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Solute transport within solidifying binary alloys occurs predominantly by convection
from narrow liquid chimneys within a porous mushy layer. We develop a simple model
that elucidates the dominant structure and driving forces of the flow, which could
be applied to modelling brine fluxes from sea ice, where a cheaply implementable
approach is essential. A horizontal density gradient within the mushy layer in the
vicinity of the chimneys leads to baroclinic torque which sustains the convective flow.
In the bulk of the mushy layer, the isotherms are essentially horizontal. In this region,
we impose a vertically linear temperature field and immediately find that the flow
field is a simple corner flow. We determine the strength of this flow by finding a
similarity solution to the governing mushy-layer equations in an active region near
the chimney. We also determine the corresponding shape of the chimney, the vertical
structure of the solid fraction and the interstitial flow field. We apply this model first
to a periodic, planar array of chimneys and show analytically that the solute flux
through the chimneys is proportional to a mush Rayleigh number. Secondly we extend
the model to three dimensions and find that an array of chimneys can be characterized
by the average drainage area alone. Therefore we solve the model in an axisymmetric
geometry and find new, sometimes nonlinear, relationships between the solute flux, the
Rayleigh number and the other dimensionless parameters of the system.
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1. Introduction

In the depths of the polar winter, vast tracts of the ocean freeze, forming or
thickening a layer of porous sea ice. The brine in the pores of the ice becomes
increasingly salty as the water continues to solidify. This creates a density gradient
that drives convection within and out of the ice, through vertical brine channels. Of the
mechanisms for salt fluxes from sea ice described by Untersteiner (1968), convection
within the ice is dominant, at least during the winter growth season (Notz & Worster
2009). However, this dynamic process is inadequately represented in current models of
sea ice. We aim to address this deficiency by developing a simple model that is cheap
to implement.

This kind of convective behaviour is generic to the solidification of two-component
solutions called binary alloys, in which the vertical channels are often called
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chimneys (Copley et al. 1970). When a binary alloy solidifies, a mushy layer

usually forms, which is a reactive porous medium where solid crystals co-exist

in thermodynamic equilibrium with interstitial liquid. Therefore, we investigate the

parametric dependence of solute fluxes in the context of convective solutions of the

ideal mushy-layer equations (Worster 1997, 2000). The applicability of mushy-layer

theory to sea ice modelling has been demonstrated by Feltham et al. (2006) and

reviewed by Hunke et al. (2011). However, the theory developed in this paper is more

widely applicable, for instance to controlling macrosegregation, which is variation in

the composition of a casting of a metal alloy.

Linear stability analysis (Worster 1992a) indicates that the dominant dimensionless

parameter governing the onset of convection in a mushy layer is a type of Rayleigh

number. This parameter relates the available gravitational potential energy (dominated

by the interstitial salinity gradient) to the dissipation caused by thermal diffusion and

fluid viscosity. A Rayleigh number has been used to interpret the onset of convection

in the experiments of Wettlaufer, Worster & Huppert (1997) and the confinement of

convection to a lower layer of sea ice (Notz & Worster 2008). Recently, preliminary

parameterizations of convection within sea ice that incorporate a Rayleigh number

have been developed by Vancoppenolle et al. (2010) and by Petrich, Langhorne &

Eicken (2011).

The fully developed system with chimneys is not amenable to complete analytical

treatment. Therefore, some have used an enthalpy-based approach where a single set

of equations applies both to the mushy layer and to the liquid melt. Beckermann &

Wang (1995) and Boettinger et al. (2002) review the use of this type of technique

applied numerically to the casting of metal alloys, and Oertling & Watts (2004)

apply this technique to sea ice modelling. Others (Schulze & Worster 1998; Chung

& Worster 2002; Wells, Wettlaufer & Orszag 2010) have solved separate equations

describing the mushy layer and the liquid melt. The computational complexity of such

numerical approaches, even with considerable simplifications, means that they are not

readily applicable to predictive sea ice modelling. In sea ice, the spacing of brine

channels is of the order of centimetres and so is unresolvable in present-day climate

models.

Recently, Wells et al. (2010) investigated the dependence of solute flux on chimney

spacing and suggested that the spacing takes the value that maximizes the flux. This

dynamic maximum-flux criterion needs to be tested further but constitutes an objective

and transparent way to determine the otherwise unknown chimney spacing.

Here we develop a simple theoretical framework for modelling fluxes though

chimneys using an idealized steady-state solidification arrangement described in § 2.

This steady-state arrangement corresponds to the experimental set-up described in

Peppin et al. (2007) but also applies to transient situations in which the evolution

of the system is much slower than the convective turnover time. In § 3, we

develop a patchwork of simplifying approximations, motivated by the case of high

Rayleigh number, that captures the essential physics while rendering the problem

analytically tractable. We use a vertically linear temperature profile, which would

be a good approximation across a thin convecting layer at the bottom of sea ice.

This linear profile allows us to find a similarity solution, reducing the full nonlinear

two-dimensional internal convection problem to readily solved ordinary differential

equations. In § 4, we investigate the behaviour of the solution for a planar array of

chimneys and the dependence of flux on chimney spacing. Then in § 5, we apply

the maximum-flux criterion to derive analytically the dependence of heat and solute
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FIGURE 1. (a) Diagram of the problem arrangement; and (b) the phase diagram showing the
phase of the binary alloy as a function of concentration and temperature. The arrows show
a trajectory as the system evolves from melt to solid. Note that V is the speed at which the
solidification cell is pulled downwards between fixed heat exchangers and equals the rate of
solidification.

fluxes on the mush Rayleigh number and on the other dimensionless parameters of the

system.

Finally, in § 6, we generalize our model to three dimensions and demonstrate that

an array of chimneys can be characterized by the average drainage area alone. We

therefore solve the generalization of our model in detail in an axisymmetric geometry

and determine the relationship between solute flux, mush Rayleigh number and the

other dimensionless parameters.

This work leads us to propose dimensional relationships not only for solute and

heat fluxes through chimneys, but also for the vertical structure of the interstitial flow

field and solid fraction distribution. These have the potential to be incorporated into a

one-dimensional model of sea ice, as discussed in § 7.

2. Problem formulation

We consider convection through a mushy layer and chimney as depicted in figure 1.

A solidification cell, containing a binary alloy whose less dense component is

preferentially rejected on solidification, is pulled downwards at a constant speed V

through fixed heat exchangers. The steady state has a chimney centred on x = 0

and chimney half-spacing L, as shown in figure 1(a). The lower heat exchanger is

held at the eutectic temperature TE, below which the alloy freezes completely for

all solute concentrations. The far field has temperature T∞ and solute concentration

C0 > CE, where CE is the eutectic concentration. Let T0 be the liquidus temperature

corresponding to C0 and let CS be the concentration of the solid phase. These

quantities are shown in figure 1(b), which also shows the trajectory through the

phase diagram as the system evolves from melt (z> h), to mushy layer (0< z< h) and

then to solid z< 0. The liquidus is assumed to be linear with slope Γ .

Note that this situation is dynamically equivalent to saltwater (with C0 < CE) in a

cell pulled upwards towards a eutectic heat exchanger, since, in the case of saltwater,

the more dense component is preferentially rejected on solidification.
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2.1. Governing equations

For the sake of mathematical transparency, we consider an ideal binary alloy, one
whose thermodynamic properties are independent of phase (Worster 1997, 2000).
This is governed by the ideal mushy-layer equations. These dimensionless equations,
describing conservation of heat, solute, momentum and mass in steady state, are
respectively

u ·∇θ −
∂θ

∂z
= ∇2θ − S

∂φ

∂z
, (2.1)

u ·∇θ − (1 − φ)
∂θ

∂z
= −(θ − C )

∂φ

∂z
, (2.2)

u = −Rm(∇p + θez), (2.3)

∇ ·u = 0. (2.4)

The mushy layer is a porous medium with solid fraction φ and Darcy velocity u.
ez denotes a unit vector in the z-direction. The dimensional velocity scale is V and
the dimensional length scale is LT ≡ κ/V where κ is the thermal diffusivity. We
use a linear equation of state for density ρ = ρ0 [1 + β1Cθ ] and assume constant
permeability

Π =Π0 (2.5)

for the sake of analytical tractability. The Stefan number S = L /(cp1T) governs
the ratio of latent heat L release to driving temperature gradient 1T = T0 − TE and
specific heat cp. The compositional ratio C = (CS − CE)/1C, where 1C = C0 − CE.
Since the mushy layer is in local thermodynamic equilibrium, we use a single variable

θ = (T − TE)/1T = (C − CE)/1C (2.6)

to describe both temperature T and interstitial concentration C. This gives θ = 0 at
z = 0 and θ = 1 at z = h.

Since ∇ · u = 0, we can introduce a streamfunction ψ and write u = (−ψz, ψx) in
the planar geometry we are considering. Eliminating the pressure in Darcy’s law (2.3),
we find the vorticity equation

∇2ψ = −Rmθx, (2.7)

where

Rm =
β1CgΠ0

νV
(2.8)

is the mush Rayleigh number, with gravitational acceleration g and kinematic viscosity
of the liquid phase ν. This important non-dimensional parameter governs the onset
of convection within a mushy layer (Worster 1992a) and relates the driving buoyancy
difference to the dissipation caused by convection within the mush. The depth of a
mushy layer is controlled by thermal diffusion (Huppert & Worster 1985), so this
definition of the Rayleigh number is equivalent to standard definitions for convection
in a porous medium, which have LT/κ in place of 1/V .

We consider the further simplification C ≫ 1. In this limit, the equation of salt
conservation (2.2) determines the solid fraction φ through

Cφz = u ·∇θ − θz. (2.9)
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This decouples the thermal equation (2.1) and gives Ω (u ·∇θ − θz) = ∇2θ , where
the parameter Ω = 1 + S /C is a dimensionless effective specific heat capacity; in
particular, Ω is the factor by which the specific heat capacity is enhanced owing to
latent heat release (Worster 2000; Huppert & Worster 2012).

Additionally, with the further simplification Rm ≫ 1, frame advection is negligible
compared to Darcy transport. Therefore, we neglect frame advection throughout this
paper. In particular, this reduces the decoupled thermal equation to

Ωu ·∇θ = ∇2θ. (2.10)

2.2. Boundary conditions

At the chimney wall (x = a(z)), the interstitial liquid flows from the mush into
the chimney, so the solid fraction is zero there, and marginal equilibrium and heat
conservation are expressed by

u ·∇θ = 0, θx = (ψ − x)θz (x = a), (2.11a,b)

as shown by Schulze & Worster (1999). Conservation of mass at the chimney wall can
be expressed by

ψ =
a3

3D

[

ψx + Rm(θ − C)
]

+ aψx (x = a), (2.11c)

where C is the average concentration in the chimney (Chung & Worster 2002). The
final term can be neglected if the Darcy number D = Π0V2/κ2 ≪ 1. We adopt this
simplification, which ensures a ≪ 1 and so allows us to apply (2.11a,b) at x = 0.

At x = L (the dimensionless chimney half-spacing), we apply symmetry boundary
conditions, namely

u ·n = 0 ⇒ ψz = 0, n ·∇θ = 0 ⇒ θx = 0 (x = L). (2.12a,b)

We also impose zero vertical velocity at the lower boundary with the eutectic solid,

u ·n = 0 ⇒ ψx = 0 (z = 0). (2.13)

3. The chimney–active–passive model

We develop a simple model designed to capture the essential dynamics of
convection using a patchwork of approximations in different regions (see figure 2)
as follows.

Away from the chimney (§ 3.1), we assume a vertically linear and horizontally
uniform temperature field. There is no baroclinic torque, since the temperature is
horizontally uniform, so this region is essentially ‘passive’, providing the fluid flux
required by the actively convecting near-chimney region.

To determine the strength of this flow, we consider the ‘active region’ near the
chimney (§ 3.2) where convection is driven by baroclinic torque. We find a similarity
solution to the mushy-layer equations that also has linear vertical temperature variation,
and we patch this to the passive region (§ 3.3).

The flow field in the liquid region is computationally very expensive to find.
Therefore we rather balance heat fluxes across a thermal boundary layer to the
mush–liquid interface, as suggested by Fowler (1985) and implemented in some
numerical studies (Schulze & Worster 1998; Wells et al. 2010). This gives us a
chimney–active–passive (CAP) model
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FIGURE 2. The CAP model, showing the active region x < xδ, passive region xδ < x < L
and thermal boundary layer to the melt above. The vertical component of the Darcy velocity
is uniform and negative in the passive region, and most of the upward flow occurs in the
chimney.

3.1. Passive region: analysis of the bulk mush

Away from the chimney we assume that the temperature field is directly proportional
to z and has no horizontal variation. This automatically satisfies the symmetry
boundary condition (2.12b). Consistently with this temperature field, we seek a
solution for the flow field with horizontally uniform vertical velocity w = ψx.
The streamfunction that satisfies the vorticity equation (2.7) and the boundary
conditions (2.12a), (2.13) is

ψ ∝ z(L − x). (3.1)

In contrast to previous numerical studies (Schulze & Worster 1998; Chung & Worster
2002; Wells et al. 2010), we do not impose a condition of constant pressure at z = h.

The passive region has a uniform depth h0 since there is no horizontal temperature
or vertical velocity variation in this region and the mush–liquid interface is at a
constant temperature. The depth h0 is determined by balancing advection and diffusion
of heat across a thermal boundary layer at the mush–liquid interface. This gives
(Fowler 1985)

n ·∇θ = −θ∞u ·n (z = h0), (3.2)

where θ∞ = (T∞ − T0)/(T0 − TE).
The passive region has a simple structure and flow field, but the strength of this flow

must be determined by considering the active region near the chimney.

3.2. Active region: similarity solution near the chimney

The reduced mushy-layer equations (2.7) and (2.10),

∇2ψ = −Rmθx, Ωu ·∇θ = ∇2θ, (3.3)

admit a similarity solution

ψ = z

(

Rm

Ωh0

)1/2

Ψ (η), θ =
z

h0

Θ(η), η = x

(

RmΩ

h0

)1/2

, (3.4)
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that has the same vertical structure as the passive region. The mush–liquid interface is
at z = h(x)= h0/Θ(η).

3.2.1. Similarity equations and boundary conditions
In terms of the similarity variables (3.4), the reduced mushy-layer equations (3.3)

give similarity equations

Θ ′′ = −ΨΘ ′ + Ψ ′Θ, Ψ ′′ = −Θ ′, (3.5a,b)

and the boundary conditions (2.11a,b) of marginal equilibrium and heat conservation
give

Ψ ′Θ = ΨΘ ′, Θ ′ = ΨΘ/Ω (η = 0). (3.6a,b)

These can be combined to show that the vertical velocity Ψ ′ is always positive at the
chimney wall.

3.2.2. Finding the chimney width
To apply mass conservation (2.11c) at the mush–chimney boundary (x = a), we

determine the average concentration in the chimney in terms of our similarity variables.
We neglect solute diffusion in the chimney, so u · ∇C = 0 and C = C(ψ) only.
Following Chung & Worster (2002), we use the approximation

C(z)=
1

ψ(a(z), z)

∫ ψ(a(z),z)

0

C(ψ) dψ, (3.7)

which gives C(z) = (z/2h0)Θ0 in our similarity variables, and we use the notation
Θ0 ≡Θ(0). Then (2.11c) implies that

a ∼ D
1/3R−1/6

m Ω−1/6h
1/6
0 α, where α =

[

3Ψ0/(Ψ
′

0 +Θ0/2)
]1/3

. (3.8)

It is important to note that the chimney width a is independent of z, so chimneys are
predicted to be straight-sided. Previously unpublished work by Ashmore & Worster
(see Appendix) considers power-law background temperature profiles θ ∼ zb and
shows that a ∼ z(1−b)/6. Therefore a straight-sided chimney is a consequence of the
linear temperature profile we imposed in the passive region. Although our prediction
of straight-sided chimneys is a consequence of this linear profile, it is somewhat
encouraging to note that this corresponds to some experimental results, such as those
of Schulze & Worster (1998), reproduced in figure 3.

3.3. Patching conditions

It is not appropriate to match the active and passive regions asymptotically in our
simple model. Instead, we patch them at a position x = xδ (shown in figure 2) that is
internally determined by applying conditions of continuity of temperature, normal heat
flux, normal velocity and pressure there.

Let δ = xδ(RmΩ/h0)
1/2. Continuity of temperature and normal heat flux require that

Θ(δ)= 1, Θ ′(δ)= 0. (3.9a,b)

Then continuity of normal velocity determines the strength of convection in the passive
region, so (3.1) for the streamfunction in the passive region becomes

ψ = z

(

Rm

Ωh0

)1/2

Ψ (δ)

[

L − x

L − xδ

]

. (3.10)
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FIGURE 3. From Schulze & Worster (1998). Photograph of an ammonium-chloride
solidification experiment, showing narrow vertical chimneys. Note that the mush–liquid
interface is peaked near the chimneys and flat in the ‘passive zone’ further away, which
corresponds to our model, shown in figure 2.

Applying continuity of pressure, by integrating the vertical component of (2.3), allows
us to determine xδ through

L = (RmΩ/h0)
−1/2F (δ,Ω)−1, where F(δ,Ω)≡

(

δ − Ψ (δ)/Ψ ′(δ)
)−1
. (3.11)

Note that F(δ,Ω) is an implicit function of Ω , since Ω affects the active-region
boundary conditions (3.6). Then (3.2) determines the depth of the layer

h0 = (−θ∞RmΨ
′(δ))

−1
. (3.12)

Substituting this equation back into (3.11), we find

L = R−1
m θ

−1/2
∞ G(δ,Ω), where G(δ,Ω)= F (δ,Ω)−1 (−ΩΨ ′(δ))

−1/2
. (3.13)

3.4. Determining solute and heat fluxes

The flux of salt from the mushy layer to the liquid is equal to the total advective flux
of salt into the chimney, which is determined from the solution of the active region.
Each half-chimney drains a region of mush of length L. Therefore, the average flux of
solute per unit length in the x-direction is

FSolute =
1

L

∫ h

0

[ψz(θ − 1)]x=0 dz = −
1

2
Rm

Ψ0

Θ0

F(δ,Ω). (3.14)

Note that the solute flux is negative because it is solute-depleted fluid that emanates
from the chimney (cf. figure 1b).

The dimensional temperature at the top of the chimney is T0 and by symmetry
ψ vanishes at the centre of the chimney. Therefore the additional heat flux per unit
length, due to convection through chimneys, is

FHeat =
1

L

∫ a

0

[ψxθ∞]z=h dx = −θ∞Rm

Ψ0

Θ0

F(δ,Ω). (3.15)

Note that FHeat is negative because the far-field temperature is greater than the
temperature at the interface.

These relations can be simply expressed (still dimensionlessly) by

FSolute = −Rmγ (δ,Ω), (3.16)

FHeat = −2θ∞Rmγ (δ,Ω), (3.17)
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FIGURE 4. A typical solution of the CAP model, showing part of a periodic array of
chimneys. Solid white streamlines have arrows that indicate the flow direction. Isotherms
in steps of 0.1 (a) and contours of solid fraction in steps of 0.005 (b) are shown by dashed
white curves. The latter start at φ = 0 at the mush–liquid interface. For these parameters
(Rm = 12, θ∞ = 0.4, Ω = 3.5 and C = 15, L = 2.426), the active region occupies about 22%
of the domain. The vertical and horizontal scales are the same, and the chimney width is
formally zero as the Darcy number D → 0, but is shown indicatively.

where

γ (δ,Ω)=
1

2

Ψ0(δ,Ω)

Θ0(δ,Ω)
F(δ,Ω). (3.18)

3.5. Solving the boundary-value problem

The similarity equations (3.5) and boundary conditions (3.6), (3.9) and (3.11)
constitute a boundary-value problem for the active region, which we solve using a
fourth-order Runge–Kutta routine and a Newton–Raphson algorithm to update initial
guesses for Ψ0, Θ0 and δ. The online supplementary material (§ S1.2) available at
journals.cambridge.org/flm considers both the existence and uniqueness of solutions
to this boundary-value problem. As discussed there, we restrict attention to solutions
that have only one turning point Ψ ′ = 0 as these correspond to upwelling near the
chimney and downwelling everywhere else, which is required for consistency with our
formulation of the CAP model. This restriction is also consistent with the maximum-
flux criterion discussed in § 5.

4. Results of the model

4.1. Discussion of results

The general form of the solution in the reduced CAP model is shown in figure 4.
It is encouraging to note the similarity with some experiments, such as in figure 3,
especially in terms of the shape of the mush–liquid interface. We find qualitative
agreement with numerical results obtained by Chung & Worster (2002) and Wells et al.

(2010). Our model reproduces the trend and main features of the dependence of solute
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FIGURE 5. (a) Dependence of solute flux FSolute and (b) depth of mush h0 on Rayleigh
number Rm at fixed L = 2.16, Ω = 1.33, θ∞ = 0.4. It is believed that the dashed portions are
unstable on the basis of the numerical work of Chung & Worster (2002).

flux and depth of the mushy layer found numerically. For example, figure 5(a,b) can
be compared with figure 5(b,c) in Chung & Worster (2002).

However, this highly simplified model does not yield quantitative agreement with
the results of Chung & Worster (2002). For instance, comparing the above figures, our
model consistently predicts higher solute fluxes. It is not appropriate to undertake a
full comparison because Chung & Worster (2002) use relatively high Darcy numbers
and quite moderate Rayleigh numbers, a parameter regime in which we do not expect
agreement, even before the differing assumptions. Instead, we identify the main causes
of discrepancy.

First, we deliberately chose to neglect frame advection in order to render the
problem analytically tractable by similarity solution in the active region. However,
it is certainly quantitatively important at low to moderate Rayleigh numbers and results
in temperature profiles closer to the exponential profiles derived theoretically in the
case of no convection (Hills, Loper & Roberts 1983; Worster 1991) than the linear
profile we have assumed. Connected with this, we did not impose a constant pressure
at z = h, unlike Chung & Worster (2002), which means that the horizontal velocity
was not zero there and consequently the flow field has a slightly different shape.

Secondly, we decoupled the heat equation from the salt conservation equation
through the effective specific heat capacity Ω and so have neglected the feedback
on permeability which we assumed constant.

4.2. Dependence on chimney spacing

The flux of solute and heat through a chimney depends on the size of the convecting
cell. Increasing the chimney spacing increases the width of the active region,
sustaining a larger flow driven by a greater temperature difference. Therefore the
flux into an individual chimney is increased. However, while the average flux per
unit length in the x-direction initially increases (above a minimum chimney spacing
required to sustain flow), it eventually decreases. There is therefore a maximum flux at
some moderate chimney spacing (see figure 6). In their numerical study, Wells et al.

(2010) observed the existence of such maxima.
Note that for a fixed chimney spacing there is a critical Rayleigh number required

to sustain convection as shown in figure 5(a) and observed previously (Schulze &
Worster 1998; Chung & Worster 2002; Wells et al. 2010). However, in contrast to their
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FIGURE 6. The dependence of solute flux on chimney spacing at three different values of Rm.
Other parameters are as in figure 5. There is a well-defined local maximum whose position
moves to lower chimney spacing as Rm increases.

findings, as L is increased, this critical Rayleigh number continues to decrease to 0.
Therefore, at every Rayleigh number, a sufficiently large box could sustain convection,
and we find no overall critical Rayleigh number. This discrepancy is likely to be
caused by our neglect of frame advection, which dominates at low Rayleigh number.

5. Maximum-flux criterion

Thus far we have imposed the chimney half-spacing L; but this is undetermined a

priori. Therefore, we employ the maximum-flux criterion suggested by Wells et al.

(2010) that L takes the value that maximizes the solute flux from the mushy layer.
This approach certainly allows us to compute an upper bound on the solute flux and
importantly avoids artificially imposing a horizontal length scale.

As shown in figure 6, the flux is a well-defined function of chimney spacing on
each branch of solutions. Therefore, we combine (3.16) for the flux with (3.13) for the
chimney spacing to find that

∂FSolute

∂L

∣

∣

∣

∣

Rm,θ∞,Ω

= −R2
mθ

1/2
∞

(

∂G

∂δ

∣

∣

∣

∣

Ω

)−1
∂γ

∂δ

∣

∣

∣

∣

Ω

. (5.1)

As illustrated in figure 7(a) and discussed further in the supplementary material, § S2,
G(δ,Ω) is a well-defined function of δ, and ∂G/∂δ is strictly positive on the upper
branch and strictly negative on the lower branch. Therefore

∂FSolute

∂L

∣

∣

∣

∣

Rm,θ∞,Ω

= 0 ⇔
∂γ

∂δ

∣

∣

∣

∣

Ω

= 0. (5.2)

5.1. Solute fluxes under the maximum-flux criterion

Figure 7(b) illustrates the existence of a unique maximum value of γ (δ,Ω), which we
denote γc(Ω). In the case Ω → ∞, we prove the uniqueness of the maximum in the
supplementary material, § S3. We can determine γc(Ω) once and for all by solving the
active-region equations independently of all the other external parameters. Therefore, if
the maximum-flux criterion holds, (3.16) and (3.17) imply that

FSolute = −Rmγc(Ω), (5.3)
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FIGURE 7. (a) G(δ,Ω = 1), which is proportional to the chimney spacing. The global
minimum corresponds to the minimum chimney spacing required to sustain convection.
Above this, the two solutions to G(δ,Ω) = G0 constant correspond to the two branches
in figures 5 and 6, denoted by the dashed and solid curves. (b) γ (δ,Ω = 1), which is
proportional to the solute flux. Below the line δ = π/2 there are no solutions of the boundary-
value problem, indicating that there must be a finite active region where baroclinic torque
occurs in order to drive convection. These results are derived in the supplementary material,
§ S2.2.

FHeat = −2θ∞Rmγc(Ω). (5.4)

An approximately linear relationship between solute flux and Rayleigh number has
also been found using direct numerical simulation of the mushy-layer equations under
the maximum-flux criterion (Wells et al. 2010), although they found a cut-off at low
Rm. At sufficiently high Rm, this difference can be neglected, and so our analytic
derivation of this relationship under simplifying approximations provides additional
assurance of the robustness of their numerical observation obtained by testing across a
subset of parameter space.

Additionally, our model, combined with the maximum-flux criterion, reduces the
parametric dependence by showing that the flux is independent of far-field temperature
θ∞. Importantly, we have also shown that while the width of the chimney a → 0 in
the limit of small Darcy number D → 0 (cf. equation (5.10) below), the flux tends to
a constant value. Therefore, to leading order, the flux depends only on the Rayleigh
number and the effective specific heat capacity Ω .

5.2. Dependence on Ω

The coefficient γc(Ω) in (5.3) and (5.4) decreases with Ω , as shown in figure 8(a).
A high value of Ω , which corresponds to high dimensional effective specific heat
capacity cpΩ , reduces the strength of convection within the mush and so reduces
solute flux. Mathematically, this is as we expect from the boundary conditions (3.6a,b)
which imply that the strength of convection scales with Ω−1, a result that we prove in
the supplementary material, § S3.

However, linear stability analysis shows that the onset of convection is set by
ΩRm = (ΩRm)crit. (Lapwood 1948; Huppert & Worster 2012). Therefore, large Ω

makes convection more likely but decreases the resulting solute flux (figure 8b).

5.3. Vertical transport, solid fraction and length scales

In addition to determining the solute and heat fluxes through chimneys, our model
also determines the interstitial velocity within the mushy layer. In particular, we
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FIGURE 8. (a) The coefficient γc(Ω) in the expression for the maximum flux (5.3).
Inset shows a log–log plot with the dashed asymptotic result γc ∼ Ω−1, derived in
the supplementary material, see equation (S3.21). (b) The relationship between solute
flux and Rayleigh number with a cut-off indicated by o, determined from the condition
ΩRm = (ΩRm)crit. = π

2 (Huppert & Worster 2012). Below this, a dashed curve indicates our
model results.

find that the vertical component w, which controls vertical salt transport within the
ice matrix, is

w =

{

−Rm(z/h0)
[

−Ψ ′(δ)
]

passive region x > xδ,

−Rm(z/h0)
[

−Ψ ′(η(x))
]

active region x 6 xδ.
(5.5)

Therefore, the vertical velocity w is proportional to the distance from the eutectic solid
and proportional to the Rayleigh number. In the passive region w is independent of x

and, since under the maximum-flux criterion Ψ ′(δ) depends only on Ω , we can write

w = −Rm(z/h0)wc(Ω) where wc(Ω)= −Ψ ′(δ) > 0. (5.6)

To determine the solid fraction φ, we integrate (2.9), neglecting frame advection,
and find that

φ =

{

wc(Ω) (Rm/2C )
[

1 − (z/h0)
2
]

passive region x > xδ,

−Θ ′′(η(x)) (Rm/2C )
[

Θ (η(x))−2 − (z/h0)
2
]

active region x 6 xδ.
(5.7)

These are equal at the patching boundary xδ and satisfy the boundary condition φ = 0
at the mush–liquid interface z = h. The vertical structure of the solid fraction is
therefore quadratic, and contours of φ, as well as streamlines, are shown in figure 4.

In summary, scalings for the depth of the mush (from (3.12)), chimney spacing
(from (3.13)), and chimney width (from (3.8)) are

h0 = R−1
m θ

−1
∞ hc(Ω), (5.8)

L = R−1
m θ

−1/2
∞ Lc(Ω), (5.9)

a = R−1/3
m D

1/3θ−1/6
∞ ac(Ω). (5.10)

The chimney width a is only weakly dependent on Ω (figure 9b,c). Furthermore, a

is independent of the permeability, since both Rm and D are proportional to Π0. This
is significant because it is often hard to determine Π0 precisely. The D1/3 scaling for
chimney width a corresponds to the scaling of Schulze & Worster (1998) (and verified
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FIGURE 9. (a) The dependence of the horizontal and vertical length scales on Ω . (b) The
weak dependence of chimney width on Ω . These are shown for a larger range of Ω in (c).
The dashed line has slope 1, and both Lc, hc ∼Ω . The aspect ratio Lc/hc → 1.23.

numerically by Chung & Worster 2002), although the former paper proposes a ∼ R−2/9
m .

This difference occurs because we have used the maximum-flux criterion to determine
the overall horizontal length scale, rather than imposing the chimney spacing.

Figure 9(a,c) shows that hc and Lc depend approximately linearly on Ω . This
means that the aspect ratio of the convecting cell L/h0 ∼ θ 1/2

∞ , and suggests that
the convecting cell has aspect ratio of order unity under the maximum-flux criterion.
Order-unity aspect ratios are often observed in experiments (see figure 3 for example).

6. Extension of the model to three dimensions

Mushy layers usually form in non-planar geometries, so it is important to consider
potential three-dimensional effects. The whole dynamics of the planar solution is
driven by the structure of the active region near the chimney. This suggests that
we can reasonably generalize to a three-dimensional mushy layer with distributed
chimneys by finding an axisymmetric solution near the chimney and then patching
onto an arbitrary passive region. The generalized CAP model is shown in figure 10.

In § 6.1, we consider an entirely axisymmetric problem in a domain bounded by
an outer cylinder of radius R, directly extending the CAP model developed in § 3 for
a planar geometry. Then in § 6.2, we investigate whether and how this can applied
to a non-axisymmetric drainage area. Finally, in § 6.3, we present results in the
axisymmetric geometry.

6.1. Axisymmetric chimney, active and passive zones

The axisymmetric versions of the heat conservation (2.10) and the vorticity equations
(2.7) are

Ω(−ψzθr + ψrθz)= (rθr)r +rθzz, (ψr/r)r + ψzz/r = −Rmθr, (6.1a,b)

where ψ now denotes the Stokes streamfunction such that u = (−ψz/r)er + (ψr/r)ez.
The axisymmetric counterparts to the conditions of marginal equilibrium, heat
conservation and mass conservation at the chimney boundary (2.11) are expressed
by

ψrθz = ψzθr, θr =
ψθz

r
, ψ =

a4

16D

(

ψr

r
+ Rm(θ − C)

)

+
a2

2

ψr

r
(r = a).

(6.2a,b,c)
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FIGURE 10. Drainage cells (Voronoi cells) in a three-dimensional section of mush, showing
the chimneys (black), an active zone (dark grey) and a passive zone (light grey).

6.1.1. Similarity solution for the active region

Appropriate scalings for the active region near the chimney are

ψ = z
1

Ω
Ψ (η), θ =

z

h0

Θ(η), η = r

(

RmΩ

h0

)1/2

, (6.3)

where h0 is the constant depth of the mushy layer in the passive region. This depth
is determined by a balance of the heat fluxes across the thermal boundary layer in the
liquid melt, as in the planar geometry, and satisfies

h0 = (θ∞Rmwe)
−1, where we = −Ψ ′(δ)/δ (6.4)

is the negative vertical velocity into the passive region. Substituting the similarity
variables into the governing equation (6.1), we obtain

−ΨΘ ′ + Ψ ′Θ = (ηΘ ′)
′
,
(

Ψ ′/η
)′

= −Θ ′. (6.5a,b)

We employ the same techniques as in the planar geometry to show C = (z/2h0)Θ(α).
The boundary conditions at the chimney wall (6.2) then become

Ψ ′Θ = ΨΘ ′, Θ ′ =
ΨΘ

ηΩ
, Ψ =

α4

16EΩwe

(

Ψ ′

η
+
Θ

2

)

+
α2

2

Ψ ′

η
(η = α),

(6.6a,b,c)

where α ≡ a(RmΩ/h0)
1/2. The solution of the active region only depends on the

dimensionless groups Ω and E, where

E = R2
mDθ∞. (6.7)

Note that, unlike in the planar geometry, the limit D → 0 can no longer be taken
non-singularly because of the geometric constriction of the flow discussed in § 6.3.2.
Therefore we retain (6.6c) and use this additional boundary condition to determine the
free boundary α.
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6.1.2. Passive region and patching conditions
The passive region is analogous to that in the planar geometry. We apply the

conditions u · n = n · ∇θ = 0 at an outer cylinder r = R and assume a linear thermal
field θ = z/h0. Then by the vorticity equation (6.1b) the Stokes streamfunction which
corresponds to horizontally uniform vertical velocity is ψ ∝ z(R2 − r2).

We apply the same four physical conditions as in the planar case to derive patching
conditions at radius r = rδ. The thermal patching conditions are

Θ(δ)= 1, Θ ′(δ)= 0, (6.8a,b)

where δ = rδ(RmΩ/h0)
1/2. Then continuity of normal mass flux, which is equivalent to

[ψz/r] = 0, implies that the Stokes streamfunction in the passive region is

ψ = z
1

Ω
Ψ (δ)

R2 − r2

R2 − r2
δ

(rδ 6 r 6 R). (6.9)

Finally, continuity of pressure, which can be shown to be equivalent to [ψr/r] = 0,
implies

R2 = R−2
m θ

−1
∞ Ω−1w−1

e

(

δ2 − 2δΨ (δ)/Ψ ′(δ)
)

. (6.10)

6.2. An approximate solution in an arbitrary geometry

Consider an axisymmetric active region of radius rδ inside a general passive region.
The pressure field that drives the flow in the active region corresponding to the
similarity solution determined above is

p =
1

ΩRm

∫ η

δ

Ψ (η′)

η′
dη′ −

z2

2h0

(

Ψ ′(δ)

δ
+ 1

)

. (6.11)

In the passive region, we assume a linear temperature profile θ = z/h0 and then
solve Darcy’s law (2.3) for the flow. Taking the divergence of Darcy’s law, we find

∇2p = −θz ≡ −1/h0, (6.12)

where the right-hand side is constant. We seek a separable solution p = m(x, y) + n(z).
Let n′′(z) = n0, ∇2m(x, y) = −m0, where m0 and n0 are constants satisfying m0 =
n0 + 1/h0. Note that n = (z2/2)n0, since w = 0 at z = 0.

To patch the solutions, we impose [p] = 0 and [u · n] = 0 on x2 + y2 = r2
δ . First,

[p] = 0 implies that m = 0 on x2 + y2 = r2
δ and

n0 = −
1

h0

(

Ψ ′(δ)

δ
+ 1

)

, m0 = −
1

h0

(

Ψ ′(δ)

δ

)

. (6.13a,b)

Secondly, [u ·n] = 0 ⇒ [∂p/∂r] = 0. Therefore

∂m

∂r

∣

∣

∣

∣

x2+y2=r2
δ

= (RmΩh0)
−1/2 Ψ (δ)

δ
. (6.14)

Integrating ∇2m(x, y) = −m0 over the passive region using the divergence theorem,
and applying the boundary condition [u · n] = 0 ⇒ [∂m/∂r] = 0 on the outer boundary,
we find

〈

∂m

∂r

∣

∣

∣

∣

x2+y2=r2
δ

〉

(2πrδ)= m0Ap, (6.15)
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FIGURE 11. Example of the effect of the geometry of the chimney arrangement. (a)
Computed radial inflow |u · er| for a square (– –) and hexagonal (—–) array of chimneys
as a function of azimuthal angle φ in comparison to an axisymmetric passive region (the solid
horizontal line). Corresponding contours of |∇m(x, y)| in the passive region are shown in (b)
for hexagonal and (c) for square arrays. In this example, Rm = 20, Ω = 4/3, D = 10−4 and
θ∞ = 1.4, with outer cylinder radius R = 0.746, which maximizes the solute flux through the
chimney. For these parameters, the azimuthal variation is about 40 % for the square array, and
10 % for the hexagonal.

where 〈·〉 denotes the azimuthal average and Ap is the area of the passive region.
We substitute (6.15) into (6.14) to obtain the final patching condition. Note that if
the passive region is axisymmetric then Ap = π(R2 − r2

δ ) and we recover the patching
condition (6.10) obtained previously.

In non-axisymmetric geometries, we can determine the extent of azimuthal variation
by finding m(x, y) numerically using a finite-element method (we used a standard
MATLAB package). Two examples presented in figure 11 – square and hexagonal
arrays of chimneys with the same total area drained – illustrate the main results.
Generically, there is greater azimuthal variation for a square array than a hexagonal
array, in which case the variation is usually minimal.

In conclusion, we can approximate a drainage cell of total area A by an
axisymmetric region with outer cylinder radius R satisfying

R =

(

A

π

)1/2

. (6.16)

All the patching conditions are satisfied exactly, except [u · n] = 0 which is satisfied
only in an azimuthally averaged sense, so that mass is conserved globally.

6.3. Results of the model in the axisymmetric geometry

6.3.1. Calculating heat and brine fluxes
Having shown that a general drainage cell can be modelled using an axisymmetric

cell of the same area, we repeat the analysis of § 3.4 in axisymmetry to find the fluxes

FSolute = −Rmγ, (6.17)

FHeat = −2θ∞Rmγ, (6.18)

where the multiplying factor,

γ =
Ψ (α)

Θ(α)

[

δ2 − 2δΨ (δ)/Ψ ′(δ)
]−1

(6.19)
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FIGURE 12. (a, b) The two modes of convection (I, II) for parameters Rm = 16, θ∞ = 1.4,
D = 1 × 10−4 and Ω = 1. Isotherms (dashed white curves), streamlines of Darcy velocity
(solid white curves) and the chimney radii at r = a are shown. (c) Solute flux against drainage
cell radius R, and the change in which local maximum (mode) has the greater flux as we
increase Rm from 14 to 17; the dashed curves are lower branches of solutions, analogous to
those in figure 6. The transition between modes is shown in (d,e) with open circles indicating
the value of Rm where is there is no longer a local maximum in solute flux corresponding
to the mode. (d) The maximum value of solute flux and (e) the drainage cell radius R = Rc

at which the flux is maximized. At higher values of Ω , the transition is rapid, but no longer
discontinuous in Rc.

can be found by solving the similarity equations for the active region. The size of the
active region δ depends on the external parameters, through the radius of the outer
cylinder R, under (6.10).

6.3.2. Dependence on drainage area and geometric constriction of convection
In axisymmetry there are additional geometric factors that complicate the

dependence of flux on drainage area. In particular, mass conservation ∇ · u = 0 means
that in the axisymmetric geometry, unlike the planar geometry, the flow is constricted
as r → a+.

Flow constriction gives rise to two distinct modes of convection at certain parameter
values. Mode I (figure 12a) has a relatively small drainage area and weaker flow.
Mode II (figure 12b) has a relatively large drainage area which supports a bigger
temperature contrast and hence greater flow rates but similar solute fluxes per unit
area drained. As Rm increases, the strength of convection increases, which leads to
geometric constriction becoming more significant. This inhibits mode II relative to
mode I (figure 12c, e). This complicating detail has a minimal effect on the solute
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FIGURE 13. A hexagonal array of chimneys corresponding to mode I in figure 12. The thin
white dashed curves are isotherms while thicker vertical white regions are chimneys.

flux (figure 12d). Under the maximum-flux criterion, there is a transition to a greater
number of relatively weak chimneys as Rm increases (a transition to mode I at high
Rm). This fact, as well as the observation that a much greater fraction of the volume
flux occurs through the chimney in mode I, consistent with the formulation of the
CAP model, leads us to expect that mode I will occur generically. Therefore, a
hexagonal array of chimneys would have the form shown in figure 13, which is similar
in appearance to the photograph of ammonium chloride solidifying in a rectangular
tank by Huppert (1990), his figure 19(c).

6.4. Results in axisymmetry: dependence on parameters

6.4.1. Application of the maximum-flux criterion
We assume that the drainage area takes the value that maximizes the solute flux

(§ 5). As in the planar case, we can satisfy this criterion by finding solutions for
the active region that satisfy ∂γ /∂δ = 0. In § 6.1.1, we proved that the equations
governing the active region depend on only two dimensionless groups: Ω and
E = R2

mDθ∞. Therefore, under the maximum-flux criterion,

FSolute = −Rmγc(Ω,E), (6.20)

FHeat = −2θ∞Rmγc(Ω,E). (6.21)

Figure 14 shows the behaviour of the proportionality function γc(E,Ω) in these
equations, and can be used to derive and interpret the relationships between solute
flux and Rayleigh number developed below.

6.5. Relationships between solute fluxes and the mush Rayleigh number

In axisymmetry, we find nonlinear relationships between solute flux and Rayleigh
number, as shown in figure 15. The precise form of these relationships depends
significantly on Ω , and somewhat more weakly on D and θ∞. The departure from
linearity arises from the different behaviour near the chimney, especially in terms of
the geometric constriction of the flow discussed previously.

6.5.1. Dependence on D , θ∞
The Darcy number D and far-field temperature of the melt θ∞ only appear

multiplied together in the group E = R2
mDθ∞, so we need only consider the product

Dθ∞.
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FIGURE 14. Behaviour of the proportionality constant γc(E,Ω) in (6.20) and (6.21). (a)
Equally spaced contours of γc; note that they are approximately parallel to the E-axis at large
E indicating that the γc depends principally on Ω in this region. (b) The dependence on Ω at
three distinct values of E.
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FIGURE 15. Relationships between solute flux and Rayleigh number in axisymmetry. (a)
The relationships at different values of Ω for fixed Dθ∞ = 1.4 × 10−4. These become
approximately linear at high Rm. In (b) we use different values of Dθ∞ but fixed Ω = 1.
The solid parts of the curves correspond to mode I behaviour, and the dashed parts to mode II
behaviour.

In the planar geometry D and θ∞ did not affect the maximum flux at all. They do

affect the chimney radius, which in axisymmetry controls the significance of geometric

constriction, and hence they affect the solute flux (see (6.6c)).

Nevertheless, the slopes of the curves in figure 15(b) are approximately the same

across a wide range of Dθ∞ (we observe that this statement holds better at higher

Ω , so figure 15(b) represents the ‘worst-case scenario’ Ω = 1). Therefore, in some

circumstances it is appropriate to seek an approximate relationship between flux and

Rayleigh number that is independent of both D and θ∞, a further major parametric

simplification, as we now do.
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6.5.2. Dependence on Ω
Both the degree of nonlinearity and the gradient of the slope of the graph of

flux against Rayleigh number depend significantly on the value of Ω , as shown in
figure 15(a). For low Rm, the flux does not depend strongly on Ω because to some
extent the weaker convection caused by increasing Ω (as found in the planar case) is
compensated by the lesser importance of geometrical constriction. However, at high
Rm, when the smaller, weaker chimney mode of convection dominates, the solute flux
is considerably lower at higher values of Ω . Indeed, at high Rm we can approximate
the relationship between flux and Rayleigh number by a linear flux law

FSolute = Rmγ̃c(Ω)− c where c is constant. (6.22)

The gradient γ̃c(Ω) decreases with Ω , as shown by considering any of the curves in
figure 14(b).

7. Concluding discussion and applications

Convection in a mushy layer can be modelled simply using a series of
approximations which capture the underlying physics while reducing a two-
dimensional problem (either planar or axisymmetric) to solving ordinary differential
equations. In planar geometry, we deduced analytically that the solute and heat
fluxes through the chimney are proportional to the mush Rayleigh number, with
the proportionality depending on only one parameter. In axisymmetric geometry, we
found that this proportionality function depended on two dimensionless groups Ω and
E = R2

mDθ∞. This gave rise to the possibility of nonlinear relationships between the
solute flux and the mush Rayleigh number Rm.

At a foundational level, nonlinearity arises from the presence of an additional
length scale. The planar problem has only one length scale, the thermal length scale
κ/V , and so on dimensional grounds the solute flux must be proportional to the
Rayleigh number at high Rayleigh number. By contrast, in the axisymmetric problem
geometrical constriction that occurs over a length scale that depends on the chimney
radius introduces an additional length scale. Non-dimensionally, this means that the
solute flux can depend on the Darcy number in axisymmetry, in which case there is a
nonlinear relationship between solute flux and Rayleigh number.

Nevertheless, for large Rm and only moderate variation in Dθ∞, this nonlinearity
is weak. Furthermore we showed that the fully three-dimensional problem can be
approximated well by an axisymmetric region of the same drainage area. Therefore we
propose the dimensional approximations

FSolute ∼ −V(C0 − CE)Rmγc(Ω), (7.1)

FHeat ∼ −2ρcpV(T∞ − T0)Rmγc(Ω). (7.2)

For reference the non-dimensional parameters of the system are

Rm =
β(C0 − CE)gΠ0

νV
, D =Π0

V2

κ2
, θ∞ =

T∞ − T0

T0 − TE

, Ω = 1 +
L

(CS − CE)Γ cp

.

(7.3)

The flux law (7.1) simplifies the parametric dependence of the solute flux caused
by convection in a mushy layer. Solute flux depends quadratically on driving
concentration difference (C0 − CE) and linearly on permeability Π0. It is independent
of both the solidification rate V and the thermal diffusivity κ , which together set the
overall thermal length scale κ/V .
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Our modelling approach provides additional evidence of the robustness of the linear
solute flux law in planar geometry, which was first proposed by Wells et al. (2010)
on the basis of numerical work over a range of values of Rm and C , holding θ∞ and
S constant (note that Ω = 1 + S /C ). In particular, we were able to find this law (at
least for high Rm) across a broader range of parameter values.

Crucially, we were able to extend this approach into axisymmetry. The possibility of
nonlinearity does suggest that caution should be used in applying the planar flux law
to three-dimensional problems, and suggests that variation in Dθ∞ should be moderate
in order to do so.

It is also interesting to note that, for both geometries, we reproduce the ratio
of solute flux to heat flux found by the scaling analysis of Worster (1991) and
successfully used to explain the evolution of the melt region in experiments (Worster
1992b). That analysis left a factor in the flux laws undetermined, which did not affect
the ratio. However, we improve on that study by determining this factor in terms of
the non-dimensional parameters.

Furthermore, our approach demonstrates the need for a finite active region where
baroclinic torque occurs in order to drive the entire convective flow through the
chimneys. Our analytical approach also reveals the connection between straight-sided
chimneys and a linear temperature field.

Although not capable of producing quantitative agreement with the direct numerical
simulation of Chung & Worster (2002) and Wells et al. (2010), for reasons discussed
earlier, our model does capture the same dynamics as numerical simulations. This
suggests that it could be used as the basis of a dynamically informed parameterization
of brine fluxes within and from sea ice. The types of simplification used in our model
are consistent with current models for sea ice. These use a low vertical resolution (so a
linear temperature profile is a reasonable approximation when only the bottom several
centimetres of sea ice actively convect, as is typical) and also use an effective specific
heat capacity, analogous to Ω .

Significantly, our model allows us to determine the vertical transport within the ice
and hence also the bulk salinity, which is related to the interstitial concentration by

Cbulk = C(1 − φ)+ CSφ ≈ C(1 − φ), (7.4)

since the concentration of the solid phase CS ≈ 0 in sea ice. Along with temperature,
bulk salinity is the main state variable of interest to modellers. These results, which
are the same in planar and axisymmetric geometry, could be applied to model the
actively convecting region at the bottom of sea ice in a one-dimensional fashion,
accounting for the effects of convection analytically. Within the passive region, where
there is no horizontal variation, we find the dimensional result

w = −VRmwcζ, (7.5)

where ζ , which equals z/h0 in our formulation, in general denotes the ratio of the
distance into the convecting region to the depth of that region, and the appropriate
interstitial concentration difference 1C in the Rayleigh number is that across the
convecting layer only. Then using the full equation of salt conservation in steady state,

−V
∂Cbulk

∂z
= −w

∂C

∂z
⇒ Cbulk = C0 −

Rm1C

2

(

1 − ζ 2
)

wc. (7.6)

The solid fraction could then by determined by inverting (7.4). In this paper, we have
calculated wc from our model, both in the planar case (in which it depends on Ω),
and in the axisymmetric case (in which it depends on Ω and E in general). However,
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in practice it would be appropriate to treat wc as an adjustable parameter, tuned by
experimental data or numerical simulation. This could provide a way to account for
factors not incorporated into our model, such as differences in the thermal properties
of the phases and a non-uniform permeability.

We have shown how to produce a parameterization of heat and solute fluxes through
chimneys based on a Rayleigh number that governs the strength of convection. A
Rayleigh number could be defined for the actively convecting region near the base of
growing sea ice and the flux law or structure of the interstitial flow field that we have
found could be used to compute salt transport both within and from the ice, as well as
the solid fraction. This would lead to a simple model of sea ice whose salt content is
dynamically determined.
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Appendix. Scaling for the chimney width with power-law far-field temperature

profile

In previously unpublished work by J. Ashmore & M. G. Worster, scaling
relationships were discovered between the shape of the vertical temperature variation
in a mushy layer and the width of a chimney as follows.

Consider an isolated chimney in an infinite (both vertically and horizontally) mushy
layer. Look for a boundary-layer similarity solution of heat conservation (2.10) and the
vorticity equation (2.7) with far-field conditions

θ → czb, ψx → 0 (x → ∞). (A 1)

In the boundary layer, the dominant balances in (2.10) and (2.7) become

Ω(−ψzθx + ψxθz)∼ θxx, ψxx ∼ −Rmθx. (A 2)

This is analogous to our active region. There is a similarity solution

ψ =

(

cRm

bΩ

)1/2

z(1+b)/2 Ψ (η), θ = czbΘ(η), η =
x

d(z)
, d(z)=

z(1−b)/2

(bcRmΩ)
1/2
, (A 3)

where Ψ and Θ satisfy ordinary differential equations that can be readily solved.
As in (3.7), we substitute the similarity solution to find that the average

concentration in the chimney is C ∼ czbΘ0(1 + b)/(1 + 3b). Recalling (2.11c) for
mass conservation, we substitute the similarity solution and neglect the final term as
asymptotically small in the limit D → 0 to find

a ∼
D1/3

(cRmΩ)
1/6

z(1−b)/6α(b), where α(b)=

(

3Ψ0(1 + 3b)

b1/2
(

(1 + 3b)Ψ ′
0 + 2bΘ0

)

)1/3

. (A 4)

Therefore a ∝ z(1−b)/6 and so straight-sided chimneys correspond precisely to linear
(b = 1) far-field temperature profiles. Note that (A 4) reduces to (3.8) if b = 1 and
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(a) (b)

FIGURE 16. A nonlinear far-field temperature profile (a), where b = 1/2, gives rise to the
chimney width shown in (b). The sides remain very steep apart from near the base. Its shape
is qualitatively similar to the numerical results of Chung & Worster (2002).

c = 1/h0. However, we can also find the shape of the chimney with other power

laws for the far-field temperature. Figure 16 shows the case b = 1/2 for example, and

illustrates the fact that the chimney is typically almost straight-sided except near its

base for a variety of realistic temperature profiles.
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