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The development of the general flux formulation for heat conduction based on the modified 
Fourier's law is presented. This new formulation produces a hyperbolic vector equation in heat 
flux which is more convenient to use for analysis in situations involving specified flux conditions 
than the stand.ard temperature formulation. The recovery of the temperature distribution is 
obtained through integration of the energy conservation law with respect to time. The Green's 
function approach is utilized to develop a general solution for hyperbolic heat conduction in a 
finite medium. The utiJity of the flux formulation and the unusual nature of heat conduction based 
on the hyperbolic formulation are demonstrated by deveJ.oping analytical expressions for the heat 
flux and temperature distributions in a finite slab exposed to a pulsed surface heat flux. 

I. INTRODUCnON 

In classical heat conduction theory, the constitutive 
equation governing heat flow is given by Fourier's law 

aT 
q = - k ax ' (1) 

which states that the heat flux is proportional to the tem­
perature gradient. This law originated from experimental 
observation. When the constitutive relation, as expressed in 
Eq. (1), is incorporated into the First Law ofThermodynam­
ics, a parabolic partial differential equation is obtained. Con­
troversy arises using such a description for linear models in 
that it predicts that any thermal disturbance on a body is 
instantaneously felt throughout the body, that is, heat pro­
pagates at an infinite speed. Since thermal energy is carried 
by molecular motion which propagates at a finite speed, one 
generally concludes that Fourier's law is a low order approx­
imation to a more exact constitutive equation. I

-
3 Despite 

this apparent paradox, Fourier's law is quite accurate for 
most common engineering situations. However, for situa­
tions involving very short times, extreme thermal gradients, 
or temperatures near absolute zero, Fourier's law becomes 
invalid. 

It was originally proposed by MaxweU4 via kinetic con­
siderations and Later by Vernotte,5.6.7 Cattanea,8 and. Morse 
and Feshbach 9 on a heuristic basis that the particular law for 
heat conduction should account for thermal relaxation or 
the finite buildup time for the onset of heat to flow. The 
proposed modified Fourier I.aw is 

r aq + q = _ k aT , (2) 
at ax 

where l' is the thermal relaxation time, and k is the thermal 
conductivity. 

Since the arguments were originally qualitative, many 
different approaches have been proposed to quantify Eq. (2). 
Weymann lO and Taitel3 obtained Eq. (2) through a random 
walk argument. Kaliski II modified thermodynamics for an 

irreversible process. Gurtin and Pipkinl2 also developed a 
general theory based on thermod.ynamics with memory, 
where an integro-differential equation is derived. Kinetic 
considerations have been incorporated by Bubnov,13 and 
Berkovsky and Bashtovoi. 14 Since Fourier's law is inconsis­
tent with special relativity, relativistic models have been pro­
posed by Van Kampen l5 and KeUyl6 for heat transport. 

Chester states that Fourier's law is simply an approxi­
mation to the modified law. Simons 1 points out, based on the 
Boltzmann equation, that a hierarchy of increasing com­
plexity exists in describing the "true" heat conduction equa­
tion. He concludes that for the nonrelativistic regime, Eq. (2) 
has been generally agreed upon as the next approximation. 

The nature of heat propagation resulting from Eq. (2) 
has been studied by many investigators. 17

-
29 In all these 

studies, the temperature distribution was obtained through 
the temperature field equation. The objective of this exposi­
tion is to give an alternative formulation based on heat flux. 
First, a general three dimensional constant property heat 
flux formulation with an arbitrary volumetric heat source is 
developed. Then the utility of such a formulation and the 
peculiar nature of the hyperbolic theory are illustrated with 
a specific example involving a finite slab subjected to a 
pulsed heat flux at one of its surfaces. 

II. GENERAL HEAT FLUX FORMULATION 

The governing heat flux vector equation is now derived 
for any orthogonal coordinate system. Performing an energy 
balance over a control volume,30.31 we arrive at 

If -V'q(r,t) + u(r,t) -1, (r,t l)dV = 0, (3) 

where u represents a volumetric energy source, e is the inter­
nat energy,p is the density, tis the temporal variable, and ris 
the space vector. For the integral in Eq. (3) to vanish over an 
arbitrary region, the integrand must be identically zero. 
Therefore, we arrive at the usual result 
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aT 
- V-qv,l) + uv,l) = pCp - v,t), 

at 
(4) 

which incorporates the assumption that the internal energy 
is only a function of temperature for an incompressible sub­
stance. In general vector notation, the modified Fourier law 
becomes 

r aq v,t) + qV,t) = - kVT. 
at 

(5) 

Eliminating the temperature T v,t ) between Eqs. (4) and 
(5), with the assumption of constant properties, gives the fol­
lowing heat flux vector equation: 

V [V-qv,t )J - VUcr,l) = - 1'*,,1) + ~,t) , 1 ( a2 a) 
a at at 

(6) 

where a=k IpCp is the thermal diffusivity. For the three­
dimensional case, Eq. (6) represents three simultaneous hy­
perbolic scalar equations for the heat flux components. Note 
that in this formulation only the gradient of the volumetric 
heat source is involved in Eq. (6), whereas Vick and Ozi­
Sik

17
.
18 have shown when considering the temperature field 

formulation that the volumetric source and its time deriva­
tive appear in the equation. 

Finally, given the heat flux, the temperature distribu­
tion is recovered by integrating the general energy balance 
relation of Eq. (4) over time 

Tv,t) = TV,O) + f=o (l/pCp )[ - V·qV,t') + uv,t')]dt', 

re V, t:>O. (7) 

To complete the mathematical formulation, boundary and 
initial conditions must be specified. Although any arbitrary 
boundary conditions may be specified, the advantages of the 
heat flux formulation become the most apparent for situa­
tions involving specified heat fluxes at the boundaries. Equi­
librium initial conditions can be readily established as 

QV,O) = 0, 

aq V,O) = 0, re v. 
at 

(8) 

(9) 

We shall now develop the general solution to a one-di­
mensional slab problem with the aid of Green's functions. 
This problem will display the utility and merits of such an 
alternative formulation in terms of heat flux. 

III. ANALYSIS: ONE-DIMENSIONAL SLAB 

Consider a slab initially at the equilibrium temperature 
To. At time t = 0, both external surfaces are suddenly ex­
posed to arbitrary time-dependent heat fluxes while the en­
tire slab is in the presence of a general volumetric heat 
source. In this situation, the general three dimensional flux 
formulation developed previously reduces to the following 
one-dimensional equation for the heat flux distribution 

a 2; (x,t ) _ au (x,t ) = J..(7' a 2; (x,t) + aq (x,t I), 
ax ax a at at 

xE{o,/), t> O. (to) 

3341 J. Appl. Phys., Vol. 58, No.9, 1 November 1985 

The boundary and initial conditions may be expressed as 

q(O,t) = qo(t ), (Ila) 

q(/,t) =ql(t), t>O (lIb) 

and 

q(x,O) =0, (12a) 

aq 
(12b) ~x,O) = 0, XE(O,l]. 

at 

Formally, as 1'-0, Eq. (to) reduces tothec1assical parabolic 
heat flux formulation. The convenience of the flux formula­
tion for a problem involving specified heat flux boundary 
conditions now become apparent. That is, a simple boundary 
condition such as Eq. (lla) replaces a more involved bound­
ary condition 

aT dq 
- k-(o,t) = r~t) + qo(t) 

ax dt 
(13) 

that would be needed when considering the temperature 
field equation. 

For convenience in the subsequent analysis, we intro­
duce the following nondimensional quantities 

Tj = cxl2a, TJI = c/ 12a, (14a) 

where c2 = air and 

t = c2tl2a, 

fJ(Tj,t) = T(x,t) - To, 
Tref 

q(x,t) 
Q (TJ,t) = Trof(ck la) , 

and 

(14b) 

(14c) 

(14d) 

(14e) 

where Tref is a reference temperature chosen for conve­
nience. 

Introducing the dimensionless quantities, as defined in 
Eqs. (14a)-(14e) into Eqs. (10)-(12). we obtain the foBowing 
system of equations governing the dimensionless heat flux 
distribution: 

a 2Q aQ 
at 2 (TJ,t ) + 2 at (Tj,t ) 

a2Q as 
= aTJ2 (TJ,t) -1/2 aTj (TJ,t), TjE(O,TJI)' t>o, 

Q (O,t) = QolS), 

Q(TJI,t) = QIIS), t>O, 

and 

(15) 

(16a) 

(16b) 

Q(Tj,O) = 0, (17a) 

(~~)lTJ'O)=o, TjEj[O,TjJ]. (lTh) 

The dimensionless energy balance expressed. by Eq. (4) for 
the one-dimensional case becomes 

( aQ ) 1 (afJ) - JTJ (TJ,t) + ? (Tj,t ) = at (TJ,t), (18) 

which can be integrated to give the temperature distribution 
as 
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o (1/,s) =0(1/,0)- rs (a
Q

(1/,S,)+..!,s(1/,S'))dS '. (19) 
)5'=0 a1/ 2 

Next we develop the general solution to the system of 
Eqs, (15)-( 17) and apply the results for a pulsed surface heat 
flux. 

A. Solution in terms of a Green's function 

The formal starting point in the development of the 
Green's function method is the application of Green's sec­
ond formula over the domain of interese2

-
34 

~ [:OE [1=0 G(1/.sI1/o,so)Lo[Q(1/o,so)]d1/odSo 

= ~((BC + IC) + 1::: L~'=o Q(770'So) 

xL t [G (77,si770,So)]d77otiso). (20) 

Here G (77,sl1/o,So) is the appropriate Green's function where 
the arguments are written to represent the "effect/cause" 
relationship. We introduce € > 0 in order to invoke causality 
at a later time in the analysis. 

For any given linear operator Lo, the contribution of the 
boundary and initial conditions are represented symbolical­
ly by BC and IC, respectively. Also, L t is the formal adjoint 
operator of the operator Lo' The operator L is chosen as the 
modified heat flux linear operator 

(21) 

since we are interested in the solution to Eq. (15) which can 
be expressed as 

L [Q(77,S)] = l/2~~(1/'S)' 77e(O,77,), S>O. (22) 

Integrating the left-hand side ofEq. (20) by parts, and using 
the linear operator given by Eq. (21) with the understanding 
that Lo represents differentiation with respect to the cau, 

The only remaining ingredient needed for a complete 
specification of the function Q is the determination of the 
Green's function itself, which wil.l be resolved by the finite 
integral transform technique. 

B. Determination of the Green's function 

The finite integral transform technique30 is now utilized 
to determine the Green's function, The appropriate eigen­
value problem obtained from the associated homogeneous 
version of the system ofEqs. (25), (26), and (27), is given by 
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variables 770 and 50' we obtain the following explicit expres­
sion: 

~ [:: ['=0 G(1/,5 1 770,50)Lo[Q (1/0,So)Jd1/oti50 

= lim{[ + £ (G aQ 1"/ - aG 1.,I)d5o 
E--O 50 = 0 a1/o 0 a770 0 

[

I [ aQ (aG )]5+£ + -G-+Q --2G d1/o 
"0=0 aSo a50 0 

+ [:: [1= 0 Q (1/0,50)L t [ G (77,5 I 770,so)d77oti50] }, 

(23) 

where the integration shows that the formal adjoint operator 
of Lo is 

a 2 a 2 a 
Lt=- - -- +2-. (24) 

a77~ a5~ a50 

We observe that L ~ =l=Lo, that is, the operator Lo is not for­
mally self-adjoint, 

The Green's function is chosen such that 

L t [G (77,5 1770,5011 = 8(770 - 77)8(50 - 5), (25) 

subject to homogeneous boundary conditions 

(26a) 

and 

G (77,5 177"so) = 0, (26b) 

with the additional requirement that 

G(77,5 1770,50) = 0, 5<50' (27a) 

and 

(27b) 

Conditions (27a) and (2Th) represent the causality principle, 
which is merely a statement that no effect can be experienced 
prior to a cause. Using the Green's function as governed by 
Eqs. (25)-(27) and taking the limit as €-->D in Eq, (23), gives 
the general representation of the heat flux distribution Q (77,5 ) 
as 

d 2 

--2 tP",(2m,1/0) +2 ~"'m(2m,1/0) = 0, 
dT/o 

(29) 

subject to 

~~"' (Am ,0) = 0, (30a) 

and 

(30b) 

The solution is of this problem gives the eigenfunctions 

tPm(Am,1/0) = sin Am 1/0' (31) 

Frankel, Vick, and Ozisik 3342  [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Tue, 26 May 2015 21:50:25



where the eigenvalues are defined as 

Am = (m1Ti7h), m = 1,2,3 ... (32) 

The orthogonality relation is written in terms of the inner 
product as 

[ 7fm (Am ,1]O),7fn (An' 1]0)) 

==[I 7fm (A m,1]0)7fn(An,1]0)d1Jo 

__ {N(Am}, m = n 

0, mf;n' 

where N (Am) is the normalization integral given by 

(33a) 

N(Am} = 1],/2. (33b) 

With the aid of this orthogonality relation, we can now 
define the finite integral transform pair as follows. 

1. Inversion formula 

(34) 

2. Integral transform 

where the eigenfunctions 7fm(Am,1]), 7fm(A m,1]o) are defined 
by Eq. (31), the eigenvalues are expressed by Eq. (32). 

Since the Green's function is now known, the heat flux 
distribution Q (1],5) for any arbitrary volumetric heat source 
and boundary conditions as expressed as Eq. (16) can be ob­
tained from Eq. (28). The dimensionless temperature distri­
bution can be determined by using Eq. (19). A specific exam­
ple is investigated to display the utility of this heat flux 
formulation to bring forth some unique features of heat con­
duction based on the hyperbolic formulation. 

C. Pulsed surface heat nux 

Here we consider a flat plate of thickness /, subject to a 
pulsed heat flux at the surface x = ° which has an intensity 
qo for a duration of I::..t seconds. The surface at x = 1 is insu­
lated for all time t> 0. Since a linear model is considered, the 
effect of a thermal disturbance at x = I would merely be 
superimposed with the effect due to the disturbance at x = O. 
The body is initially in equilibrium at the uniform tempera­
ture To and contains no volumetric heat source. Previous 
investigations2

O-
22 of the hyperbolic surface heat flux prob­

lem, based on the temperature formulation, have not consid­
ered the heat flux distribution in any manner. Boundary con­
ditions involving heat flux have been incorrectly 
formulated22 by using Fourier's law at the boundaries in 
conjunction with the hyperbolic model inside the region, re-
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In order to determine the transform, G m (A m ,so), we 
operate on Eq. (25) with 

[1= 0 tfm (Am ,1]o)d1]o, (36) 

and incorporate the homogeneous boundary conditions of 
Eqs. (26) and (30) in order to obtain the following ordinary 
differential equation for Q m (A. m ,So) 

d 2G (A f;-) if; _ 
m m'~O _ 2~A f;-) + A 2 G (A f;-) 
dS~ d[;' m'~O m m m'~O 

= - .5(50 - 5 )7fm (Am ,1]), (37) 

subject to the transformed initial conditions 

(38a) 

and 

(38b) 

After some careful manipulation, the solution to Eqs. (37) 
and (38) can be expressed as 

.1, (A ) - (s - sol G (A t-)= _ 'f/m m,1]e 
m m'~O 

~A;" - 1 

Xsin ~A;" - 1(5 - So), 5> 50' (39) 

Substituting Eq. (39) into the inversion formula [Eq. (34)], we 
obtain the Green's function as 

(40) 

~u1ting in an inconsistent formulation leading to question­
able results. 

For this specific case, a convenient reference tempera­
ture is chosen as 

Trer =~. (41) 
ckla 

The dimensionless heat flux field equation [Eq. (15)] reduces 
to 

a2Q a2Q aQ a1]2 (1],5) = as2 (1],5) + 2 as (1],5), 1]E(O,1],), 5>0. (42) 

The boundary conditions are expressed as 

qo(O,t) = qo[H(t) - H(t - I::..t)], 

qo(l,t) = 0, t> 0, 

or in dimensionless form as 

Q(O,S) =H(5) -H(5 - 1::..5), 

and 

(43a) 

(43b) 

(44a) 

(44b) 

where H represents the Heavyside step function. It is inter­
esting to note that the proper boundary condition, corre­
sponding to Eq. (43a), in the temperature formulation would 
be 

aT(O,t) = -qO[H(t)-H(t-l::..t) 
ax k 
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+ 78(t) - 78(t - ~t)]. (45) 
The solution to the pulsed heat flux problem is now ob­

tained from the general formula solution Eq. (28), by using 
the Green's function, Eq. (40), the boundary and initial con­

I 

ditions given by Eqs. (44) and (17), respectively, and a zero 
source. Performing the indicated operations and after a 
lengthy but straightforward set of manipulations, the heat 
flux distribution becomes 

(46) 

The dimensionless temperature distribution is now obtained by substituting Eq. (46) into Eq. (19), with no source term, 
and again performing the indicated operations to arrive ae5 

0(1],5) = _+1]2 - 21] +- H(5) -H(5- ~5) - - L 2 sin~A ~ - 15 (
5 21]/) 4 QO e-SCOSAm1]((2-A~) 
1]/ 3 1]/ m = I Am ~A ~ - 1 

) 
~5 4 QO e-Is-asi cos A 1] 

+~5 H(5)+-H(5-~5)+- L 2 m 

1]/ 1]/ m = I Am 

X (CO~A ~ - 1(5 - ~5 ) + (2 - A ~) sin~)' ~ - 1 (5 - ~5 ))H (5 - ~5), 
~A~-l 

1]E[O,1]/], 5>0. (47) 

The heat flux and temperature distributions, as predict­
ed by the hyperbolic and parabolic heat conduction equa­
tions, are now numerically examined for the surface pulsed 
heat flux problem. 

IV. RESULTS 

Numerical results displaying the development of the 
heat flux and temperature distributions arising from a pulsed 
surface heat flux of duration ~5 = 0.2 on a slab of thickness 
1]/ = 1 are now presented. The hyperbolic and parabolic so­
lutions are then compared showing the distinct differences in 
the two heat conduction approximations. 

An interesting comparison can be made between linear 
parabolic and hyperbolic heat conduction concerning the 
rate of convergence of their respective infinite series solu­
tions. In parabolic heat conduction, the bilinear series sol.u­
tions converge very rapidly. This rapid convergence rate is 
attributed to the decaying exponential term which contains 
the eigenvalues. However, in hyperbolic heat conduction no 
such term exists as demonstrated in Eqs. (46) and (47) dis­
playing the heat flux and temperature, respectively. These 
bilinear forms require hundreds of terms to obtain three sig­
nificant figures of accuracy. However, techniques such as 
the Kummer transform may be incorporated to accelerate 
the rate of convergence of these series solutions. 

Figure 1 displays the heat flux distribution for both the 
hyperbolic and parabolic cases at various times 5. The hyper­
bolic solution shows that for 5 < 1]/ = 1, an undisturbed re­
gion exists ahead of the wave front. Since no molecular com­
munication has occurred ahead of the front, the behavior of 
the heat flux is the same as would exist in the half-space 
problem. Certainly a finite speed of propagation is nOw asso­
ciated with the rate of heat flow in the medium. As the wave 
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I 
propagates forward, energy is deposited in the wake by diffu-
sion. The absolute magnitude of the wave front decreases 
exponentially with increasing time due to the dissipation of 
energy by diffusion. On the other hand, the parabolic solu­
tion predicts that heat will propagate with an infinite speed 
and will be felt instantaneously throughout the medium after 
a thermal disturbance has been introduced. 

When the wave front impacts the insulated surface at 
5 = 1]/ = 1, the energy will reflect back toward the origin at 

I.O~------------"'" 

0.5 

~- o~~---------~ F="' 

o 

I-
<{ 0.5 
IJ.J 
::c 

-- HYPERBOLIC 

- - PARABOLIC 

PULSE [)URATION,l:.'·O.2 

-O.5'--_____ ......... ______ ~ 

o 0.5 

POSITION. 'TJ 

FIG. I. Heat ftux distribution resulting from a pulsed surface heat ftux in a 
slab of thickness 171 = 1. 
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1.5111" --------------, 

1.0 

~0.5 
~ 

Q; 

lLI 
cr:: 0 
:::l 

-:::~ 
I----+---~--- --

.... 
<f 

-- HYPERBOLIC 

cr:: -- PARABOLIC 
lLI 
a. 
~ 1.0 lLI 

PULSE DURATION.l::.e'O.2 

.... 

OL-----------~----------~ o 0.5 

POSITION, TJ 
FIG. 2. Temperature distribution resulting from a pulsed surface heat flux 
in a slab of thickness "ll = 1. 

TJ = O. This process of reflections at the surfaces will persist 
until the diffusion phenomena dominates. In contrast, the 
parabolic heat flux distribution displays monotonic decay to 
its steady-state value, i.e., it only predicts heat flow from 
TJ = 0 to TJ = 1 for all time S· 

The corresponding temperature distributions 
(as = 0.2) are shown in Fig. 2. Again, the distinct wave na­
ture associated with hyperbolic heat conduction dominates. 
Diffusion causes the temperature wave to exponentially de .. 
cay with time in the direction of propagation. Since energy 
has been deposited behind the wave front, a small residual 
temperature is present. The parabolic solution displays a 
rapid decay to its steady-state value of as ITJI' These two 
figures distinctly show the dominant wave feature associated 
to the hyperbolic heat conduction approximation. 

v. CONCLUSIONS 

A general three-dimensional constant property heat 
flux formulation based on the hyperbolic heat conduction 
approximation has been developed. This formulation is a 
viable alternative to the classical temperature formulation in 
many incidences. The equivalent heat flux formulation for 
the parabolic heat conduction approximation can be ob­
tained by letting the relaxation time T tend to zero. In situa­
tions involving specified heat flux boundary condition, this 
formulation is especially appealing as demonstrated in the 
one-dimensional slab problem. It has been shown that the 
presence of a volumetric heat source in a medium will appear 
as the gradient of the source in the governing flux vector 
equation, while the source and its time derivative shall be 
realized in the corresponding temperature field equation. 
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The temperature distribution is obtained by integrating the 
energy conservation law over time. 

The Green's function method, as developed from 
Green's second formula, has been applied to determine the 
heat flux distribution in a finite slab. A general expression for 
the heat flux distribution subject to any volumetric energy 
source and boundary conditions of the first kind (in flux) has 
been established. The determination ofthe Green's function 
has been obtained by the finite integral transform technique 
in the cause variable without introducing the standard reci­
procity relation. Certainly, the development of the Green's 
function in this manner is more natural from the mathemat­
ical point of view. 

The wave feature of the hyperbolic heat conduction ap­
proximation has been demonstrated in the finite thickness 
slab subject to a pulsed surface heat flux. The realization of a 
finite speed of propagation of the thermal waves has been 
confirmed through this example. This, of course, is in con­
trast to the linear parabolic approximation which predicts an 
infinite speed of heat propagation. 

ACKiNOWLEDGMENT 

This work was supported through the National Science 
Foundation Grant NSF MEA 83-13301. 

IS. Simons, Trans. Theory Stat. Phys. 2, 117 (1972). 
2M. Chester, Phys. Rev. 131, 2013 (1963). 
'Yehuda Taite!, Int. J. Heat Mass Transfer 15,369 (1972). 
4J. C. Maxwell, Philos. Trans. R. Soc. London 157, 49 (1867). 
SM. P. Yemotte, C. R. 247, 2103 (1958). 
OM. P. Yemotte, C. R. 246, 3154(1958). 
7M. P. Yemotte. C. R. 252, 2190 (1961). 
"Cattaneo, C. R. 247, 431 (1958). 
"P. M. Morse and H. Fesbach, Methods of Theoretical Physics, 1 (McGraw­
Hill, New York, 1953). 

1'1i. D. Weyman, Am. J. Phys. 36, 488 (1967). 
liS. Kaliski, Bull. Acad. Pol. Sci. Ser Sci. Tech. 13,211 (1965). 
12M. E. Gurtin and A. C. Pipkin, Arch. Rational Mech. Anal. 31, 113 

(1968). 
13y. A. Bubnov, Int. J. Heat Mass Transfer 19, 175 (1976). 
14B. M. Berkovsky and Y. G. Bashtovoi, Int. J. Heat Mass Transfer 20,621 

(1977). 
I'N. G. Van Kampen, Physica46, 315 (1970). 
16D. C. Kelly, Am. J. Phys. 36, 585 (1968). 
I7B. Yick and M. N. Ozisik, J. Heat Transfer lOS, 902 (1983). 
18M. N. Ozisik and B. Yick, Int. J. Heat Mass Transfer 27,1845 (1984). 
I"E. Lorenzini and M. Spiga, Warme. Stoffubertrag. 16, 113 (1982). 
2~. Domanski, 6th International Heat Transfer Conference. Toronto On­

tario (National Resource Council of Canada, Toronto, Ontario, 1978), p. 
275. 

21M. J. Maurer and H. A. Thompson, J. Heat Transfer 95,284 (1973). 
22J. P. Brazel and E. J. Nolan, 6th Conf. On Thermal Conductivity (1966), p. 

238. 
23K. J. Baumeister and T. D. Hamill, J. Heat Transfer 91,543 (1969). 
24M. S. Kazimi and C. A. Erdman, J. Heat Transfer 97, 615 (1975). 
25S. H. Chan, J. D. Low, and W. K. Mueller, AlChE 17, 1499 (1971). 
2"Tsai-tse Kao, J. Heat Transfer 99, 343 (1977). 
27K. J. Baumeister and T. D. Hamill, J. of Heat Transfer 93, 126 (1971). 
28D. C. Wiggert, J. Heat Transfer 99, 35 (1977). 
29G. F. Carey and M. Tsai. Numerical Heat Transfer 5,309 (1982). 
"'M. N. Ozisik, Heat Conduction (Wiley, New York, 1980). 
'Iy. Arpaci, Conduction Heat Transfer (Addison-Wesley, California, 1966). 
32M. D. Greenberg, Application of Green's Functions in Science and Engi-

neering (Prentice-Hall, New Jersey, 1971). 
33G. F. Roach. Green's Functions, 2nd ed. (Cambridge University, London, 

1982). 
l4F. Hildebrand, Advanced Calculus for Applications, 2nd ed. (Prentice­

Hall, New Jersey, 1976). 
35L. B. W. Jolley, Summation of Series (Dover, New York, 1961), p. 62. 

Frankel, Vick, and Ozisik 3345  [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Tue, 26 May 2015 21:50:25


