recent neutron diffraction measurements in NbTa samples, 13 which 
show little change from the static flux lattice when the fluxoids are far into 
the linear flux flow state, might seem to contradict our assumption of the flux 
motion being interrupted by pinning interactions. However, the NbTa 
sample studied shows very weak pinning, and the pinning interactions may 
be less effective than in the PbIn samples for which we have presented data. 
Moreover, as we will discuss in a separate paper in which our experimental 
results are presented in more detail, we envision the identity of a flux 
grouping as a "bundle" which exists only at the time of a pinning interaction. 
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F o r  s amples  of m a c r o s c o p i c  g ra in  size in which  g ra in  b o u n d a r i e s  p rov ide  the  
p r inc ipa l  p inn ing  mechan i sm,  t he re  is u n d o u b t e d l y  l ong - r a nge  co r r e l a t i on  
whi le  f luxoids a re  mov ing  wi thin  the  gra ins  and  thus  a nea r ly  pe r fec t  la t t ice  
w o u l d  exist  for  the  large  m a j o r i t y  of  the  fluxoids.  W e  no te  in this  r e g a r d  tha t  
the  ro le  of such l ong - r ange  co r r e l a t i on  in r educ ing  the  noise  has no t  been  
inc luded  in ou r  mode l .  
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