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Approximately invariant circles for area preserving maps are defined through a mean square flux, (~02-) variational 

principle. Each trial circle is associated with its image under the area preserving map, and this defines a natural 

one-dimensional dynamics on the x coordinate. This dynamics is assumed to be semiconjugate to a circle map on an 

angle variable 0. The consequences of parity (P-) and time (~--) reversal symmetries are explored. Stationary points 

of (P2 are associated with orbits. Numerical calculations of ~P2 indicate a fractal dependence on rotation number, with 

minima at irrational numbers and maxima at the rationals. For rational frequency there are at least three stationary 

points of ~2: a pair of minimax points, related by DZT-reversal, and a stationary, but not minimal, symmetric solution. 

A perturbation theory without small denominators can be constructed for the symmetric solution. A nonreversible 

solution for the (0, 1 ) resonance shows that this solution is highly singular and its circle map is not invertible. 

1. Introduction 

One of the most appealing ideas of classical 

Hamiltonian mechanics is the action-angle rep- 

resentation, which reduces the problem of under- 

standing the dynamics of a system to the essen- 

tially geometric one of transforming to a phase- 

space coordinate system in which the new level 

surfaces of momentum (action) are invariant 

tori of the dynamical system, on which there is 

a trivial, lower dimensional dynamics involving 

only the angles. 

As is now well known, this idea is fatally 

flawed, owing to the fact that the invariant sets 

of a generic Hamiltonian system do not form a 

set of smooth invariant nested tori. However, 

the Kolmogorov-Arnold-Moser (KAM) theo- 

rem [ 1-3 ] tells us that, for systems slightly per- 

turbed from one of the exceptional (integrable) 

ones for which action-angle coordinates exist, 

there remains a finite measure of invariant tori 

topologically equivalent to the original ones; but 

we also know that between these KAM tori there 

are chaotic regions (invariant sets of the same 

dimension as the phase space, containing unsta- 

ble orbits), islands (stable orbits surrounded by 

invariant tori with different topology from the 

original ones), and invariant cantor sets (can- 

tori) representing a residue of KAM surfaces 

which have ceased to exist [4]. 

In many cases, nevertheless, the action-angle 

description does provide an approximation, in 

some sense, to a nonintegrable system. A case 

in point is the Hamiltonian flow describing the 

magnetic field lines in nonaxisymmetric plasma 

containment devices (stellarators). The vacuum 

fields are carefully designed, by visual inspec- 

tion of Poincar6 plots, or by more sophisticated 

dynamical methods [5], so as to appear close 

to integrable. Introduction of a plasma will al- 
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ter the field somewhat, but for moderate plasma 

pressures the magnetic field lines will tend to 

remain close to nested tori. Because the mag- 

netic field causes plasma properties to be highly 

anisotropic, it is desirable to use a curvilinear co- 

ordinate system, with level surfaces of  one of the 

coordinates corresponding to the approximately 

invariant surfaces of  the magnetic field system 

[6]. 
Another important application of  approxi- 

mate action-angle transformations is to the es- 

timation of the long-time stability of  particle 

orbits in accelerators [7 ]. 

We thus have practical contexts in which it is 

important to have an action-angle-like coordi- 

nate system approximating a nonintegrable sys- 

tem. We also need a measure for the departure of  

the true system from the approximating one, and 

in particular a measure for the transport of  flux 

and particles across the "approximately invari- 

ant surfaces" since the aim in both the plasma 

and accelerator applications is to confine parti- 

cles for a very long time. 

Another plasma context where it has been sug- 

gested that an action-angle-like transformation 

would give an improved description of  the dy- 

namics is in the field of wave-particle interac- 

tion theory, where it is known as the oscillation- 

centre representation [8]. This has been a very 

useful technique in regions of  phase space where 

the motion is essentially integrable [9], but re- 

mains problematical in chaotic regions where 

perturbative methods break down [ 10 ]. One in- 

triguing question raised by the attempts at a per- 

turbation theory for oscillation-centre variables 

is that of  causality: whether to use acausal [8] 

or causal [ 11 ] propagators for constructing the 

generating function. We shall find that the is- 

sue of  time-reversal invariance arises even in the 

simple mapping problem which is the subject of  

this paper. 

Rather than tackle the full Hamiltonian prob- 

lem we choose in this paper to restrict atten- 

tion to reversible, area-preserving (symplectic) 

twist maps of  the plane. These form a proto- 

type for Hamiltonian systems more susceptible 

to numerical experimentation than continuous 

time systems, and are consequently already well 

explored, especially the standard map (see e.g. 

MacKay et al. [4] ). Since these maps are much 

simpler than full Hamiltonian systems (espe- 

cially those corresponding to magnetic field 

lines in plasma confinement problems) their 

study forms a good test bed for developing nu- 

merical methods as well as clarifying conceptual 

problems. 

Our basic idea for constructing approximately 

invariant curves in these mappings is one of flux 

minimization. This was suggested by Wigner 

[12] as a way of partitioning a system into 

weakly interacting subsystems. More recently 

[13 ], a global flux minimization principle was 

enunciated for defining an optimum action- 

angle-like representation of  a given noninte- 

grable Hamiltonian system. Another global min- 

imization principle for approximately invariant 

curves of maps has recently been introduced by 

Bazzani et al. [ 14]. 

A drawback of such global principles is that 

they involve minimization over the full phase 

space rather than just the vicinity of an approx- 

imately invariant curve. MacKay et al. [4] have 

studied the flux through "partial barriers" con- 

taining quasi-periodic orbits and have observed 

that the flux appears to be minimal for "noble" 

winding numbers. This is a local method, but it 

is based on extremizing action [ 15,16 ], not flux. 

Furthermore, the flux as defined by MacKay et 

al. [4] is i ndependen t  of choice of partial bar- 

rier (provided it contains the orbit) and so min- 

imizing it cannot give rise to any unique approx- 

imately invariant curve. 

A new variational principle based on extrem- 

izing the m e a n  square  f l u x  through trial partial 

barriers was recently proposed by Meiss and 

Dewar [ 17 ]. This is similar to the principle ad- 

vanced by Dewar [13], but is local rather than 

global, and is formulated for mappings rather 

than Hamiltonian systems. It was shown [17] 

that the intersections of unconstrained rota- 
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tional curves which extremize the mean square 

flux are orbits, thus showing that the principle 

is fundamentally related to the invariant sets of 

the dynamical system, a property which would 

seem essential for a natural generalization of 

action-angle coordinates. It is this new principle 

which we develop further in the present paper, 

introducing a parametric representation which 

allows questions of conjugacy and time-reversal 

invariance to be investigated, and presenting 

numerical results from its implementation for 

the standard map. 

The numerical results reveal the existence of 

several fundamentally different classes of solu- 

tions. This paper does not give a complete cat- 

alogue of possible solutions, but rather explores 

a few special cases with a view to achieving an 

initial classification of classes of solutions on the 

basis of their symmetry under time and parity 

reversal. We also seek to establish whether some 

of the one-dimensional maps in the theory can 

be assumed to be invertible, and find in general 

that they cannot. 

In section 2 we develop the properties of area- 

preserving twist maps whose generating func- 

tions have time reversal and parity symmetries, 

generalizing work of MacKay [ 18 ], and also 

present a new discussion of discrete translation 

invariance and discrete Galilean transforma- 

tion invariance in periodic systems. The stan- 

dard map is an example of a dynamical system 

possessing these symmetries. 

As in action-angle theory there is a lower di- 

mensional dynamics associated with the approx- 

imately invariant curves. In the case of area pre- 

serving maps the associated dynamics is one di- 

mensional, and in the case of periodic area pre- 

serving maps the one-dimensional dynamics is 

defined on a circle. In section 3 we review the 

properties of one-dimensional dynamics on a cir- 

cle, which we will use to generate the approx- 

imately invariant curves of the area-preserving 

map. In particular, a representation in terms of 

a semiconjugacy to a circle map is introduced 

which will allow generalization of the formula- 

tion of Meiss and Dewar [17] to the case where 

rotational circles are not graphs over x. Also, 

a special parametric representation is defined 

which allows reversibility to be made manifest. 

In section 4 we show how a circle map defines 

a rotational circle C and its image C* - T ( C )  

in the two-dimensional cylindrical phase space 

of the area-preserving map T, and in section 5 

we define the quadratic flux ~02 and the area A. 

We show that q~2 is invariant under time and 

parity reversal provided that the circle map is 

also reversed, thus showing that extremizing cir- 

cle maps are either reversible or occur in pairs re- 

lated by reversal. We derive the Euler-Lagrange 

equation for the variational principle in section 6 

and show that it implies that some sets of in- 

tersections of C and C* associated with uncon- 

strained extrema of {o2 must be orbits under T. 

We present an analytic calculation of ~02 and 

A for a one-mode trial function in section 7 and 

in section 8 we describe a numerical implemen- 

tation of a multimode minimization. Results 

of a scan in rotation number for the standard 

map show in a striking fashion the hierarchy 

of nonlinear resonances described by the Farey 

tree. Local minima of tfl2 appear to be associ- 

ated with quasiperiodic orbits, corresponding to 

KAM curves or cantori, where the flux is low, 

whereas periodic orbits are associated with min- 

imax points of ~02, where the flux goes through 

a maximum in one direction, but is minimal 

in all other orthogonal directions. We present 

numerical and analytic periodic solutions of the 

Euler-Lagrange equation for the lowest order 

rational rotation numbers in section 9, showing 

that solutions which minimize the quadratic 

flux (except for the one descending direction 

due to the flux peaking at rational surfaces) have 

broken P~--symmetry. Conclusions are given in 

section 10. 

A useful identity for deriving properties of cir- 

cle maps is presented in appendix A, while a 

time-symmetric representation for circle maps is 

given in appendix B and applied to the problem 

of finding the Euler-Lagrange equation for con- 
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strained variations in appendix C. is stationary for all variations of (x0, Xl . . . .  , Xn ) 

with x0 and Xn held fixed. This yields the Euler- 

Lagrange equations 

2. Area-preserving maps 

2.1. Hamiltonian formulation 

An area-preserving map T: ~2 ~ ~2 such that 

a point ( x , y )  maps to a new point (x*,y*) can 

be defined implicitly by 

y* = y+  ( x , x * )  - F 2 ( x , x * ) ,  

y = y _ ( x , x * )  = - F l ( x , x * ) ,  (2.1) 

where the functions y± are defined in terms 

of a generating function of Type 1 [19], 

F ( x , x * ) ,  with F1 (x ,x*)  _- O F ( x , x * ) / O x  and 

F2(x,x* ) ==- OF (x ,x* )/Ox*. 

We require the twist condition, 

Oy_(x ,x*) /Ox* = -Fl2(X,X*)  > C > O, 

(2.2) 

for some positive constant C, so that eqs. (2.1) 

can globally be solved for x* and y* in terms o f x  

and y. As T may be thought of  as being the return 

map for a periodically perturbed Hamiltonian 

system, we shall term x the "position" and y the 

"momentum". 

It can be seen by inspection of eq. (2.1) that 

the generating function of  the inverse map T-1 

is 

F ( - 1 ) ( x , x  *) =- - F ( x * , x ) .  (2.3) 

2.2. Lagrangian formulation 

An orbit segment of T is defined as a sequence 

(x0, xl . . . . .  xn ) such that the action 

n - I  

W [ N 0 , X l  . . . . .  Xn] =- y ~  F ( x t ,  x t+l)  

t=0 

(2.4) 

F2 (Xt- l ,Xt  ) -oc El (xt ,xt+ l ) = O, 

t = 1,2 . . . .  , n -  1, (2.5) 

which by eqs. (2.1) is the statement that 

y -  (xt ,xt+l) = y+ (x t - l ,x t ) .  (2.6) 

By eqs. (2.1) this shows that the xt do indeed 

correspond to the x-components of iterates of T 

applied to (x0, Y0), with Y0 = Y- (x0, xl ). Thus 

the second-order difference equation eq. (2.5) 

is an alternative, Lagrangian statement of the 

discrete Hamiltonian dynamics described by T. 

However, the Lagrangian dynamics defined by 

eq. (2.5) does not uniquely specify T. 

This is a consequence of  the fact that the La- 

grangian dynamics does not follow from one 

unique generating function, but, rather, from 

an equivalence class. We define a dynamically 

equivalent generating function Fe as one which 

generates the same orbit segments as F for any 

initial and final positions x0 and Xn (n arbi- 

trary). Thus all generating functions Fe (x, x* ), 

defined by 

qFe(X,X*) = F ( x , x * )  

- U ( x )  + U ( x * ) - K ,  (2.7) 

where K and a are arbitrary constants and U an 

arbitrary function, are dynamically equivalent 

since the associated actions differ only by a con- 

stant factor and by endpoint contributions (cf. 

the dynamical equivalence of  Lagrangians differ- 

ing by total time derivatives in the continuous 

time case). The equivalence can also be demon- 

strated by direct substitution into eq. (2.5). In 

the following we shall assume that a = + 1. 

2.3. Lagrangian symmetries 

The fundamental dynamical symmetries 

which we shall use are most easily defined 
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in the Lagrangian descript ion before trans- 

lating them into the Hami l ton ian  represen- 

tation. We define the time-reversal (T) and 

parity-reversal (P) symmetr ies  of  a dynami-  

cal system as the propert ies  that,  given any 

orbit  segment ( x 0 , x l , . . . , x n ) ,  the sequences 

(x~, x~_ 1 . . . . .  Xo) and ( -Xo ,  - x l , . . . ,  - x n  ), re- 

spectively, are also orbit  segments. In terms of  

the action, Y-symmetry is the proper ty  that 

W(xo , x~  . . . .  , x , )  "- W ( x , , x n _ l  . . . . .  Xo), 

(2.8) 

and P-symmetry  the proper ty  that 

W ( x o ,  x l , . . . , x n )  "- W ( - x o , - x l  . . . . .  - x n ) ,  

(2.9) 

where - denotes equali ty up to a constant  plus 

terms depending only on the endpoints  x0 and 

xn. This is similar to the idea o f  dynamical  equiv- 

alence in t roduced  in the previous  section, ex- 

cept that  here we have an active interpreta t ion 

o f  the t r ans fo rma t ion - - the  generating funct ion 

remains the same but  the orbits are t ransformed.  

We have not found it necessary to allow a factor 

analogous to a in eq. (2.7) in the def ini t ion of  

equivalence for the maps we use. 

These hold for any n if  F has the symmetr ies  
~-: 

F ( x , x * )  = F ( x * , x )  + Q ( x )  - Q ( x * ) ,  

(2.10) 

for some funct ion Q and any x and x*, and ~z: 

F ( x , x * )  = F ( - x , - x * )  + P ( x )  - P ( x * ) ,  

(2.11) 

where P is necessarily odd (apart  f rom a trivial 

constant) .  The  differences Q ( x )  - Q ( x * )  and 

P ( x )  - P ( x *  ), must be allowed in general be- 

cause these contr ibute  only endpoin t  terms to 

the action, no mat te r  what value of  n is taken. 

Setting x = x* -- 0 we see that  there can be no 

constant  te rm in eq. (2.10) or eq. (2.11 ) analo- 

gous to K in eq. (2.7).  

We also define the combined  PT-symmetry  as 

the condi t ion that 

F ( x , x * )  = F ( - x * , - x )  + R ( x )  - R ( x * ) ,  

(2.12) 

for some funct ion R, which must  be even for con- 

sistency. This is automat ic  if both  T and P sym- 

metries apply, in which case Q ( x )  = R ( x )  + 

P (x) .  This symmetry  is particularly useful be- 

cause, unlike the ~- and P symmetries,  it does not 

reverse the sign of  the velocity xt + 1 - xt and can 

thus define a symmetry  of  a given orbit, rather  

than relating two generally different  orbits. 

The  7 and P symmetr ies  are c o m m o n  sym- 

metries of  physical Hamil tonians  and it is inter- 

esting that there are other  analogues of  physi- 

cal symmetr ies  which physically mot iva ted  maps 

possess. The physical configurat ion variable, x is 

often an angle (with a period we take to be 1 ) or 

the posi t ion coordinate  for mot ion  in a periodic 

potential.  Accordingly we take the configuration 

space o f  T to be a covering space for a circle, and 

the phase space to be a covering space for a cylin- 

der; so that, for example, the line y = const, rep- 

resents a circle drawn around the cylinder. Thus 

we assume our  dynamical  system to be periodic, 

a discrete version o f  the translat ion invariance of  

physical systems. By a periodic system we mean 

that, given any orbit  segment (Xo,Xl . . . . .  Xn), 

the sequence (x0 + m, Xl + m . . . . .  xn + m ) is also 

an orbit  segment for any integer m. In terms of  

the generating function, the periodici ty assump- 

t ion implies 

F ( x , x * )  = F ( x , x * )  + A ( x )  - A ( x * )  + ax,  

(2.13) 

for some funct ion A, and funct ion P (x, x* ) with 

the periodici ty 

F ( x  + m , x *  + m )  = F ( x , x * ) .  (2.14) 
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The possibility of having the linear term a x  

in eq. (2.13) must be admitted because actions 

differing by a constant (in this case, a n m )  give 

the same variational equations. The terms A (.) 

in eq. (2.13) can be removed without affecting 

the Lagrangian dynamics by a transformation 

of the typeeq.  (2.7) witht7 = 1, K = 0, but 

the term a x  cannot be. Thus a parametrizes a 

one-parameter family of fundamentally distinct 

systems. In the special case a = 0 we can re- 

duce F to the periodic form P without affecting 

the Lagrangian dynamics. In the Hamiltonian 

framework such systems, with periodic generat- 

ing functions, are called exac t  s ymp lec t i c  (see 

section 4). As a consequence of the following 

lemma we shall need to consider only this class: 

L e m m a  I. Periodic systems which also have ~- 

and/or  P symmetry must have a = 0. 

This is a consequence of the fact that the term 

a x  is asymmetric and odd. 

The final symmetry which we wish to define 

is per iod ic  Gal i lean  invariance:  Given an orbit 

segment (xo,  x l  . . . .  , x ,  ), the sequence (x0, x~ - 

k . . . .  , x~ - n k )  is also an orbit segment for any 

integer k. Assuming the system to be exact sym- 

plectic, Galilean invariance requires the gener- 

ating function to have the property 

F ( x , x * )  = F ( x , x *  - k )  

+ B k ( X )  - B k ( x * )  + Ck,  (2.15) 

for some function Bk and constant C~. 

2.4. Con jugac ies  

Hoewver, taking u = 0, we show in this sec- 

tion that the concept of Lagrangian dynami- 

cal equivalence introduced in section 2.2 cor- 

responds in the Hamiltonian, phase space de- 

scription to a special case of equivalence or con- 

j u g a c y  of maps related by transformations of 

the form Te - S ° T ° S - ~ .  Here o denotes com- 

position of functions, e.g. f o g ( . )  =_ f ( g ( . ) ) .  

In this case the position-preserving transforma- 

tions S are determined by the transformation of 

the generating function. Replacing F by Fe in 

eqs. (2.1) we see that eq. (2.7) implies a phase 

space transformation S: 

i 

X ~ - - ~ X = X ,  

y ~ y  = a [ y  + U'(x) ] .  (2.16) 

We consider only two possibilities for a, the 

first case being a = + 1. In this case S is canoni- 

cal because it conserves the fundamental Poisson 

bracket {x, y} [ 19 ] (and hence conserves area). 

(In geometrical language such transformations 

are said to be symplectic because they preserve 

the symplectic two form co = dx A dy [20].) 

The second possibility is a = -1 .  Since it 

changes the sign of an element of area, but pre- 

serves its absolute value, S is in this case an- 

t i s ymplec t i c  [20] (or anticanonical [21 ] ). It is 

also an involution. (An involu t ion  is a map S 

such that S ° S  = Id, the identity transforma- 

tion. ) Thus the maps generated by eq. (2.7) with 

a = - 1 form the dynamical equivalence class of 

maps conjugate to T under antisymplectic invo- 

lutions which preserve x. 

We also wish to consider phase space trans- 

formations which do not preserve x. These can 

also be related to the generating function by con- 

sidering an extended dynamical equivalence un- 

der change of variable ~t = ft(xt), with dy- 

namically equivalent generating function F be- 

ing given by 

t x F ( ~ l , ~ t + l )  = F ( x t ,  x t + l )  

+ U ( x t + l )  - U(xt) - K, (2.17) 

which implies the transformation S: 

~, = f t ( x , ) ,  

y, = cr[y + U ' ( x ) ] / f / ( x t ) ,  (2.18) 

of which eq. (2.16) is the special case where f 

is the identity. 

For example, in order to handle PY-symmetry 

we shall need to find the generating function for 
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the dynamical equivalence class of maps con- 

jugate to T under antisymplectic transforma- 

tions which change the sign of x, i.e. for which 

= - x .  Then the above equations apply with 

f t (x )  = - x a n d f ' ( x )  = ~ = - l .  In th i scase  

S is an involution if U is even. 

An example where the transformation de- 

pends on t is the Galilean transformation ~t = 

x - ct (where c and t are here taken to be inte- 

gers). In this case f ' ( x )  = 1. 

2.5. Hamiltonian symmetries 

Corresponding to the Lagrangian symmetries 

of section 2.3 there are symmetries in the phase 

space description. The first type of symmetry 

is a conjugacy which leaves T invariant: T = 

S o T o S - 1 .  The transformation S is found from 

eq. (2.18) by choosing a = 1 in eq. (2.17) and 

U so as to cancel any corresponding function 

in the Lagrangian symmetry relation, ending up 

with F(-Yt ,~t+l)  = F(~t , -g t+l)  (hence T = 

T). As an example P-invariance, eq. (2.11 ), is of 

this type, where we take U (-) = P (.). So also is 

periodic Galilean invariance, eq. (2.15), where 

we take U(.) = B k ( . ) .  An interesting conse- 

quence of this will be discussed in section 2.6. 

Of more interest for the moment are cases 

where T is invariant under a combination ofcon- 

jugacy and time reversal: 

T = S o T  - 1 ° S  - l ,  (2.19) 

which is known as weak reversibility [22 ]. When 

S is an antisymplectic involution, so that S-1 = 

S, T is said to be reversible [23] with respect to 

the symmetry S. 

To find S from eq. (2.18), choose a -- -1  

in eq. (2.17) and U so as to cancel any cor- 

responding function in the Lagrangian sym- 

metry relation, ending up with F ( x t , x t + l )  = 

-F(-Yt , -Yt+l) ,  the generating function for the 

inverse transformation by eq. (2.3). 

Using eq. (2.10) we see that T-symmetry 

implies weak reversibility under transforma- 

tions of the type eq. (2.16), with U (-) -- Q (.). 

From eq. (2.12) and eq. (2.18) we see, taking 

U (-) = R (-) (even), that P~--symmetry implies 

reversibility under antisymplectic involutions 

SI: 

y = y + R ' ( x ) .  (2.20) 

The assumption of reversibility under S~ is of- 

ten made [4,24,25] in the study of invariant 

sets of area-preserving maps for convenience in 

locating periodic points. We have here shown 

how it is related to the fundamental parity and 

time-reversal symmetries important in theoreti- 

cal physics [21 ]. 

A symmetry line is defined as a curve of fixed 

points of S. For example the symmetry line of 

S~ is the curve x = 0. 

The utility of reversibility of T under antisym- 

plectic involutions S in locating periodic orbits 

derives from the following lemma: 

L e m m a  2. Every orbit which has a point on a 

symmetry line is symmetric. Conversely, if an 

orbit is symmetric under S, then it has a point 

on the symmetry line of either S or TS.  

To see this, let (x0,Y0) be a point on the sym- 

metry line of S. Then, by definition, (x0, Y0) = 

S(xo,Yo) .  Repeatedly applying eq. (2.19) to 

( x j , y j )  =- TJ(xo, Yo) implies that ( x j , y j )  = 

S o T - J ( x o ,  Yo) - S ( x _ j , y _ j ) .  Thus the point 

( x _ j , y _ j )  is the reflection of (xj ,y j ) .  Con- 

versely suppose that the orbit is symmetric, 

then ( x j , y j )  = S(xo,Yo)  for some j.  I f j  is 

even eq. (2.19) implies that T - J / 2 ( x j , y j )  = 

S ° T J / Z ( x o , Y o )  , while if j is odd we have 

T - ( J - l ) / Z ( x j ,  y j )  = T o S o T ( J + 1 ) / Z ( x o , Y o )  , 

both of which imply there is a point on a sym- 

metry line. 
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2. 6. Examples 

As an example, consider the generalized stan- 

dard map 

F(x,x*)  = ½(x - - X * )  2 - -  V(X). (2.21) 

This satisfies eq. (2.10) with Q(x) = - V ( x ) ,  

so that the map is Y-reversible for any V. Fur- 

thermore, if V is an even function then F (x, x* ) 

obeys eq. (2.12), so that the map is then PT- 

reversible under the antisymplectic involution 

Sl ofeq. (2.20), with R -= - V .  We also assume 

that V is periodic, so that F is exact periodic as 

defined in eq. (2.14). It also satisfies the con- 

dition, eq. (2.15 ), for periodic Galilean invari- 

ance with Bk (X) = - k x  and Ck = - ½k 2. Thus, 

from eq. (2.18), T is invariant under the trans- 

formation 

Y t  = x t  - ct, 

Yt  = Yt -- C. (2.22) 

where k is the nonlinearity parameter. This is an 

even function so the map 

k 
x* = x + y - ~ s i n 2 n x ,  

k 
y* = y  ~ s i n 2 n x ,  (2.25) 

generated by F is PT-reversible. For the standard 

map it is known [24] to high precision that the 

last rotational invariant circle (a rotational circle 

has the same topology as the circle y = const.) 

to break up as k is increased has golden mean 

rotation number y = (1 + v~) /2 .  In fact by pe- 

riodic Galilean invariance and P symmetry the 

circles with rotation numbers u = n + y, where 

n is any integer are equivalent, and are there- 

fore destroyed simultaneously. The golden circle 

is destroyed at k = kc(y) = 0.971635406... .  

Above this value, there is still an invariant set 

with this rotation number, but it is a Cantor set, 

and hence is called a cantorus [26]. 

Recalling that c is an arbitrary integer and us- 

ing the exact periodicity of F,  we see that the 

generalized standard map is periodic in the y- 

direction as well as the x-direction. 

The generating function above is not symmet- 

ric between x and x*, but, by choosing U (x) = 

-½V(x)  in eq. (2.7) we can transform to the 

dynamically equivalent, symmetric generating 

function 

Fsym(X,X*)  = l(x-x*)2 

-½IV(x) + V(x*)]. (2.23) 

The corresponding y corresponds to the symme- 

try coordinate y of [4]. In general, generating 

functions which obey the Y-reversal symmetry 

condition, eq. (2.10), can be symmetrized in this 

fashion. 

The commonly used standard map has a gen- 

erating function of the form eq. (2.21 ), with 

k 
V(x) - 4n ~ c o s 2 n x ,  (2.24) 

3. Circle maps 

Just as in conventional action-angle theory 

the dimensionality of the dynamics is reduced 

to half that of the phase space (being in terms 

of the angles alone, on a given invariant toms), 

so we associate a one-dimensional dynamics 

with the approximately invariant rotational cir- 

cles we seek in our two-dimensional, cylindrical 

phase space. (Note that, unlike the integrable 

case, most orbits under this one-dimensional 

dynamics do not correspond to orbits under T 

in the full phase space.) In this section we dis- 

cuss the representation of circle map dynam- 

ics, and in the next we discuss the phase space 

representation for rotational circles. 

3.1. Representations 

A one dimensional map 

x ~ x* = a ( x )  (3.1) 
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is called a circle map  if  a (x )  - x  is per iodic  (cf. 

eq. (2 .14)) .  Thus  one representa t ion o f  the map 

is 

a ( x )  = x + ~2 

+ ~ am cos 2grnx + ~ bm sin 2gmx.  

r n = l  m = l  

(3.2) 

As in ac t ion-angle  theory we represent  the 

one-dimensional  dynamics  in terms of  a new 

variable 0 which evolves as 

curve in the x-x* plane described by eq. (3.5).  

This causes no problem, since, unlike our  pre- 

vious formulat ion [17],  we now do not  actually 

use a, but  rather work purely in terms of  X and 

p. 

In fact we shall concentrate  on two cases in 

this paper. In the first case we fix p = R ,  and 

allow X to vary. In the second we fix X(O) = O, 

and allow p to vary. (It would appear  however,  

f rom an argument in section 9.3, that there are 

cases where both p and X must  be allowed to 

vary in a nontrivial  way. ) 

0 ~ O* - p(O), (3.3) 

where p is a differentiable circle map which in 

some sense is s impler than a. For  example,  we 

will somet imes  use the rigid rota t ion p = R~ 

where 

3.2. Conjugacy to rigid rotation 

A di f feomorphism of  a circle, ~, possesses a 

rotat ion number  u (preserved under  conjugacy) 

def ined by 

R~(O) ~- 0 + u. (3.4) u ~_ lim a~(x ) /n ,  (3.7) 
?/----+CO 

In any case, the 0-dynamics  will be assumed re- 

lated to that  of  x by the change of  variables, 

x = X(O),  x* = X(O*), (3.5) 

where X is a differentiable circle map. We re- 

gard the 0-dynamics  as, in a sense, more  fun- 

damenta l  than the x-dynamics ,  despite the fact 

that there is considerable f reedom in choosing X. 

In the case where an X(O) can be found which 

is cont inuous  and has a cont inuous  inverse, the 

change o f  variables is a h o m e o m o r p h i s m  (topo- 

logical equivalence)  and the map a is conjugate 

to the map p: 

a ( x )  = X o p o X  - l ( x ) .  (3.6) 

However  when X is not  invertible, we can go 

uniquely f rom 0-space to x-space, but  not vice 

versa. The relation between the x-space and 0- 

space dynamics  is then called a semiconjugacy. 

Since ~ is not  a single valued funct ion in this 

case, we shall reinterpret  the symbol a to denote  

the set {X(O) ,Xop(O)  I 0 E ~}, that is, the 

where a n - o ~ o o f  - 1 .  By a theorem of  Denjoy 

(see e.g. [27] ), i f u  is irrational and loga '  (x )  is 

o f  bounded  var ia t ion then there exists an invert- 

ible function X(O) such that p(O) = R , ( 0 ) ;  

that is, such that a is conjugate to the rigid ro- 

tation R, .  By a theorem of  Herman  (see e.g. 

[27]) ,  if  u satisfies a Diophant ine  condit ion,  

]exp2inmu - II > C~lrnt -i-~ for any nonzero 

integer m and for any e > 0 and for some C~ 

(such u are of  full measure) ,  and i f a  is k-t imes 

differentiable, where k > 3, then o~ is conjugate 

to a rigid rotat ion by an X which is (k - 1 - ~/)- 

t imes differentiable for any ~/ > 0. If  a is ana- 

lytic then so is X. (It is shown in [27] that the 

restrict ion to k >_ 3 is unnecessarily restrictive, 

but  was needed in the original p roof  for techni- 

cal reasons).  Note  that the rotat ion number  is 

necessarily unique only if  a is invertible. 

These theorem~ rely on u being irrational. 

However  i f O  in eq. (3.2) is varied (keeping the 

Fourier  coefficients f ixed),  one finds that, for 

almost all £2, u is " locked" to a rational value 

because of  the occurrence of  attracting periodic 



R.L. Dewar, ,I.D. Meiss /Flux-minimizing curves for reversible area-preserving maps 485 

orbits of the circle map. That is, g2 as a func- 

tion of u has a "Devil's staircase" behaviour. 

Thus it is not advisable to restrict ourselves to 

circle maps conjugate to rigid rotations and we 

must assume in general that p has nonvanishing 

Fourier coefficients in the representation anal- 

ogous to eq. (3.2). One might hope to reduce 

the nonuniqueness of this representation in a 

way useful for numerical purposes by choosing 

X so as to minimize the Fourier spectral width 

of p using, for instance, the "spectral condensa- 

tion" algorithm of Hirshman and Meier [28]. 

One may well be able to reduce the amplitude 

of the low-order Fourier modes of p by a good 

choice of X, but Herman's theorem shows that 

it would be misguided to try to economize on 

the overall number of modes used by removing 

the asymptotic tail of the spectrum of  p using 

conjugacy, since the Fourier spectrum of X in 

general decays slower than that of a. Thus more 

modes would be used to represent X to a given 

accuracy than would be saved from p. 

3.3. Reversibility 

It will turn out that our circle map can in- 

herit the PT-symmetry of T. We define a PT- 

reversible circle map a as one for which 

c~(x) = - a - l ( - x ) ,  (3.8) 

where a - l  is the inverse map (assuming it ex- 

ists). Since this reversibility condition is pre- 

served under conjugation provided X is an odd 

function, we can extend the definition to the case 

where X is not monotonic by redefining PT- 

reversibility of  the one-dimensional dynamics to 

be the condition 

odd X, to a rigid rotation is reversible. We shall 

always consider X to be odd so that the 0- and x- 

dynamics have the same symmetry properties. 

Although eq. (3.8) is strictly meaningless 

when X is not a homeomorphism, we can inter- 

pret PT-reversibility geometrically as a reflec- 

tion symmetry of the curve eq. (3.5) about the 

diagonal lines x* + x = k, with k any integer 

(see figs. 2 and 4). 

The representation eq. (3.2) has the drawback 

that there is no simple relationship between the 

Fourier series of the map and that of its inverse, 

except that their constant parts g2 are equal in 

magnitude and opposite in sign (see eq. (A.2)). 

Thus there is no simple way to characterize PT- 

reversibility, eq. (3.8), in this representation. A 

representation in which PT-reversibility (or oth- 

erwise) of p is manifest is given in appendix B. 

4. Rotational circles 

A rotational circle is a loop in the cylindrical 

phase space of T which cannot be shrunk to a 

point. That is, it is a curve with the same topol- 

ogy as the invariant curves y = const, of the un- 

perturbed map. Let q 6 ~ parametrize the posi- 

tion of any point on the rotational circle C. That 

is C is the map q ~ ( x , y )  - (x_ (q ) , y_ (q ) ) ,  

where the functions x_(q)  and y_(q)  have 

the periodicities (x_(q  + n ) , y _ ( q  + n))  = 

(x_(q) + n, y_ (q ) )  for any integer n. C need 

not be the graph of a function of x: it may have 

S-shaped sections or even cross itself. The iterate 

of C, C* - T (C), similarly defines a rotational 

circle C* : q ~ (x*,y*) =- (x+ (q) ,y+(q) ) .  

From eqs. (2.1) we have 

p(O) = - p - ~ ( - O )  (3.9) 

for any X such that p-~ exists and for which 

X(O) = - X ( - O ) .  (If no such X exists then the 

dynamics is a forteriori not •T-reversible.) In 

particular, note that the rigid rotation R~ is al- 

ways ~T-reversible, so that any a conjugate, with 

Y+(q) = y~:(x-(q) ,x+Ol)) .  (4.1) 

Thus, specification of the pair of functions 

x_(q)  and x+(q) ,  which is a parametric de- 

scription of the single circle map a : x ~ x*, de- 

fines in a natural way the two rotational curves 

C and C*. 
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The parametrization of C and C* is so far ar- 

bitrary. We use a representation based on eq. 

(3.3), setting 0 = r/ for x_ and 0 = p(r/) for 

x+ so that 

x - ( n )  = x ( n ) ,  

x+ (rt) = Xop(rl) .  (4.2) 

has a corresponding point sharing the same ver- 

tical tangent. 

Using eqs. (2.1), (4.1) and (4.2) in eq. (4.3) 

gives Yi explicitly in terms of the generating 

function F: 

Y+ (0) = F2(Xop -~ (O),X(O)) ,  (4.4) 

This parametrization treats x_ (q) differently 

from x+ (r/), so that it is not manifestly symmet- 

ric with respect to time reversal. An alternative, 

time-symmetric parametrization is developed 

in appendices B and C. 

The parametric specification of C and C* in 

terms of r/is inconvenient for purposes of com- 

paring the two curves because a given value of r/ 

corresponds to different values of x on the two 

curves. To rectify this we introduce an alterna- 

tive parametric description with a common x = 

X(O) andwi thy  = Y_(O) o n C a n d y  = Y+(O) 

on C*, with 

Y_(O) - y_(O), 

Y+ (0) -_- y+ op-1 (0) ,  (4.3) 

(see fig. 1 ). Note that 11+ (0) is single valued 

only if p is monotone, which we shall assume in 

this section to be the case. If  p is monotone, the 

only allowed turning points of x in this repre- 

sentation come from possible turning points of 

X (0). That is, if one of the curves has a point 

where its tangent is vertical, then the other also 

F-  

I 

J N, ,  JY+ 

(o)7 J 

0,5 X(O) x X(O*) 0,5 

(0") 

(0") 

Fig. 1. Phase  plane o f  area preserving m a p  T, showing 

rotat ional  curve C and  its image C* = T(C) with the 

O-parametr izat ion o f  a poin t  z = (x,y) and  its image 

z* = (x*,y*). 

and 

Y_ (0)  = - E l  ( X  ( O ) , X  op(O) ). (4.5) 

The area A under C is defined by 

1 

A--- f 11_ (0) X'(O) dO 

0 

1 

= f Y-  ( ~1) x% ( tl ) dtl, 

0 

(4.6) 

and similarly for the area A* under C*, with - 

replaced by +. 

The upwardflux ~ol through C is defined to be 

the area above C which is below C* 

1 

el - f A Y ( O )  H(AY) X'(O) dO, 

0 

(4.7) 

where H is the Heaviside step function and 

AY(O) -= Y+(O) - Y_(O) (4.8) 

is the (signed) vertical distance between C* and 

C at x = X(O). Substitution of eqs. (4.4) and 

(4.5) into eq. (4.8) and comparison with eq. 

(2.5) demonstrates 

Lemma 3. Define xj =- Xop  j (00). Then (Xo, X~, 

. . . .  Xn) is an orbit segment if and only if 

AY°pi(Oo) = 0 f o r i  = 1,2 . . . . .  n -  1. 

The net f lux f through C is defined to be the 

difference between the upward and downward 
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fluxes; i.e. ~ = A* - A. Using the generating 

function forms in eq. (2.1) we find 

1 

7 =f[F, (x_,x+) x" 
0 

+ f 2 ( x - , x +  ) x+  (t l)  ] dtl. (4.9) 

We recognize the integrand as the perfect dif- 

ferential dF,  so 5 r = F(x_(O) + 1,x+(0) + 

1 ) - F  (x_ (0), x+ (0)). Maps for which this van- 

ishes, i.e. which preserve area globally as well as 

locally, are said to be exact symplectic. Since, by 

lemma 1, either T or P symmetry (or both) as- 

sures this condition can be imposed without af- 

fecting the Lagrangian dynamics, we assume that 

~- = O. Equivalently, A = A*. This allows us to 

give an alternative definition of the upward flux 

¢1: 

1 

¢1 = ½ f LAr(O)IX'(O)O0. 
0 

(4.10) 

5. Mean square flux 

5.1. Definition 

As we showed in the previous section, the up- 

ward flux is completely balanced by the down- 

ward flux, independent of the choice of C. Al- 

though ¢1 depends on the choice of  C (indeed, 

it can be made zero if C can be found which 

is invariant under T), MacKay et al. [4] found 

that, for a given invariant set, the upward flux 

through their partial barriers was independent 

of choice of partial barrier. We therefore con- 

clude that minimizing ¢1 cannot give rise to any 

unique C. 

In seeking a variational principle we are nat- 

urally led to consider quadratic functionals. Ac- 

cordingly we now define a "second moment" of 

flux, the mean square flux, as 

1 

- ½ / [AY(O)]zx'(o) dO. (5.1) ¢z 

0 

From eq. (4.4) we see that Y+ (0), and hence 

AY (0), are defined only if p is invertible. How- 

ever, we shall find in section 9.3 that uncon- 

strained minimization of ¢2 tends to drive the 

slope of p negative so that, to continue further, 

we need to extend the definition of Cz to include 

the case where p is not invertible. Of course, by 

T-symmetry, we can equally well regard p-1 as 

the fundamental circle map, denoted by a, say, 

and consider cases where a is not invertible. 

This corresponds to choosing an irreversible 

one-dimensional dynamics going backward in 

time. By choosing to work with p we choose 

the forward direction of time. We shall call 

such solutions "causal" or "retarded" solutions, 

whereas solutions obtained by going backwards 

in time by using a are called "anticausal" or 

"advanced" solutions. 

Although AY is not defined as a single-valued 

function when p is not invertible, the function 

AY op is. Thus to extend the definition of Cz, all 

we have to do is to make the change of variable 

0 H p (0) to put eq. (5.1) in the form 

1 

l / [zxrop(O)]2p, (O)  X'op(O) dO, ¢2-- 

0 

1 

- 2 [F2(X(O),Xop(O))  

0 

+ FI(X°p(O),X°p2(O))]2 

× p'(O) X'op(O) dO, (5.2) 

which does not require inversion of p. 

5.2. Symmetries 

We now show that the assumed P and ~- sym- 

metries of F( . ,  .) (see section 2) imply that ¢2 

is symmetric under certain transformations of 

the circle map p(O). As always (see section 3) 
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we assume that X is an odd function. We shall 

also assume, for the purposes of discussing T- 

reversibility, that p is invertible. 

If F obeys the T-reversibility condition eq. 

(2.10 ), then the transformation 

p(O) ~ p-~ (0) (5.3) 

introduces terms involving Q into AY, which 

however cancel by eqs. (4.4) and (4.5). Thus the 

transformation leaves ~02 invariant. Similarly, if 

F is P-symmetric, eq. (2.11 ) implies that fP2 is 

invariant under the transformation 

p(O) ~ - p ( - O ) .  (5.4) 

solutions p obeying the one-dimensional PT- 

reversibility condition eq. (3.9). It is also possi- 

ble that this symmetry is spontaneously broken 

and stationary solutions with the same rotation 

number as the reversible solution occur in pairs 

related by eq. (5.5). We shall show later both 

numerically and by explicit construction that 

this is indeed typically what happens, and that 

the PT-symmetry breaking solutions have lower 

(P2. 

6. Euler-Lagrange equations 

6. I. First variation of  q~2 

Given a solution which makes ~02 stationary, 

these symmetry operations allow us to generate 

new solutions, in general distinct from the orig- 

inal one because the operations eq. (5.3) and 

eq. (5.4) change the sign of  the rotation num- 

ber. However, in the case u = 0, a transforma- 

tion reversing the sign of u does not necessarily 

generate a new solution and thus when u = 0 we 

can have P-symmetric solutions which are not 

necessarily T-symmetric and vice versa. In the 

P-symmetric case, p is odd, which is useful for 

numerical purposes since it can be represented 

with only sine terms. For numerical convenience 

most studies of  u = 0 solutions were made as- 

suming P-symmetry, but in a case where this was 

not assumed it was found that, although there 

was a solution with broken P-symmetry which 

made ~02 extremal, the q~z-minimizing solution 

was in fact P-symmetric (see section 9.3). 

Less obvious is the fact that these arguments 

apply also for the u = ½ solutions. This is be- 

cause parity reversal changes u to -½, but the 

periodicity in the y-direction following from eq. 

(2.22) allows us to add 1 to u, bringing it back 
1 to ~. 

The combined PT-symmetry operation 

p(O) ~ - p - ~  ( - 0 ) ,  (5.5) 

however, always leaves the rotation number 

invariant. We thus expect to find stationary 

To vary X and p in eq. (5.2) observe that 

~[p ' (O)X'op(O)]  = d~[Xop(O)]/dO.  Inte- 

grating this term by parts (noting that the vari- 

ations at the endpoints 0 and 1 are equal, by 

periodicity) we find that the FI1 and F22 terms 

cancel, leaving 

1 

(~(f12 = / FI2(X, Xop)AY 
0 

op [p'X' op 6X  - X'~ (Xop)  ] dO 

1 

+ / F 1 2 ( X ° p , X ° p Z ) A Y ° p  

0 

x [p 'X 'op6 (Xop  2 ) - (Xop2)r(~(Xop)] dO 

(6.1) 

(the arguments (0) being implicit). Making the 

change of variable 0 H p (0) in the first integral, 

we find the first variation in ~02 to be 

1 

a <  = - r E ( o )  t x ,  op(O) cSX°p2(O) 
0 

- - p ' ° p ( O )  X ' ° p 2  ( 0 )  a X ° p ( O )  

+ X r o p ( O )  X '  op2 (0)  cSpop(O) ] p' (0 dO, 

(6.2) 

where 
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E(O) --Flz(X°p(O),X°p2(O) ) 

x [AY°p2(0) - AY°p(0)] .  (6.3) 

(For a time-symmetric form of the first vari- 

ation, including a Lagrange multiplier for con- 

strained variations, see appendix C.2. ) 

6.2. Stationarity when p is invertible 

When p is invertible we can make the change 

of variable 0 ~ p - 1  ( 0 )  in eq. (6.2) to make the 

argument of ~p simply 0. Then the condition 

that ~2 be stationary with respect to arbitrary 

variations in p is the Euler-Lagrange equation 

Ayop(O) = AY(O), (6.4) 

except possibly at the turning points of X(0)  

and Xop(O). However, since we assume X and 

p to be differentiable and hence perforce con- 

tinuous, eq. (6.4) must apply at these turning 

points also. Observe that if  eq. (6.4) is satisfied 

then (P2 is automatically stationary with respect 

to arbitrary variations in X, which is not sur- 

prising since almost everywhere a variation ~p 

can be found which produces the same effect on 

the relation a of eq. (3.1) as a variation 8X. 

Using eqs. (4.4) and (4.5) we can also express 

the Euler-Lagrange equation eq. (6.4) in a form 

similar to that of Meiss and Dewar [ 17 ] 

F2(X(O),X°p(O)) + FI(Xop(O),X°p2(O))  

= F2(Xop -~ (O),X(O)) + F~ (X(O),Xop(O) 

(6.5) 

Equations (6.4) and (6.5) have the simple ge- 

ometrical interpretation in the phase space of  the 

area-preserving map that the distance between 

C* and C along the vertical line x -- X(O) 

equals the distance between the two curves along 

the vertical line x = X (0"), where 0* is the iter- 

ate 0* = p(O). Note that, in cases where X(O) 

is not a monotonic function (e.g. fig. 2), there 

is an apparent ambiguity as to which branches 

of the curves to measure AY between because C 

2 

y 

_ t - 1  

x 1 0 0 

X g¢ X ! 

0 x 1 0 0 

l 

Fig. 2. Reversible solut ion in the case k = 8.5, v = 0.5 (see 

sections 8 and  9.2), for which a is not  a d i f f eomorph i sm 

because X is not  invertible.  (a) Curves  C and  C* showing 

both  curves  folding over  at tu rn ing  po in t s  o f  x = X(O). 
(b)  Graph  o f  vertical d is tance  between C and  C* vs. 0. 

(c) Relat ion x* = a(x) .  Note the  symmet r i e s  about  the  

diagonals  x + x*  = integer, following f rom reversibil i ty o f  

a. Posi t ion coordinates  are evaluated rood 1. (d)  Semicon-  

jugacy m a p  x = X(O). 

and C* turn over at points sharing a common 

vertical tangent, so that there are two or more 

branches of C and C* lying above a given value 

of x. The correct branches of C and C* between 

which to measure AY are obviously those cor- 

responding to the same branches of the multi- 

valued function 0 (x). 

Consider points on the two curves where 

AY = 0. These points are necessarily intersec- 

tions of C and C*, although i fX is not monotone 

not all intersections are points where AY = 0--  

only intersections of branches C and C* corre- 

sponding to the same branch of 0 (x). We shall 

term such intersections true intersections. For 

instance, in fig. 2, the intersection at x = 1 is 

a true intersection because AY(½) = 0, but the 

other six intersections in the range x E (xl, x2), 

where xl -~ 0.46 and x2 -~ 0.54 are the turning 

points, are spurious. 

We can now enunciate the following important 

result 
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Theorem I. True intersections of  ~02-extremizing 

rotational curves C and C* generated by an in- 

vertible circle map p belong to families which 

are orbits under the area-preserving map T. 

To see this, let there be a true intersection at 

0 = 00. That is, let AY(Oo) = 0. Then the 

Euler-Lagrange equation eq. (6.4) implies the 

existence of a family of  true intersections at 0 = 

0j (i.e. AY(Oj)  = 0) where the 0j are images of 

00 under repeated application of p, 

0j - pJ (00), (6.6) 

for any integer j .  Hence, by lemma 3 in section 4 

the family 

xj - X(Oj)  (6.7) 

forms an orbit in the Lagrangian form of the orig- 

inal dynamics, eq. (2.5) (see fig. 3). 

Thus, although the one-dimensional dynam- 

ics associated with our generalized action-angle 

representation does not in general have sig- 

nificance for the original two-dimensional dy- 

namics (unlike the integrable case), theorem 1 

shows that there is a subset of orbits in the 

one-dimensional dynamics which does corre- 

spond one-to-one with orbits under the two- 

dimensional dynamics. 

The curves C and C* must cross at least 

twice since the condition of zero net flux im- 

plies that the area below C and that below C* 

are equal. There must therefore be at least two 

orbit families, corresponding to intersections 

where C* crosses C from below as 0 is increased 

(AY'(0j)  > 0), and vice v e r s a  [AY'(Oj) < 0 ] .  

(6.7) and xn =- x0 + m. Then the first variation 

of the action 

n - I  

Wm,n -- ~-~ F ( x j , x j + l )  

j=0  

(6.8) 

is zero because AY(Oj) is zero. Calculating the 

second variation with the special trial function 

dxj = d~j, where 

OX(Oj) OOj 
6~j - dOo -~o  - dOoX' (OJ) o0 o, (6.9) 

with 

OOj/O0o = OpJ(Oo) J-~ 
00o - 1-I p ' (O i ) ,  (6.10) 

i=O 

(a) 

T 

T 

0 . . . . . .  

0 x 

0.02 

<J 

-0.02 

0.0 0 1.0 

6. 3. Periodic orbits and action 

We now relate the two classes of orbit dis- 

cussed above to the action minimizing and min- 

imax orbits used in [4]. Let (x0,xl . . . . .  xn), be 

an (m, n ) periodic orbit, with xj defined by eq. 

Fig. 3. (a) C ( - - )  and C* ( -  - )  curves solving the un- 

constrained Euler-Lagrange equation (see sections 8 and 

9.2) which intersect at period-two orbits of the standard 

map with k = 1. Neighbouring orbits are also shown. (b) 

Graph of AY(0): AYt(Oj) > 0 corresponds to an action 

minimizing orbit (always hyperbolic), while AY(Oj) = 0, 

AY'(Oj) < 0 corresponds to an action minimax orbit (el- 

liptic in this case). 
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we find the second variation 

n - l  

~2Wm,  n ~. y ~ ( ~ ) )  2AY'(Oj) 
j = 0  X t ( O j )  " 

(6.11) 

Thus if AY'(Oj) /X'(Oj)  < 0 for all j then 

this is sufficient to ensure that t~ 2 Wrn,n < 0 for 

the variation eq. (6.9). That is, there is a de- 

scending direction for the action. It is shown in 

[29] that such minimax orbits are either ellip- 

tic (residue [24] in [0, 1 ]) or hyperbolic with 

reflection (residue > 1 ), while action minimiz- 

ing orbits ((~2Wm, n > 0 for all ~ j )  are always 

hyperbolic (residue < 0). Clearly eq. (6.11) 

implies, in the case of  action minimizing orbits, 

that AY'(Oj)/X'(Oj)  > 0 for at least some j. 

Since differentiating AY°p(O) = AY(0) to- 

gether with our assumption p ' (0 )  > 0 imply 

that the sign of AY'(Oj) is preserved within an 

orbit family, the sign of  AY' ( 0 j ) /X '  (Oj) will be 

the same for all j provided X' (Oj) > 0 for all j .  

Figure 2 shows however that the sign of  X ' (0 j )  

is not always conserved. 

6.4. Invariant circles and cantori 

An invariant circle is a closed loop whose im- 

age under the application of  T is itself. Clearly 

a rotational invariant circle, if it exists, corre- 

sponds to a minimum of ~o2 since AY(0)  = 0, 

and hence ~02 vanishes, when C and C* coin- 

cide. Thus one application of  our new variational 

principle is to the calculation of  rotational in- 

variant circles. Just as our principle is an alterna- 

tive to the principle of  stationary action for peri- 

odic orbits, so in this application it can be used 

instead of  the variational principle of  Percival 

[30,26] based on averaging the generating func- 

tion over 0, with p prescribed to be a rigid rota- 

tion with specified irrational rotation number v. 

Unlike the stationary action and Percival's prin- 

ciples, in our case the one variational principle 

gives both periodic and quasiperiodic orbits. 

When no invariant circle with the given irra- 

tional v exists, Percival's Euler-Lagrange equa- 

tion AY(0) = 0 can still be solved for X(0) ,  

with p a rigid rotation, but X(O) then has 

[4,26] an infinite number of  discontinuities 

corresponding to the gaps in the cantorus. Such 

a solution would violate our assumption that X 

is differentiable, so that it would seem undesir- 

able to use semiconjugacy to rigid rotation for 

constructing cantori (except possibly through a 

limiting procedure via a sequence of  rationals). 

We saw in section 3.2 that Herman's theorem 

implies that the function X making a conjugate 

to a rigid rotation is essentially one order less 

smooth than a itself, so that by avoiding the 

imposition of  conjugacy to rigid rotation in our 

variational principle, it is possible to work with 

a smoother class of trial functions. If, as we con- 

jecture, cantori are locally ~o2-minimizing then 

the quadratic flux minimization principle would 

not require conjugacy to rigid rotation to control 

the rotation number-- the variational principle 

itself would seek out a cantorus. Which cantorus 

is found would depend on the initial guess. 

Although we saw in section 3.3 that p is PT- 

reversible if it is a rigid rotation, this symme- 

try carries over to the circle map a only if X (0) 

is an odd function. Thus Percival's description 

of  invariant circles does not necessarily preclude 

spontaneous symmetry breaking of  the type dis- 

cussed in section 5.2. However, we now show 

that in fact X mustbe an odd function i fp  (0) -- 

0 + v and C is a rotational invariant circle. 

Our argument is based on lemma 2 in sec- 

tion 2.5. Every invariant circle must intersect 

x = 0, a symmetry line under $1, the involu- 

tion defined by eq. (2.20), so every invariant 

circle contains a symmetric orbit xj = X ( j r ) .  

That is, X ( j r )  = - X ( - j v ) .  This orbit is dense 

since v is irrational, so X must be odd and the 

reversibility of c~ then follows. 

6.5. Stationarity, p not invertible 

Consider for definiteness a function p(O) 

which has negative slope in a region 0 

[0<,0>], say. We assume 0<, 0>,0~ --- p(0>) 
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and O~ - p(O<) all lie in the interval [-½, ½]. 

Our method of generalizing tpl and ~02 to non- 

monotonic p is to make the change of variable 

O* = p(O) so that eq. (4.4) now defines a 

unique function y+op(O) =- Y~_(O*) for 0 E 
< >  * 

[-½,0<],Y+°p(O)-- Y+ ( 0 ) f o r 0 E  [0<,0>] 

and y+op(O) :_ Y~_(O*) for0  E [0>,-½].  Note 

that eq. (4.5) shows that Y_(O*) is a single 

valued function. 

To evaluate the flux we will need to consider 

integrals which have the general form 

1/2 

I = / f (Ayop(O),p(O))p ' (O)dO,  (6.12) 
t /  

-1/2 

where the dependence on the second argument 

o f f  is such that there is no ambiguity if we trans- 

form back to the 0* variable. On the other hand, 

we know that AY(0*) =- Y+(O*) - Y_(O*) has 

three branches on the interval 0* E [0~,0;] .  

However, we can transform back to 0* uniquely 

by subdividing the region of integration into the 

subintervals 0 6 [-½,0<],  0 6 [0<,0>], and 

0 6 [0>, ½]. The inverse function of p is then 

defined on these restricted domains, so we can 

transform back to 0", obtaining 

o~ 

I= / f(AY<(O*),O*)dO * 

-1/2 

1/2 

+ ff(Ar>(O*),O*)dO* 
o; 

o; 

+ f [ f (AY<(O*) ,O *) 

o~ 

- f (AY<> (0"), 0") ] dO*, 

+ f(Ar>(o*) ,O *) 

(6.13) 

that is, the overlapping branches contribute ad- 

ditively, but the retrograde branch contributes 

with negative sign. 

This result may be used to show that the first 

flux moment ~01 remains the expected area be- 

tween C and C*, but we use it here to generalize 

the Euler-Lagrange equation to the case of non- 

invertible p (the anticausal case can be treated 

similarly). We use eq. (6.2), assuming that the 

conjugacy function X is monotonic in the re- 

gion of interest, and is held fixed so that only 

~p contributes. Changing variables so that the 

argument o f ~ p  is 0", using eq. (6.13), we find 

the modified Euler-Lagrange equation for un- 

constrained variation of ~ p 

Arop(O*) 

= AY<(0 *) + AY>(0 *) -AY<>(0*) ,  (6.14) 

which applies on the interval 0* E [0~, 0~ ]. Pro- 

vided [0~,0;]  c_ [0<,0>] we can identify AY 

on the left hand side as AY <> everywhere in the 

interval. 

7. Single mode minimization 

Specializing now to the case of the standard 

map eq. (2.24) we show in this section that it 

is possible to evaluate (02 and (2 analytically if 

we take as trial function a circle map which is a 

rigid rotation in 0, 

p(O) = 0 + u, (7.1) 

with the conjugacy function X containing a sin- 

gle Fourier mode 

A 
X(O) = 0 + ~-~ sin2z~0. (7.2) 

It is easily verified that X' (0) is strictly positive, 

that is, X is a diffeomorphism, only if IAI < 1. 

It is also possible to do the integrals in the case 

where one mode is used in the representation eq. 

(3.2), but the rigid rotation representation has 

the advantage that it is manifestly PT-reversible, 

eq. (3.9), and that it allows us to specify u easily. 

Substituting the representation eq. (7.2) into 

eq. (C.4) we have 

A 2 
= u + ~ sin2nu, (7.3) 
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and from eq. (5.2) we have I f  A is large enough that 

1 

I : I ( 2-~ ) ~2 = ~ k sin 2rr 0 + sin 2n0 

o 

- 4 A  sin E ~u sin 2re012 

× ( 1 + A cos 2~r0 ) dO. (7.4) 

Expanding the square and using the identity 

e x p ~  t -  = ~ J l ( z ) t  l, 

l ~  ~(X3 

(7.5) 

with t = exp i0, we find 

k 2 A 2 ~_~ 
~2 = 1 6Zr - - - -5  + ~-~ sin4 ~rU Jl (A) sin 2 ~rv. 

(7.6) 

Assuming v is not an integer, this is minimal  

with respect to A when 

2A sin 2 zcu = kJ((A) .  (7.7) 

For small k, this implies A ~ k /4  sin 2 zcu, which 

is what one would find at lowest order from 

a per turbat ion theory construction of  a KAM 

curve with rotat ion number  u [31 ]. The diver- 

gence as u ~ 0 is a consequence of  the small 

denomina tor  problem of  per turbat ion theory. It 

is encouraging to note that the full expression 

eq. (7.7) does not suffer from this problem since 

the vanishing of  the right hand side as u ---, 0 

is accomplished by A approaching J'l,L, the first 

positive (assuming k > 0) zero of  J~. Thus 

IA[ < j '  1,1 ~ 1.84118. (7.8) 

However ,  this supremum is greater than unity, 

so that for small u or large k the circle map a is 

not a dif feomorphism,  giving rise to folding over 

of  the curves C and C* as discussed in section 4 

and similar to that in fig. 2. 

]Acosnu] > 1, (7.9) 

then X ( O + u) + X ( O ) becomes  nonmono-  

tonic, and the curves develop loops. Even in 

this pathological case eq. (5.1) still provides 

a perfectly workable definition of  ~02. Note  

that, according to eq. (7.8),  when ]u - ½] < 

g--I Cos- l (1 / j l l , t )  ~ 0.3172, [Acosztv[ will not 

exceed unity, and hence looping cannot  occur, 

independent  o f  the value of  k. 

Extremizing with respect to both A and u we 

find a degenerate saddle point  o f  ~02 at u = 0, 

A = J ' l: ,  corresponding to the large island which 

contains the fixed point  at the origin, and a min- 

imum of~o2 at u = ½, A given by eq. (7.7). Al- 

though there is an island containing a period two 

orbit, the single mode  approximat ion misses this 

resonance, and the min imum at u = ½ can be 

viewed as a very bad approximat ion to the min- 

ima corresponding to KAM curves or cantori on 

either side of  this resonance [see fig. 6]. (Al- 

though, paradoxically, the solution obtained by 

setting u = ½ is also quite a good approximat ion 

to one of  the isolated reversible solutions to be 

described in section 9.2.) The different types of  

solution when u = ½ and u ___ 0 are illustrated 

in fig. 4. 

1 I (a) 

Y I v=0 .5  

0 x 

11 (b) / / ' / - -  
,] .-/" /v  = 0.12 

o 
0 x 1 

Fig. 4. Single mode minimizat ion in the case 

k = kc = 0.9716, showing in (a) the curves C and C* 

for both the unconstra ined minimizing solution at u = 0.5 

(dashed)  and the minimizing solution when u is con- 

strained to be 0.12 (solid).  In the latter case A = 1.0754, 

which is just  on the threshold for loop formation.  The cor- 

responding circle maps are shown in (b).  Also shown is a 

chaotic orbit  started near (0.5,0) .  
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8. Multimode minimization 

In order to treat more general trial functions 

for the circle map than that used in section 7 it is 

necessary to resort to numerical minimization. 

For maximum flexibility our algorithm includes 

an arbitrary number of sine and cosine modes in 

the conjugacy function X as well as an arbitrary 

number in the rotation map p, which is repre- 

sented in a manner analogous to eq. (3.2). That 

is, we expand X and p in finite basis sets 

N 

X(O) = 0 + ~-~xnu~(O) 
n=l 

(8.1) 

and 

M 

p(O) = 0 -k- E PmVm(O), 

rn=0 

(8.2) 

where the {ui (0) } and {vi (0) } are Fourier bases 

chosen from the sets {sin j0} and {cos j0}. The 

trial variation is found, by substituting eqs. (8.1) 

and (8.2) into eq. (6.2), to be, in terms of the 

variations in the Fourier coefficients xn and Pro, 
of the form 

N M 

n=l m=l 

(8.3) 

where the components of the gradient in the trial 

function space are 

1 

dOE(O)p'(O) 

0 

× [ p ' ° p ( O ) X '  op2 ( 0 )  Un °p (0) 

- X ' ° p ( O )  Un°p2(O) ] (8.4) 

and 

! 

OP, m ~ - /  dOE(O) 

0 

×p'(O) X ' ° p ( O )  X '  op2 ( 0 )  Vm °p  ( 0 ) . ( 8 . 5 )  

Both ~02 and its gradient were computed for 

the standard map by numerical integration using 

the trapezoidal rule on a 0-mesh with the num- 

ber of grid points taken to be 8 times the maxi- 

mum number of sine or cosine modes in the rep- 

resentations of X and p. Stationary points of ~02 

were sought using the Fletcher-Reeves-Polak- 

Ribiere conjugate gradient method [32], modi- 

fied slightly to search for null points of the gradi- 

ent rather than minima ofq~2 (except, optionally, 

in the initial bracketing step of each line search). 

Convergence to high precision was slow in some 

cases, indicating that a preconditioned algorithm 

might have been better. The constant term in 

eq. (8.2) was held fixed to implement the con- 

stant $2 constraint discussed in section C.1 (in 

the case where X is the identity map). The con- 

straint ~m pC = const., where p~ are the coef- 

ficients of the cosine terms, was also used to im- 

plement the constraint p(0) = const., but was 

not found to give qualitatively different results. 

The Fourier modes of X and/or  p active dur- 

ing the numerical extrerrrization were selected by 

choosing the order in which they were stored in 

the state vector, and by selecting the dimension 

of the state vector. The calculations were per- 

formed on an Apple Macintosh IIcx in extended 

precision (ca. 18 significant digits). 

The deviation from PY-reversibility of the cir- 

cle map was measured by calculating the "irre- 

versibility parameter" 

1 

z -  f [o + p(-p(O))]2p'(O)X'op(O)dO. 

0 

(8.6) 

Clearly, 77 > 0, with equality if and only if the 

condition eq. (3.9) is satisfied almost every- 

where. The rotation number u of p was esti- 

mated by performing N (say) preiterates of 

p, then M more iterates, calculating the mean 

increase in 0 per iteration. For low resolution 

scans, M = N = 100 was sufficient. 
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Fig. 5. Plot o f  numerically calculated quadrat ic  flux ~02 

(solid line), irreversibility Z (dashed line) and rotat ion 

number  u vs. the control  parameter  12 (constant  part  o f  

the circle map)  for the s tandard map with k = 0.3. The 

minimizat ion was per formed with 13 sine and 13 cosine 

modes  in p and with X the identity. Inset: Blowup of  the 

3/7 resonance. 

To get an overall picture of  the nature of  the 

dependence of  (f12 on £2, a scan was performed at 

k = 0.3 over the interval £2 6 [0, ½ ]. The con- 

jugacy function X was set to be the identi ty so 

that a and p were the same function, and mini- 

mizat ion was performed over a 26-dimensional 

space made up of  the first 13 sine modes and 

first 13 cosine modes in the Fourier represen- 

tation eq. (3.2). A plot of  u vs. £2 is shown in 

fig. 5, showing the mode locking around £2 = 0 

and ½. There is actually mode locking at all res- 

onances, so that u (£2) is a Devil 's staircase. The 

3/7 resonance is blown up to illustrate this. In 

this case it was necessary to take the iteration 

parameters to be N = M -- 104. Only the in- 

terval [0, ½ ] is shown because of  the symmetry  

about u = ½ which was observed numerically, 

and is expected from the combinat ion of  parity 

or t ime reversal symmetry  and the periodicity in 

the y-direction following from eq. (2.22). 

Ap lo t  of~2 and 2- vs. £2 is also shown in fig. 5, 

while ~01 vs. £2 is shown in fig. 6 These figures 

suggest the fractal nature of  the quadratic flux as 

a function of  £2--a local m i n i m u m  at each irra- 

tional value of  £2 and a local max imum at each 

10 2 
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0.0 

r 
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10 -9 
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2 
3 

i 

0.4 0.5 

Fig. 6. Plot o f  numerically calculated flux (Pl vs. /2 for the 

s tandard map  with k = 0.3. The minimizat ion was per- 

formed with 13 sine and 13 cosine modes  and no conju- 

gacy. Also shown is a blowup o f  the (3,7) resonance. 

rational value. With a finite number  of  modes 

a numerical minimizat ion can resolve only a fi- 

nite number  of  maxima and minima,  but as more 

modes are added one observes more maxima and 

minima.  It is also seen that the irreversibility 2" 

is roughly proportional to q~2, while the flux ~1 
1/2 

is rough ly  p ropor t iona l  to ~'2 • Note  f ina l l y  that  

the heights of  the peaks form a hierarchy corre- 

sponding to the Farey tree [33]. The highest is 

u = 0 / 1 ; l e v e l 2 :  u = 1/2; level 3: u = 1/3; 

level 4: v = 1/4, 2/5; level 5: 1/5, 2/7, 3/8, 3/7; 

level 6: 1/6, 2/9, 3/11, 3/10, 4/11, 5 /13 ,5 /12 ,  

4/9; and so on, with the amplitudes and widths 

of  the resonances decreasing at each level. All 

resonances up to Level 6 were clearly seen, ex- 

cept 5/13, whose height was presumably below 

the apparent truncation threshold of  10 -23. The 

variation of  ¢2 over twenty orders of  magnitude 

shows that this numerical method is a sensitive 

tool for investigating flux transport through res- 

onances in such systems. 

When instead p was constrained to be a rigid 

rotation R , ,  and the minimizat ion was per- 

formed over the amplitudes of  the sine modes 

in the Fourier representation of  X a similar 

pattern was observed in general scans of  u (but 
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with Z = 0 of course). As in the one mode ana- 

lytic model in section 7, the solutions tended to 

be such that the C and C* curves avoided the 

islands. 

However, if we took u to be an exact rational 

fraction (to within machine rounding error), so- 

lutions such as those shown in figs. 2 and 3 were 

found. The surprising thing about these solu- 

tions is that, although they were found by using 

a special trial function (p a rigid rotation), by 

serendipity they satisfy to high precision the un- 

constrained Euler-Lagrange equation, eq. (6.4). 

Thus we have strong numerical evidence that 

there exist reversible solutions to eq. (6.4) 

which (trivially) have invertible p and thus can 

be used to find periodic orbits by theorem 1. In 

section 9.2 we sketch a perturbative construc- 

tion for these solutions, which it is seen avoids 

the zero denominator problem usually encoun- 

tered in perturbation theory at resonances. We 

have not carried out this expansion to all or- 

ders in k, let alone proved convergence, but the 

numerical evidence that the solutions remain 

smooth and well-behaved for k-values well be- 

yond the critical value for destabilization of the 

elliptic action-minimax orbits suggest that the 

perturbation theory may have a finite, possibly 

even infinite, radius of convergence. We show 

in section 9.1 that there is at least one resonance 

for which an expansion in k trivially converges. 

9. Per iodic  so lu t ions  

9. I. Exact reversible f ixed point solution 

As is apparent in fig. 4, the flux-minimizing 

solutions as u tends to zero correspond to curves 

C and C* which avoid the interior of the large 

island surrounding the elliptic fixed points on 

the x-axis, the (0, 1) resonance. Instead the 

curves lie in the separatrix region of the island 

where the flux is much smaller than that through 

the "turnstile" [4] pivoting about the action- 

minimizing and minimax fixed points on the x- 

axis. We show in this section that there is an ex- 

act, P~--reversible solution of the unconstrained 

Euler-Lagrange equation eq. (6.5) which gives 

curves passing through the fixed points of the 

island, thus defining turnstiles. 

A solution conjugate to rigid rotation with zero 

frequency has p(O) = 0. In this case the solu- 

tion to the Euler-Lagrange eq. (6.4) for the gen- 

eralized standard map, eq. (2.21), is AY (0) = 

- V '  (X) where X(O) is arbitrary. If, for simplic- 

ity, we let X be the identity map, so that 0 ~ x, 

then this solution becomes 

k 
A Y ( x )  _ sin 2gx, (9.1) 

2g 

for the standard map. Note that AY has a zero 
l at x = 0 (action minimax orbit) and at x = 

(action-minimizing orbit). From eq. (9.1) we 

can easily evaluate the flux, 

k 
~01 - -  2 ~ 2 ,  (9 .2 )  

through the turnstile. The quadratic flux (o2 is 

given by 

k 2 

P2 -- 16n2. (9.3) 

Interestingly, this is precisely the quasilinear dif- 

fusion coefficient DQL [34,3 5 ]. A connection be- 

tween a flux minimization principle and quasi- 

linear diffusion was also used in [10]. 

Although this solution makes ~02 stationary 

with respect to variations in p, it does not fol- 

low that it is necessarily minimal. In order to 

investigate the "stability" of ~02 against small 

variations, we use the sum-difference represen- 

tation eq. (B.2) to expand the circle map and 

its inverse about the identity map 

1 d 
~±~(x) =x+co(x) + ~ [ c o ( x ) ]  2 

+0(033) ,  (9.4) 

assuming X to be the identity so that p ~ a. For 

the standard map this gives 
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1 

k 2 k fco(x)Zcos2 xdx + 0 ( 0 ) 3 )  ' ~O2 
16Z~ 2 2 

0 

(9.5) 

V replaced by e V, e being our formal expansion 

parameter. Then AY, eq. (4.8), is of  the form 

A Y  (O) = - L , X  (O) - e V ' o X  (O), (9.6) 

from which we see that co's with support on 

[0, ¼] U [3, 1] decrease (02, while co's with sup- 

port on [¼, 3] increase ~02. A numerical search 

for the u = 0, ~o2-minimizing solutions would 

start by incrementing co in the ~2-descending 

direction, thus perturbing p away from the iden- 

tity only outside the interval x E [¼, 43-]. This 

suggests that the minimizing solutions will tend 

to be the same as the reversible solution in a 

finite neigbourhood of  x = ½. We shall see in 

section 9.3 that this is indeed the case. 

It is seen from eq. (9.5) that there is an infin- 

ity of descending directions away from this solu- 

tion, even if we limit attention to PT-reversible 

(even co) perturbations. If  we constrain the trial 

function space to be circle maps conjugate to 

rigid rotation, the variation vanishes at this or- 

der bus is still not positive definite at higher or- 

der if we allow u to vary. Thus it appears that 

there is no simple constraint which is transversal 

to all the descending directions, and we conclude 

that there is no natural one-parameter family of 

constrained minimizing solutions in which this 

solution is an extremum--i t  is an isolated solu- 

tion. 

with L ,  a linear difference operator defined by 

L , X ( O )  - Y(O + u ) - 2 X ( O )  + X ( 0 - u ) , ( 9 . 7 )  

where we have assumed that the class of  solu- 

tions we seek is those which are conjugate to the 

rigid rotation p = R~. Taking u = re~n, m and 

n being mutually prime integers, observe that 

eq. (6.4) implies that AY(O ) is periodic with pe- 

riod 1/n. That is, 

A Y  (O) = - U  (O, e ) /2n,  (9.8) 

where U (0, e ) is a 1/n-periodic function in 0, 

U(O,e) = ~ Uln(e) exp2nilnO. (9.9) 

Writing 

X(O) = 0 + ~ ( 0 ,  e) (9.10) 

in eq. (9.7), with ~ 1-periodic in 0, we see that 

eq. (9.8) can be written 

L,~ = U - 2zce V' oX. (9.11 ) 

9. 2. Reversible periodic solutions 

When we take p to be a rigid rotation R~, with 

u a rational fraction (not an integer), and seek 

minimax solutions numerically we find solutions 

with very small harmonic content in X and AY, 

such as in figs. 2 and 3. This suggests that we seek 

an analogue of the exact trivial fixed point so- 

lution of  section 9.1 for higher order resonances 

using perturbation theory, and in this section we 

sketch how such a theory works. 

For definiteness assume T to be a map with a 

generating function of  the form eq. (2.21) with 

The right hand side of  eq. (9.1 1 ) must have no 

component within the nullspace of  L, ,  which is 

spanned by the functions exp2nilnO, where l 

is any integer. That is, in terms of the Fourier 

coefficients Urn defined in eq. (9.9), we require 

1 

Urn = 2roe f V'oX(O) 

0 

exp ( -  2rdl nO ) dO. 

(9.12) 

This removes the resonant forcing terms from 

eq. (9.11) which are normally the source of  

the small denominator problem in perturbation 
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theory. This is similar in spirit to the approach 

adopted in [8,10,11] but without any ad hoc 

filtering function or resonance broadening. It 

is also a Lagrangian, rather than Hamiltonian, 

formulation in the spirit of [26,30]. 

To illustrate this method we shall consider the 

standard map, for which we have 2zte V' (x) = 

k sin 2r~x so that eq. (9.11 ) becomes 

L,~(O,k) = U(O,k) - ksin(2rc0 + ~). (9.13) 

Expanding in powers of k 

f ( O , k )  = ~_kJ f (J ) (o) ,  

j = l  

(9.14) 

0.04 

<1 

-0.04 
-0 .5  0 0.5 

Fig. 7. Plot o f  numerically calculated vertical distance be- 

tween C* and C, AY(0) ,  for the s tandard map with 

k = 0.3, g2 = 0. The minimizat ion was performed with 64 

sine modes  and X the identity, so that  0 ~ x. 

where f is any function, we find to lowest order 

~ ( 1 ) ( 0  ) _ s i n 2 ~ r 0  (9.15) 
4 sin 2 zru' 

which agrees with the small-A limit of the sin- 

gle mode minimization, eq. (7.7). Since u is as- 

sumed not to be an integer (this case is treated 

in section 9.1 ), the denominator cannot vanish. 

Note that, at each order, an arbitrary 1~n- 

periodic function can be included in ~(n), but 

that we can make ~ unique by requiring that 

it have no 1/n-periodic component. This con- 

straint was not used in generating figs. 2 and 3. 

9.3. Symmetry breaking solutions 

Numerical minimization for g2 = 0, assum- 

ing X the identity and using only sine modes 

in p to enforce P-symmetry (recall section 5.2), 

yields a pair of nonreversible solutions of the un- 

constrained Euler-Lagrange equation, eq. (6.4). 

That is, P$-symmetry is spontaneously broken 

through the breaking of Y-symmetry. By scan- 

ning in from finite u using cosine modes as 

well, a solution with broken P-symmetry was 

also found, but this had greater (o2 (at least, 

for k = 1 and 13 sine and cosine modes) and 

was not studied further. As for the reversible 

solutions, C and C* for the P-symmetric solu- 

tions intersect at the corresponding orbits of T, 

but, as shown in fig. 7, AY(x) appears to be 

close to discontinuous at the intersections cor- 

responding to the action-minimax orbits (x = 

integer, say 0). The function AY(x) is then 

roughly constant between 0 and 1 _ a, where 

a < ½, consistently with the prediction of the 

Euler-Lagrange equation when the circle map p 

has attracting fixed points. On the other hand, 

the part of the AY curve passing through the 

action-minimizing hyperbolic points (i.e. with 

support on the interval x E [ ½ - a, ½ + a ] ) has 

finite slope. Similar behaviour was observed 

for £2 -- ½. Closer examination shows however 

that the apparently flat top of the AY curve is 

not exactly constant, and that the circle map 

of the solution with the smaller ~02 (specifica- 

tion of p rather than p-1 being an asymmetric 

procedure) is not monotonic. 

Owing to the apparently nonanalytic nature of 

the numerical solutions, we cannot hope to un- 

derstand these solutions by a conventional per- 

turbation theory. However we can use the nu- 

merical solutions to suggest a nonperturbative 

geometric construction for these orbits. To aid 

in visualizing the problem we show in figs. 8, 9 

and 10 a solution for larger k, where the detailed 

structure is more apparent. The nonmonotonic- 
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Fig. 8. (a) Curves C and C* for the causal minimizing 

solution at the (0,1) resonance. Here A denotes the map 

Aa of the text. (b) Nonmonotonic circle map a. The min- 
imization was done for the standard map with k = 2.6, 

g2 = 0, 64 sine modes and X the identity, so that 0 = x. 

ity o f  p and the corresponding mult ivalued na- 

ture o f  I1+ in the region x E [ - x ~ , x l  ] is now 

clear. We label the left branch Y_~, the middle  

branch which (x*, y* ) traverses in the retrograde 

direction as 0 is increased Y~>, and the right 

branch Y~_. 

We now focus on the numerical  solution in 

fig. 8. Since we take X to be the identity we have 

0 - x and a = p. Symmetry allows us to assume 

x< = - X l ,  x> = x i .  The numerical solution 

motivates  us to assume also x< = - X l ,  x> = x l ,  

that is, that a maps the interval [ - X l ,  x~] onto  

itself. We also assume that a is an odd, analytic 

function close to the reflection - x ,  

a ( x )  = - x  + a3x(x  2 -  x~) + O(xS) ,  (9 .16)  

on the interval x ~ [ - x z , x l  ]. T h e n  eq. (4 .5)  

499 

0 0.5 

Fig. 9. Plot of numerically calculated vertical distance be- 

tween C* and C, AY (0), for the same case as in fig. 8. There 

are three branches: y = AY <, y = AY <> and y = AY >. 

0.6 

Y . -~ \  C ~  

/ /  

-0.6 I 

-0.5 x 0.5 

Fig. 10. Curves C and C* for the anticausal minimizing 
solution at the (0,1) resonance. The nonmonotonic circle 
map c~ - I  is the same as the circle map c~ of the causal 

solution. The minimization was done for the same case as 
in fig. 8. 

and eq. (4 .4)  give 

k 
Y_ ( x )  = ~ sin 2rex - 2x  

+ a 3 x ( x  2 - x 2) + O ( x 5 ) ,  

Y~_> ( x )  = 2x - a 3 x ( x  2 - x 2) + O ( x 5 ) .  ( 9 . 1 7 )  

We shall show later that AY < (x )  = - A Y  > ( - x )  

by P-symmetry. Thus the even part o f A Y  > (x )  

does not  contribute to eq. (6 .14) .  Substituting 

eq. (9 .17)  in eq. (6 .14)  allows us to relate the 
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odd part of  AY > (x)  to the cubic correction in 

eq. (9.16) 

A Y  > ( x )  = - c  O + c2 x2 

- ( 2 -  ½k)a3x (x  2 - x~) + O(x4) .  

(9.18) 

Note that  the linear and cubic terms vanish for 

k = 4 (the value at which the fixed point at the 

origin becomes hyperbolic) provided a3 remains 

finite there. Also it turns out that  a3 is very small 

for moderate  values of  k. 

Figure 8 also suggests that the part of  the solu- 
1 tion with support in intervals x 6 [ -  ½, - ~ + a ], 

x 6 [ ½ - a ,  ½] ,0  < a < ½, is the same as the 

reversible solution, a = Id, for which C is the 

curve y = k sin(2zcx)/2ze and C* is the x-axis, 

y = 0. This assumption implies that  c~ maps the 

interval [½ - a, ½ + a] onto itself. This is obvi- 

ously acceptable provided we can join these sec- 

tions of  C* to the retrograde branch y = Y~> in 

such a manner  as to satisfy the Euler-Lagrange 

equation eq. (6.4) everywhere. 

Since the Euler-Lagrange equation implies 

that the separation between C and C* is con- 

served at values o f  x which are orbits under  the 

circle map a: x* = T ( x , Y _ ( x ) ) ,  the points 

on C* connected to the point (½ - a , 0 )  by the 

Euler-Lagrange equation preserve the separa- 

t ion k sin(2zca)/2~. That  is, they must  be orbits 

under  the composite map ToAa, where Aa is a 

map giving a constant  shift k s in(2rca) /2~ in 

the y-direct ion (which may be thought  of  as a 

discrete analogue of  a constant  acceleration) 

( k ) 
A a ( x , y )  =- x , y  + ~--~sin2na . (9.19) 

The corresponding points on C are images under  

Aa of  those on C*. These points form the end- 

points of  smooth segments out of  which we build 

the parts of  the curves C and C* whose projec- 

t ion on the x-axis is the interval [ - x l ,  ½ - a] .  

It is readily verified that  (½ - a, 0) is a fixed 

point of T°Aa, s o  that  the endpoints  of  the C* 

segments which we seek lie on the unstable man- 

ifold of  this fixed point. (The anticausal solu- 

tion can be constructed from the stable mani- 

fold.) To determine a we have simply to require 

that the last endpoint,  z~- = (x0, y~  ), lie on the 

retrograde solution y = 2x, which implies the 

relation between xt = -x0  and a 

k k 
2--~ sin 2tea = 4xl - ~ sin 2rex1. (9.20) 

We can determine a and Xl iteratively by guess- 

ing a, then using eq. (9.20) to calculate xl and 

testing to see whether z~- = ( - x l ,  - 2 x l  ) is on 

the unstable manifold by iterating the inverse 

composite map to form the sequence {z +} _= 

{ ( A a l ° T - l ) n ( z ~ ) } .  When a is chosen cor- 

rectly, Zn + ~ (½ - a, 0) as n ~ oc. The endpoints 

of  the segments from which we make up C are 

then given by z n = Aa (Zn + ) = T -  t (z +_l )" We 

then have that ~ maps the interval [xl, ½ - a] 

onto [ -Xl ,  k - a ]  and the interval [-½ + a , - x l ]  

onto [ -  ½ + a, xl ]. 

The interior points of  the segments are deter- 

mined by requiring that they lie on the unstable 

manifolds of  a family of  maps T oAb, b > a, with 

fixed points (½ - b, 0). For instance, the maxi- 

m u m  value of  b can be determined iteratively by 

guessing b and testing to see whether the point 

z~" (b) = (x, Y_<> (x) - (k/2zc) sin 2nb) lies on 

the stable manifold by iterating the inverse com- 

posite map to form the sequence {z + (b)} =- 

{ (A~- 1o T -  1 ) n (z~- (b) ) }. When the appropriate 

value, b = b ( x  ), is chosen, z ,  (b ) ~ (½ - b , O )  

as n ~ oc. There is a complicating factor aris- 

ing from this prescription, however. It is that the 

limit points z ~  (b) = (½ - b, 0) are different for 

different intermediate points, so that for large 

n the segments must become folded over. This 

is not a fatal problem since the folding is the 

same for both the C and C* segments so that a 

(rather singular) conjugacy could be found such 

that p (0) is monotonic  in the region of  the limit 

points. This region is too small for us so far to 

have been able to resolve it numerically. 
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We can now calculate AY > (x) = - (k/2~r) × 

sin 2~zb (x ), find its cubic component, and 

hence deduce a3 from eq. (9.18). We can 

use P-symmetry to show that { P ( z n ( b ) ) }  - 

{ ( A b ° T - 1 ) n ° P ( z o ( b ) ) } ,  where P ( x , y )  - 

( - x ,  - y )  to prove the assumed relation AY < (x) 

= - A Y > ( - x ) ,  but there is no corresponding 

proof that AY > is even, and numerical evidence 

confirms that it is not, although it is very close 

to even for moderate k. Thus a3 is small but 

nonzero. 

We conclude this section by noting that in the 

limit k ~ 0, the set {xn} becomes dense and AY 

approaches a step function constant in the inter- 

vats x 6 [-½ + a,0]  and x 6 [0, ½ - a], while 

elsewhere being equal to the reversible solution 

- ( k / 2 n )  sin 2nx  (cf. fig. 7). We can use the fact 

that the flux ~01 is the same as that for the re- 

versible solution, k / 2 n  2, to give a condition for 

a in the limit k --, 0 

cotzta = (1 - 2a)z~, (9.21) 

which yields a = 0.128990. The corresponding 

limiting behaviour for ~02 is 

~02 ~ 5.5615 x 10-3k 2, (9.22) 

which is of  course less than the corresponding 

quadratic flux for the reversible solution given 

by eq. (9.3) as 6.33257 x 10-3k 2. 

10. Conclusions 

We have established that the quadratic flux 

minimization principle provides a basis for a 

sensitive nonperturbative numerical method for 

investigating flux transport through resonances 

in area-preserving maps. We have also shown 

that the method produces a pair of approxi- 

mately invariant curves which have dynamical 

significance, in that at least some of their in- 

tersections are associated with dynamical orbits 

(the correspondence between orbits and inter- 

sections is not complete when the associated cir- 

cle map is only semiconjugate to rigid rotation, 

and also in the general case of noninvertible 

circle maps where the simple Euler-Lagrange 

equation eq. (6.4) does not apply). Though 

we have mainly studied periodic orbits, the 

Euler-Lagrange equation presumably holds for 

quasiperiodic orbits as well. The solutions have 

been classified according to whether or not they 

break the combined parity and time-reversal 

symmetry allowed by the class of maps investi- 

gated. In some cases we have sketched analytic 

methods for constructing these solutions. Except 

on invariant curves there are in general at least 

three solutions: two quadratic-flux-minimizing 

solutions with broken symmetry and a minimax 

solution which has the full symmetry allowed by 

the map. This has been shown both analytically 

and numerically for the case u = 0, and the 

numerical evidence is that it is generically true. 

The symmetry breaking solutions are interest- 

ing as an example of a problem where an "arrow 

of time" arises spontaneously (with no statisti- 

cal averaging, although there is averaging over 

angle in the definition of the quadratic flux). 

Indeed these solutions exhibit irreversibility in 

a very real sense since the iterates of the circle 

map describing the one-dimensional dynamics 

form only a semigroup. However these solutions 

are probably too singular to be useful for con- 

structing a generalized action-angle representa- 

tion, and in any case it would not appear appro- 

priate for a choice of the direction of time evolu- 

tion to be necessary in the essentially geometric 

exercise of constructing a coordinate system. 

The reversible solutions corresponding to res- 

onances (rational rotation numbers) are also in- 

teresting because, although not flux-minimizing, 

the approximately invariant curves associated 

with them are smooth and their calculation is 

susceptible to an apparently rapidly convergent 

perturbation theory which does not suffer from 

the usual small denominator problem. Also, 

since their circle maps are conjugate to rigid 
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rotation we have full control over their rotation 

numbers. It is these solutions which would ap- 

pear to provide the basis for defining a general- 

ized action-angle representation. One could use 

a truncated Farey tree construction to define the 

principal resonances in the domain of interest 

(and the most noble quasiperiodic surface be- 

tween each resonance) and use the curves C, C*, 

or the time-symmetric curve specified paramet- 

rically by x = X(0), y = $[Y+(6) + Y_(S)] 

to define a basic ladder of new momentum co- 

ordinate surfaces. These curves are assumed not 

to cross, which will certainly be true for sufli- 

ciently small k. The transformation to the new 

phase-space coordinates would then be com- 

pleted by interpolation (rather than by using the 

quadratic-flux-minimizing surfaces correspond- 

ing to all irrational rotation numbers since these 

are not in general smooth and are not continu- 

ously connected to the resonance surfaces). 

We have studied only the lowest order reso- 

nances in detail. It would be interesting to study 

an infinite sequence of resonances approaching 

a rotational invariant curve or a cantorus. In the 

former case v)2 is obviously a local (and global) 

minimum on the invariant curve, since it van- 

ishes there. We conjecture, but have not proved, 

that v)z is also a local minimum on a cantorus. 

The detailed behaviour of the constrained solu- 

tions as the control parameter is varied would 

also be interesting to investigate, as well as the 

implications of this method for the theory of 

transport in area preserving maps. 
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Appendix A. Circle map identity 

We give here a useful identity which may be 

used to prove relationships (sum rules) between 

the Fourier coefficients of a circle map, its sum- 

difference representation and its inverse. We 

shall work in x-space, though similar relations 

could equally well be derived in the &space 

representation. The identity is 

1 

.I F(x* -x1 [x:(q) -x’(r/)ldy - 0, (A.1) 

for any integrable function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF (x ) = f ’ (x ) . Here 

x* - x is a shorthand for x+ (q) - x_ (II). Equa- 

tion (A.1) follows by recognizing that the inte- 

grand is the perfect differential df (x* - x ) and 

that the endpoint values of x’ - x are equal. 

From this it follows that 

s F(x* -x)x’(q)drl 

I 

= /Fb* -xLdJv9dq - 

I 

E ; F(X* -x)[x’+ (~1 + x'(rl)l. .I (A-2) 

In particular, choosing F (.) z . and q = 

XT’ (x) (assuming the inverse functions exist), 

we see that the constant in the Fourier repre- 

sentation of cy-’ corresponding to eq. (3.2) is 

simply -sZ. 

Appendix B. Time-symmetric representation 

A representation in which PT-reversibility (or 

otherwise) of the map p : 8 H 6* is manifest is 
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the sum-difference representation 

0 " - 0 =  ~ o ( 0 + 0 . )  
2 ' (B.1) 

where o~ is a periodic function. In the rigid ro- 

tation case p = R, ,  o~(.) - u and we have 0* 

explicitly in terms of 0. However, in the general 

case eq. (B. 1 ) defines the map only implicitly. 

Defining q = (0 + 0*)/2, we may rewrite eq. 

(B. 1 ) as the parametric representation 

0* = 0 + ( q )  _--q + ½~o(,7), 

0 = 0 _ ( , )  - ~ -  ½o~(q). (B.2) 

Solving eqs. (B.2) for 0* and 0 we find 

p( . )  = 0+o051( . ) ,  

p - l ( . )  = 0_o0+l( .) ,  (B.3) 

respectively. Existence of  p and p-1 depends on 

the existence of the inverse functions 0_71, for 

which we need 

Ica'(r/) I < 2, r/ e ~;. (B.4) 

From this point of view the best choice of 

transformation X is that which minimizes 

sup ]co' (q)]. However, since this selects p which 

is closest to a rigid rotation, Herman's theo- 

rem suggests that aggressive minimization of 

sup lo/(q)] may be undesirable in practice be- 

cause it leads to poor smoothness properties of 

X. 

If o~ is an even function, then the symmetries 

0+(-~/) = -0~:0/)  and 0~:1(-0) = -0~-1(0) 

follow readily from eqs. (B.2). It follows from 

eqs. (3.9) and (B.3) that p is PY-reversible. 

By substituting 0* = p(O) and 0 = p-~(O*) 
into eq. (B.1), setting 0* = - 0 ,  subtracting the 

resulting equations and using eq. (3.9) we see 

that P~--reversibility implies that oJ is an even 

function. That is, we have the result 

Theorem 2. A circle map p : 0 ~ 0", repre- 

sentable in the sum-difference form eq. (B. 1 ), 

is P~-reversible if and only if o~ is even. 

In this case only cosine terms appear in the 

Fourier series for o~. 

The sum-difference representation can 

be used as an alternative, time-symmetric 

parametrization to that used in section 4, as 

illustrated in appendix C. It is also sometimes 

convenient in analytical work, as in section 9.1. 

However, its implicit nature and the need to as- 

sume invertibility of both 0+ and 0_ make the 

explicit representation eq. (3.3) preferable for 

most of this paper. 

Appendix C. Constrained variation 

C. 1. Constraints 

Meiss and Dewar [17] derived the Euler- 

Lagrange equation for extremizing (P2 defined 

without using the conjugacy function X (equiv- 

alent to taking X to be the identity). Thus the 

circle map a ( x )  = Xop°X -l (x) was restricted 

to be a diffeomorphism. In our present formu- 

lation this hard constraint is removed since X 

need not be monotonic. 

However, we shall find that unconstrained 

minimization of ~02 selects only irrational val- 

ues of the rotation number u of a and p (the 

rational values being obtained as minimax solu- 

tions) whereas our desire to construct a gener- 

alization of action-angle coordinates leads us to 

seek a way to scan continuously over the phase 

space as in figs. 5 and 6. Constraining u directly 

is not practicable because its value is not simply 

related to any of the representations of the gen- 

eral circle map, and in any case the circle map 

mode-locking phenomenon means that u is not 

a good control parameter. A practical method 

of constraint is to hold fixed g2, the constant in 

the Fourier representation of a, eq. (3.2) as was 

done in figs. 5 and 6. We could also constrain 

the corresponding constant in the Fourier rep- 

resentation of p, or, better, in the Fourier repre- 

sentation of co(q), but these constants have no 

fundamental significance since they depend on 
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choice of  representation. Another fundamental 

constraint would be to hold the area .4 ( = .4* ) 

fixed while minimizing ~2. 

In this appendix we find how such constraints 

affect the Euler-Lagrange equation by using the 

method of Lagrange multipliers. We also use this 

as an opportunity to show how the variational 

principle can be formulated in a time-symmetric 

fashion by using the sum-difference representa- 

tion of appendix B as an alternative parametriza- 

tion to that used in section 4. Specifically, in 

place ofeq.  (4.2) we take 

x+Ot) = XoO+(r/),  (c.1) 

and in place ofeq.  (4.3), 

Y± (O) - y± oOZ~ (O). (C.2) 

Introducing the Lagrange multiplier 2 to ef- 

fect the constraint, we obtain the new objective 

functional 

~) = ~2 -- ' ~ ,  (C.3) 

with ~u taken to be either A or 

1 

(2~_ f [x+ (r/) - x_ (r/) ] x'_ (/7) dr/, 

0 

1 ,/ =~ [x+(r/)-x_(r/)]  

0 

× [x~_ (r/) + x'  (r/)] dr/, (C.4) 

where the second form follows from eq. (A.2). 

The Lagrange multiplier 2 is to be determined 

by the condition 

~' = V/o = const. (C.5) 

We can perform an unconstrained minimization 

by setting 2 = 0. 

C.2. Constrained extremization 

In order to carry out the variation we use the 

identity 

3 f - 1 ( . )  _ Of  o f - l ( . )  (C.6) 
i f o f - l ( . ) '  

for any function f (.), which can be obtained by 

varying the identity f o f - i  (.) __= .. Using this 

identity we have 

6p ~:l (0) = 

0~ (r/T)30±(r/:F) -- O':~(r/:F)60~:(r/~_) 

o~(r/~) 
(C.7) 

where r/7- - 0~:l (0) - 

Varying X (.) and/or  0+ (.) in eq. (C.3) yields, 

after changes of variable 0 = 0+(r/) as appro- 

priate (cf. section 6.1 ) 

1 

Oq) = - f F12 (x _  (q ) ,  x +  01) ) 

0 

× [AY o0+ (/7) - AY o0_ (r/)13W (r/) dr/ 

- 2 ~ ,  (C.8) 

where 

5W(r / )  - x '  (r/)6x+ (r/) - x+ (r/)Ox_(r/). 

(C.9) 

We can hold the function X fixed without loss 

of generality because the same variation in 3 W 

can be effected by a suitable variation in p as 

can be effected by varying X except at the turn- 

ing points of X, which we can ignore by continu- 

ity. Using the time-symmetric parametric repre- 

sentation eq. (B.2) the variational form 6 W de- 

pends only on the variation in the single func- 

tion to: 

6 w  = X'oO+(r/)X'oO_(n) ,~og(rl ) .  (C.10) 

This form is pleasing for its symmetry between 

past and present. However we shall find that 



R.L. Dewar, J.D. Meiss / Flux-minimizing curves for reversible area-preserving maps 505 

there are situations where the circle map or its 

inverse is not invertible. For a discussion of this 

case see sections 8 and 9.3, but for the present 

we assume p to be a diffeomorphism. 

The variations 8~u in our two constraints are 

given by 

1 

8o = f sw(,1)d,1, 
o 

(C.11) 

and 

1 

8,4 = - f F12 (x_ (r/), x÷ (r/)) 5W(r/) d~/. 

0 

(C.12) 

Note that, for maps with generating functions of 

the form eq. (2.21), we have F12 ---- -1  so dO = 

8,4 (indeed, O = ,4) so that the two constraints 

are equivalent in this case. 

Requiring 5 0  = 0 for all 5o~ in eq. (C.10) 

yields, using eq. (C. 8 ), the Euler-Lagrange equa- 

tion 

X' oO+ (rt)X'oO_O1) 

× [AY o0+ (r/) - AY o0_ (r/) - x (~/) 2] 

= O, (C.13) 

where ~: = 1 when we take ~, = ,4 and ~c (r/) = 

-1/F12 (x_, x+ ) when we choose the constraint 

~u = O. In either case, x is positive definite. 

Equation (C.13) is to be satisfied for all t/ E 

[0, 1 ] (except ranges of 0 for which p or p - t  

has negative slope--see section 9.3), and hence, 

by periodic extension, all t/ c R. Setting [. ] = 

0, we can regard (C.13) as a simple difference 

equation which connects AY (0) on orbits of the 

circle map p (0). Since this implies that the gap 

between C* and C increases by 2 at every itera- 

tion of the circle map, it would appear that, for 

2 # 0, the distance between the curves would 

have to diverge at attracting periodic points. The 

cure for this seeming pathology would appear 

to lie in the modification to the Euler-Lagrange 

equation which applies when the assumption of 

invertibility of the circle map breaks down (see 

section 6.5). 

Certainly, we have found numerically that 

convergence to a minimum with O constrained 

to be constant is possible using a representa- 

tion with a finite number of Fourier modes and 

that the function (p2(O) appears continuous, 

although there does appear to be some compli- 

cated bifurcation behaviour near the (0, 1 ) res- 

onance. We have not done a systematic study 

of convergence with respect to the number of 

Fourier modes. 

We have also investigated the use of a local- 

ized constraint, such as specifying the value of 

a(0) ,  since the 2 = 0 Euler-Lagrange equation 

is then satisfied almost everywhere, but numeri- 

cal evidence indicates that this type of constraint 

gives similar results to the global constraint of 

constant area. 
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