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FLUXNET: A New Tool to Study 
the Temporal and Spatial Variability 
of Ecosystem-Scale Carbon Dioxide, 

Water Vapor, and Energy Flux Densities
Dennis Baldocchl,® Eva Falge,’’ Llanhong Gu,® Richard Olson,^ David Floiilnger,'’ Steve Running,® 

Peter Anthonl,f Ch. Bernhofer,^ Kenneth Davis,'' Robert Evans," Jose Fuentes; Allen Goldstein,® 
Gabriel KatuI,) Beverly Law,f Xuhul Lee," Yadvlnder Malhl,' Tllden Meyers,"' William Munger," 

W alt Oechel,° K. T. Paw U,p Kim Pllegaard,®i FI. P. Schmld,'^ RIccardo Valentlnl," 
Shashi Verma,* TImo Vesala," Kell Wilson,"' and Steve Wofsy"

ABSTRACT

FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of car
bon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on 
a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and 
evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five con
tinents and their latitudinal distribution ranges from 70°N to 30°S.

FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing 
carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data 
and site information are available online at the FLUXNET Web site, http://www-eosdis.oml.gov/FLUXNET/.) Second, 
the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional 
networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas 
and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide infor
mation for validating computations of net primary productivity, evaporation, and energy absorption that are being 
generated by sensors mounted on the NASA Terra satellite.

Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual 
ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux 
densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas ex
change models. Findings so far include 1) net CO  ̂ exchange of temperate broadleaved forests increases by about 
5.7 g C m“̂  day^ for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem CO  ̂
exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of CO  ̂flux density exhibits peaks 
at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature 
of net CO  ̂exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor 
flux densities.
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1. Introduction

Large-scale, multi-investigator projects have been 
the keystone of many scientific and technological ad
vances in the twentieth century. Physicists have 
leamed much about the structure of an atom’s nucleus 
with particle accelerators. Astrophysicists now peer 
deep into space with the Hubble Space Telescope and 
an array of radio telescopes. Molecular biologists are 
decoding the structure of our DNA with the Human 
Genome project.

Ecosystem scientists need a tool that assesses the 
flows of carbon, water, and energy to and from the 
terrestrial biosphere across the spectrum of time- and 
space scales over which the biosphere operates (see 
Running et al. 1999; Canadell et al. 2000). Similarly, 
atmospheric scientists need a tool to quantify surface 
energy fluxes at the land-atmosphere interface, as 
these energy fluxes influence weather and climate 
(Betts et al. 1996; Pielke et al. 1998). In this paper, we 
report on such a tool. It consists of a global array of 
micrometeorological towers that are measuring flux 
densities of carbon dioxide, water vapor, and energy 
between vegetation and the atmosphere on a quasi- 
continuous and long-term (multiyear) basis. The ob
jectives of this paper are to introduce the FLUXNET 
project and describe its rationale, goals, measurement 
methods, and geographic distribution. We also present 
a sampling of new results that are being generated 
through the project. The intent is to show how infor
mation from this network can aid ecologists, meteo
rologists, hydrologists, and biogeochemists to 
understand temporal and spatial variations that are as
sociated with fluxes of carbon and water between the 
biosphere and atmosphere.

2. What is the problem?

Over the past century, the states of the earth’s at
mosphere and biosphere have experienced much 
change. Since the dawn of the industrial revolution, the 
mean global CO^ concentration has risen from about 
280 ppm to over 368 ppm (Keeling and Whorf 1994; 
Conway et al. 1994). The secular rise in atmospheric 
carbon dioxide concentrations is occurring due to im
balances between the rates that anthropogenic and 
natural sources emit CO^ and the rate that biospheric 
and oceanic sinks remove CO^ from the atmosphere. 
Superimposed on the secular trend of CO^ is a record 
of large interannual variability in the annual rate of

growth of atmospheric CO .̂ Typical values of inter
annual variability are on the order of 0.5-3.0 ppm y r f  
On a mass basis, these values correspond with a range 
between 1 and 5 gigatons C yr '. Potential sources of 
year-to-year changes in atmospheric CO^ remain a 
topic of debate. Studies of atmospheric and dis
tributions imply that the terrestrial biosphere plays an 
important role in this interannual variability (Ciais 
et al. 1995; Keeling et al. 1996). Sources of this vari
ability have been attributed to El Nino/Ea Nina events, 
which cause regions of droughts or superabundant 
rainfall (Conway et al. 1994; Keeling et al. 1995), and 
alterations in the timing and length of the growing 
season (Mynenietal. 1997a,b; Randersonetal. 1997).

Rising levels of CO ,̂ and other greenhouse gases, 
are of concem to scientists and policy makers because 
they trap infrared radiation that is emitted by the 
earth’s surface. Potential consequences of elevated 
CO2  concentrations include a warming of the earth’s 
surface (Hansen et al. 1998), melting of polar icecaps 
and a rising sea level, and an alteration of plant and 
ecosystem physiological functioning and plant com
position (Amthor 1995; Norby et al. 1999).

With regard to plants and ecosystems, short-term 
experiments with elevated CO^ show increased rates 
of photosynthesis and plant growth and lowered sto- 
matal conductance (Drake et al. 1996). The long-term 
sustainability of enhanced rates of growth by plants, 
however, depends on nutrient and water availability, 
temperature, and light competition (Ceulemans and 
Mousseau 1994; Norby etal. 1999). Warmer tempera
tures, associated with elevated CO ,̂ promote increased 
rates of respiration when soil moisture is ample. But 
if climate warming is associated with drying, there can 
be reduced assimilation and lower rates of soil/root 
respiration in temperate ecosystems. In the tundra and 
boreal forest, warming and drying can lower water 
tables, exposing organic peat to air and increasing its 
rate of respiration (Goulden et al. 1998; Eindroth et al. 
1998; Oechel etal. 2000).

How evaporation is impacted by elevated CO^ de
pends on the scale of study and concurrent changes in 
leaf area index, canopy surface conductance, and the 
depth of the planetary boundary layer. Theory indi
cates that complex feedbacks among stomatal conduc
tance, leaf temperature, and the air’s vapor pressure 
deficit cause responses at the leaf scale to differ from 
that of the canopy scale. For instance, a potential re
duction of leaf transpiration, by stomatal closure, is 
compensated for in part by the entrainment of dry air 
from above the planetary boundary layer and elevated
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leaf temperatures and humidities (Jacobs and deBruin
1992). Hence, canopy evaporation may not be reduced 
to the same degree as leaf transpiration in an elevated 
CO2  world.

In the meantime, the composition of the land sur
face has changed dramatically to meet the needs of the 
growing human population. Many agricultural lands 
have been transformed into suburban and urban land
scapes, wetlands have been drained, and many tropi
cal forests have been logged, bumt, and converted to 
pasture. In contrast, abandoned farmland in the north
east United States and Europe is retuming to forest 
as those societies become more urban. Changes in land 
use alter the earth’s radiation balance by changing its 
albedo, Bowen ratio (the ratio between the flux den
sities of sensible and latent heat exchange), leaf area 
index, and physiological capacity to assimilate carbon 
and evaporate water (Betts et al. 1996; Pielke et al.
1998). Changing a landscape from forest to agricul
tural crops, for instance, increases the surface’s albedo 
and decreases the Bowen ratio (Betts et al. 1996); 
forests have a lower physiological capacity to assimi
late carbon and a lower ability to transpire water, as 
compared to crops (Kelliher et al. 1995; Baldocchi and 
Meyers 1998). A change in the age structure of for
ests due to direct (deforestation) or indirect (climate- 
induced fires) disturbance alters its ability to acquire 
carbon and transpire water (Amiro et al. 1999; Schulze 
et al. 1999).

The issues identified above all require information 
on fluxes of carbon, water, and energy at the earth’s 
surface and how these fluxes interact with the physi
cal climate and physiological functioning of plants and 
ecosystems. In the next section we identify numerous 
ways to obtain this information and illustrate how a 
network of long flux measurement sites can provide 
particularly useful information to study these complex 
problems.

3. How to study biosphere CÔ  
exchange?

Study of the earth’s biogeochemistry and hydrol
ogy involves quantifying the flows of matter in and 
out of the atmosphere. Numerous techniques exist for 
studying biosphere-atmosphere CO^ exchange, each 
with distinct advantages and disadvantages. At the 
continental and global scales, scientists assess carbon 
dioxide sources and sinks using atmospheric inversion 
models that ingest information on fields of CO

and O2  concentration and wind (Tans et al. 1990; Ciais 
etal. 1995; Denning etal. 1996; Fan etal. 1998). This 
approach is subject to errors due to the sparseness of 
the trace gas measurement network, their biased place
ment in the marine boundary layer, and the accuracy 
of the atmospheric transport models (Tans etal. 1990; 
Denning et al. 1996; Fan et al. 1998).

Instruments mounted on satellite platforms view 
the earth in total. Consequently, satellite-based instru
ments offer the potential to evaluate surface carbon 
fluxes on the basis of algorithms that can be driven by 
reflected and em itted radiation measurements 
(Running et al. 1999; Cramer et al. 1999). This ap
proach, however, is inferential, so it is dependent on 
the accuracy of the model algorithms, the frequency 
of satellite images, and the spectral information con
tained in the images.

At the landscape to regional scale we can use in
struments mounted on aircraft (Crawford et al. 1996; 
Desjardins et al. 1984, 1997) or boimdary layer bud
get methods (Denmead et al. 1996; Fevy et al. 1999; 
Yi et al. 2000) to assess carbon and water fluxes. 
Aircraft-based eddy covariance flux density measure
ments give good information on spatial pattems of 
carbon and water fluxes across transects to tens to 
hundreds of kilometers. However, they do not provide 
information that is continuous in time, nor do they 
provide insights on the physiological mechanisms that 
govem carbon and water fluxes. Boundary layer bud
get methods can be implemented using tall towers, 
tethered balloons, or small aircraft. This method pro
vides information on spatially integrated fluxes of tens 
to hundreds of square kilometers, but it can be applied 
only during ideal meteorological conditions (Denmead 
et al. 1996). Routine application of this method is ham
pered by a lack of data on entrainment and horizontal 
advection.

One measure of carbon flux “ground truth” can be 
provided by biomass surveys (Kauppi et al. 1992; 
Gower et al. 1999). However, biomass surveys pro
vide information on multiyear to decadal timescales, 
so they do not provide information on shorter-term 
physiological forcings and mechanisms. Furthermore, 
forest inventory studies are labor intensive and are 
inferential estimates of net carbon exchange. Such 
studies rarely measure growth of small trees and below- 
ground allocation of carbon. Instead biomass surveys 
commonly assume that a certain portion of carbon is 
allocated below ground (Gower et al. 1999). Soil car
bon surveys can be conducted too but, like biomass 
surveys, they require long intervals to resolve de
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tectable differences in net carbon uptake or loss 
(Amundson et al. 1998).

The eddy covariance method, a micrometeorologi
cal technique, provides a direct measure of net carbon 
and water fluxes between vegetated canopies and the 
atmosphere (Baldocchi et al. 1988; Token and Wichura 
1996; Aubinet et al. 2000). With current technology, 
the eddy covariance method is able to measure mass 
and energy fluxes over short and long timescales (hour, 
days, seasons, and years) with minimal disturbance to 
the underlying vegetation. Another attribute of the 
eddy covariance method is its ability to sample a rela
tively large area of land. Typical footprints have lon
gitudinal length scales of 100-2000 m (Schmid 1994). 
If deployed as a coordinated network of measurements 
sites, the eddy covariance method has the potential of 
quantifying how whole ecosystems respond to a spec
trum of climate regimes, thereby expanding the spa
tial scope of this method.

The eddy covariance method is not without weak
nesses. Its application is generally restricted to peri
ods when atmospheric conditions are steady and to 
locations with relatively flat terrain and vegetation that 
extends horizontally about 100 times the sampling 
height. Consequently, the method is not suitable for 
measuring fluxes in rough mountainous terrain or near 
distinct landscape transitions such as lakes.

Nevertheless, the strengths of the eddy covariance 
method far outweigh its weaknesses, as it can provide 
information that can aid in inferential carbon fluxes 
being determined by the global inversion model com
munity, remote sensing scientists, and forest ecolo
gists. For example, data from an eddy covariance 
measurement site have the potential to complement 
the global flask sampling network in a very direct way. 
Historically, the global flask sampling network has 
been concentrated at marine locations (Tans et al. 
1990). Recent studies using tall towers show that there 
are times during the day, when either local surface 
fluxes are small or convective mixing is vigorous, that 
CO^ concentrations measured in the atmospheric sur
face layers are very close to the mean boundary layer 
concentration (Bakwin et al. 1998; Potosnak et al. 
1999). High-precision CO^ concentration measure
ments and surface carbon flux measurements, made at 
eddy covariance measurement sites, have the poten
tial to expand the density of the existing flask network. 
Data from a network of eddy covariance measurement 
sites can also be used to improve and validate the al
gorithms being used by remote sensing scientists and 
ecosystem modelers. And finally, such data can aid

forest ecologists in their interpretation of forest bio
mass inventories, by providing information on fluxes 
from carbon pools and how these fluxes vary on a sea
sonal and interannual basis.

4. History: What has been done?

Micrometeorologists have been measuring CO^ 
and water vapor exchange between vegetation and the 
atmosphere since the late 1950s and early 1960s. Yet, 
only recently have we had the technology available 
that enables us to make continuous flux measurements 
at numerous sites.

The earliest reported micrometeorological mea
surements of CO^ exchange were conducted by Inoue 
(1958), Lemon (1960), Monteith and Sziecz (1960), 
and Denmead (1969). These studies employed the 
flux-gradient method over agricultural crops during 
the growing season. By the late 1960s and early 1970s, 
a few scientists started applying the flux-gradient 
method over natural landscapes. Several flux-gradient 
studies of CO^ exchange were conducted over forests 
(Denmead 1969; Baumgartner 1969; Jarvis etal. 1976), 
and one team ventured to assess the annual carbon 
balance of a salt marsh (Houghton and Woodwell 1980).

As more data were collected it became evident that 
the flux-gradient method was suffering from major 
deficiencies, when applied over tall forests. One flaw 
arose from large-scale transport in the roughness 
sublayer, which caused local eddy exchange coeffi
cients to be enhanced relative to estimations based on 
Monin-Obukhov scaling theory (Rapauch and Legg 
1984; Kaimal and Finnigan 1994). The flux-gradient 
method also failed to provide reliable means of evalu
ating eddy exchange coefficients at night.

Routine application of the eddy covariance method 
was delayed until the 1980s, when technological ad
vances in sonic anemometry, infrared spectrometry, 
and digital computers were made. Initial studies 
were conducted over crops (Anderson et al. 1984; 
Desjardins et al. 1984; Ohtaki 1984), forests (Verma 
etal. 1986), and native grasslands (Verma etal. 1989) 
for short intense periods during the peak of the grow
ing season. By the late 1980s and early 1990s, the fur
ther technological developments, such as larger data 
storage capacity and linear and nondrifting instru
ments, enabled scientists to make defensible measure
ments of eddy fluxes for extended periods. Wofsy et al. 
(1993), at Harvard Forest, and Vermetten etal. (1994), 
in the Netherlands, were among the first investigators
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to measure earbon dioxide and water vapor fluxes eon- 
tinuously over a forest over the eourse of a year with 
the eddy eovarianee method. Spurred by these two 
pioneering studies, a handful of other towers were soon 
established and operating by 1993 in North Ameriea 
[Oak Ridge, Tennessee (Greeo and Baldoeehi 1996); 
Prinee Albert, Saskatehewan, Canada (Blaek et al. 1996)] 
and Japan (Yamamoto et al. 1999), and in Europe by 
1994 (Valentini et al. 1996). This era also heralded the 
start of longer, quasi-eontinuous multi-investigator 
experiments. Noted examples inelude the Boreal 
Eeosystem-Atmosphere Study (Sellers et al. 1997) 
and the Northern Hemisphere Climate-Proeesses 
Eand-Surfaee Experiment (Halldin et al. 1999).

The next natural step in the evolutionary develop
ment of this field was to establish a global network of 
researeh sites. The eoneept of a global network of long
term flux measurement sites had a genesis as early as 
1993, as noted in the seienee plan of the International 
Geosphere-Biosphere Program/Biospherie Aspeets of 
the Hydrologieal Cyele (BAHC Core Projeet Offiee
1993). Formal diseussion of the eoneept among the 
international seienee eommunity oeeurred at the 1995 
Ea Thuile workshop (Baldoeehi et al. 1996). At this 
meeting, the flux measurement eommunity diseussed 
the possibilities, problems, and pitfalls assoeiated with 
making long-term flux measurements (e.g., Goulden 
et al. 1996a,b; Monererff et al. 1996). After the Ea Thuile 
meeting there was aeeeleration in the establishment of 
flux tower sites and regional flux measurement net
works. The Euroflux projeet started in 1996 (Aubinet 
et al. 2000; Yalentini et al. 2000). The AmeriFlux 
projeet was eoneeived in 1997, subsuming the several

ongoing tower studies and initiating many new stud
ies. With the sueeess of the European and Ameriean 
regional networks and antieipation of the Earth Ob
servation Satellite {EOS/Terra), the National Aero- 
nauties and Spaee Administration (NASA) deeided, 
in 1998, to fund the global-seale FEUXNET projeet, 
as a means of validating EOS produets.

5. What is being done?

The FEUXNET projeet serves as a meehanism for 
uniting the aetivities of several regional and eontinen- 
tal networks into an integrated global network. At 
present over 140 flux tower sites are registered on the 
FEUXNET data arehive. Researeh sites are operating 
aeross the globe (Fig. 1) in North, Central, and South 
Ameriea; Europe; Seandinavia; Siberia; Asia; and Affiea. 
The regional networks inelude AmeriFlux [whieh in- 
eludes Earge-seale Biosphere-Atmosphere Experi
ment (EBA) sites in Brazil], CarboEuroflux (whieh 
has subsumed Euroflux and Medeflu), AsiaFlux, and 
OzFlux (Australia, New Zealand). There are also dis
parate sites in Botswana and South Afriea.

The global nature of FEUXNET extends the di
versity of biomes, elimate regions, and methods that are 
assoeiated with the regional networks. For example, 
sites in the original Euroflux network eonsisted of 
eonifer and deeiduous forests and Mediterranean 
shrubland. The European networks also used a stan
dard methodology, based on elosed-path infrared spee- 
trometers (Aubinet et al. 2000; Yalentini et al. 2000). 
By eontrast, the Ameriean network, AmeriFlux, has

5̂3*

L e g e n d  
, ASIAFLUX 

A m er iF lu *  
CA R B O E R O F L U X  
E O S  V olido t ion  

I EUROFLUX 
E u r o S ib e r i a P lu x  
LBA 

I MEDEFLU 
• O th e r  

O zN e t

Fig. 1. Global map of FLUXNET field sites.
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more diversity in terms of the number of biomes and 
climates studied and methods used. The American re
gional network includes sites in temperate conifer and 
deciduous forests, tundra, cropland, grassland, chap
arral, boreal forests, and tropical forests. Regarding 
methodology, open- and closed-path infrared spec
trometers are used to measure CO^ and water vapor 
fluctuations. Another unique dimension of AmeriFlux 
is its inclusion of a tall (400 m) tower (Bakwin et al. 
1998; Yi et al. 2000) for study of CO^ flux and con
centration profiles and boundary layer evolution.

The placement of field sites in FLUXNET has 
been ad hoc, due to limited funding and investigator 
capabilities, rather than following a predetermined 
geostatistical design. So with the current network con
figuration, we are not capable of measuring fluxes 
from every patch on earth, nor do we intend to. On 
the other hand, this coordinated network of sites is able 
to deduce certain information on spatial pattems of 
fluxes by placing research sites across a spectrum of 
climate and plant functional regions (Running et al. 
1999). Spatially integrated fluxes of carbon and wa
ter can only be constmcted by combining eddy flux 
measurements with ecosystem and biophysical mod
els and satellite measurements to perform the spatial 
integration (Running et al. 1999).

The scientific goals of FLUXNET are to

1) quantify the spatial differences in carbon dioxide 
and water vapor exchange rates that may be expe
rienced within and across natural ecosystems and 
climatic gradients;

2) quantify temporal dynamics and variability (sea
sonal, interannual) of carbon, water, and energy 
flux densities—such data allow us to examine the 
influences of phenology, droughts, heat spells, 
El Nino, length of growing season, and presence 
or absence of snow on canopy-scale fluxes; and

3) quantify the variations of carbon dioxide and water 
vapor fluxes due to changes in insolation, tempera
ture, soil moisture, photosynthetic capacity, nutrition, 
canopy stmcture, and ecosystem functional type.

FEUXNET has two operational components, a 
project office and a data archive office. The project of
fice houses the principal investigator and a postdoctoral 
scientist. Specific duties of the FEUXNET office include

1) communicating with participants to ensure the 
timely submission of data and documentation to 
the data archive.

2) constmcting and analyzing integrated datasets for 
synthesis of field data and for the development and 
testing of soil-atmosphere-vegetation-transfer 
models,

3) organizing workshops for data synthesis and model 
testing activities,

4) preparing peer-reviewed research papers and re
ports on FEUXNET activities and analyses,

5) funding the execution and analysis of site inter
comparison studies, and

6) providing scientific guidance to the FEUXNET 
Data and Information System (DIS).

The data archive office is responsible for

1) compiling and documenting data in consistent 
formats,

2) developing data guidelines and coordinating devel
opment of the FEUXNET DIS,

3) scrutinizing datasets with standard quality control 
and assurance procedures,

4) maintaining the FEUXNET Web page for com
munications and data exchange (http://www- 
eosdis.oml.gov/FEUXNET/), and

5) transferring FEUXNET data and metadata to a 
long-term archive, currently designated as the Oak 
Ridge National Laboratory Distributed Active 
Archive Center.

Back up of data and long-term accessibility of the data, 
provided by FEUXNET DIS, ensures the protection 
and extended use of the data by project scientists, as 
well as students and citizens, well into the future.

FEUXNET does not fund tower sites directly, but 
depends upon institutional support associated with the 
funding of the AmeriFlux, CarboEuroflux, AsiaFlux, 
and OzFlux networks (see acknowledgments).

Methodology
The eddy covariance method is used to assess trace 

gas fluxes between the biosphere and atmosphere at 
each site within the FEUXNET community (Aubinet 
et al. 2000; Valentini et al. 2000). Vertical flux densi
ties of CO2  (N) and latent {XE) and sensible heat {H) 
between vegetation and the atmosphere are propor
tional to the mean covariance between vertical veloc
ity {w') and the respective scalar (c') fluctuations (e.g., 
CO2 , water vapor, and temperature). Positive flux den
sities represent mass and energy transfer into the at
mosphere and away from the surface, and negative 
values denote the reverse; ecologists use an opposite
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sign convention where the uptake of carbon by the 
biosphere is positive. Turbulent fluctuations were 
computed as the difference between instantaneous and 
mean scalar quantities.

Our community is interested in assessing the net 
uptake of carbon dioxide by the biosphere, not the flux 
across some arbitrary horizontal plane. When the ther
mal stratification of the atmosphere is stable or turbu
lent mixing is weak, material diffusing from leaves and 
the soil may not reach the reference height in a time 
that is short compared to the averaging time T, thereby 
violating the assumption of steady-state conditions and 
a constant flux layer. Under such conditions the stor
age term becomes nonzero, so it must be added to the 
eddy covariance measurement to represent the balance 
of material flowing into and out of the soil and veg
etation (Wofsy etal. 1993; Moncrieff etal. 1996). With 
respect to CO ,̂ the storage term is small over short 
crops and is an important quantity over taller forests. 
The storage term value is greatest around sunrise and 
sunset, when there is a transition between respiration 
and photosynthesis and between the stable noctumal 
boundary layer and daytime convective turbulence 
(Aubinet et al. 2000; Yi et al. 2000). Summed over 
24 h, the storage term is nil (Baldocchi et al. 2000).

Horizontal advection is possible when vegetation 
is patchy or is on level terrain (Lee 1998; Finnigan
1999). At present, routine corrections for advection 
may require a three-dimensional array of towers 
(Finnigan 1999), rather than the application of a ver
tical velocity advection correction (see Lee 1998; 
Baldocchi et al. 2000).

6. Instrumentation, data acquisition, 
and processing

Typical instrumentation at FLUXNET field sites 
includes a three-dimensional sonic anemometer, to 
measure wind velocities and virtual temperature, and 
a fast responding sensor to measure CO^ and water 
vapor. Scalar concentration fluctuations are measured 
with open- and closed-path infrared gas analyzers. 
Standardized data processing routines are used to com
pute flux covariances (Token and Wichura 1996; 
Moncrieff et al. 1996; Aubinet et al. 2000).

Application of the eddy covariance methods in
volves issues relating to site selection, instrument 
placement, sampling duration and frequency, calibra
tion and postprocessing (Moore 1986; Baldocchi et al. 
1988; Token and Wichura 1996; Moncrieff etal. 1996;

Aubinet et al. 2000). Ideally the field site should be 
flat, with an extensive fetch of uniform vegetation. In 
practice many of the FLUXNET sites are on undulat
ing or gently sloping terrain, as this is where native 
vegetation exists. Sites on extreme terrain, which may 
force flow separation and advection, are excluded. The 
degree of uniformity of the underlying vegetation var
ies across the network, too. Some sites consist of 
monospecific vegetation, others contain a mixture of 
species and a third grouping possesses different plant 
functional types in different wind quadrants. All sites 
have sufficient fetch to generate an intemal boundary 
layer where fluxes are constant with height (Kaimal 
and Finnigan 1994).

Agricultural scientists mount their sensors on small 
poles, while forest scientists use either walk-up scaf
folding or low-profile radio towers. The height of the 
sensors depends on the height of the vegetation, the 
extent of fetch, the range of wind velocity, and the fre
quency response of the instruments. To minimize 
tower interference on scaffold towers, investigators 
place their instruments booms so that they point sev
eral meters upwind or at the top of the tower. Spatial 
separation between anemometry and gas analyzers 
depend on whether one uses a closed- or open-path gas 
sensor. With the closed-path systems, the intake is 
often near or within the volume of the sonic anemom
eters. A delay occurs as air flows through the tubing 
to the sensor, which is compensated for with software 
during postprocessing. Some investigators place their 
gas transducer on the tower in a constant environment 
box to minimize the lag time from the sample port and 
the sensor. Others draw air down long tubes to instru
ments housed in an air-conditioned hut below the 
tower. In either circumstance, flow rates are high 
(6 L m in ') to ensure turbulent flow and minimize the 
diffusive smearing of eddies (Aubinet et al. 2000). 
Open-path gas sensors are typically placed within 
0.5 m of a sonic anemometer, a distance that mini
mizes flow distortion and lag effects (Baldocchi et al. 
2000; Meyers 2001).

Sampling rates between 10 and 20 Hz ensure com
plete sampling of the high-frequency portion of the 
flux cospectrum (Anderson et al. 1984). The sampling 
duration must be long enough to capture low- 
frequency contributions to flux covariances, but not 
too long to be affected by diumal changes in tempera
ture, humidity, and CO .̂ Adequate sampling duration 
and averaging period vary between 30 and 60 min 
(Aubinetetal. 2000). Coordinate rotation calculations 
of the orthogonal wind vectors {w,u,v) are performed
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to correct for instrument misalignment and nonlevel 
terrain. The vertical velocity, w, is rotated to zero, 
allowing flux covariances to be computed orthogonal 
to the mean streamlines.

Calibration frequencies of gas instruments vary 
from team to team. With closed-path sensors, investi
gators are able to calibrate frequently and automati
cally, such as hourly or once a day. Teams with 
open-path sensors calibrate less frequently, for ex
ample, every few weeks. However, a body of accumu
lating data indicates that calibrating coefficients of 
contemporary instruments remain steady within that 
duration (±5%; Meyers 2001). Scientists using open- 
path sensors also compare their instrument responses 
to an independent measure of CO^ concentration and 
humidity. Members of this network do not use a uni
form standard for calibration CO ,̂ yet. But many of us 
use CO2  gas standards that are traceable to the standards 
at the Climate Monitoring and Diagnostics Laboratory 
of the National Oceanic and Atmospheric Administra
tion, the standards of the global flask network.

To ensure network intercomparability, the AmeriFlux 
project circulates a set of reference sensors to mem
bers in the network, and the FLUXNET project spon
sors the circulation of this set of instruments to sites 
in Europe, Asia, and Australia. Figure 2 shows a typi
cal comparison between the roving set of reference 
instrumentation and data from one research group. 
Carbon dioxide flux densities measured by the two 
systems agree within 5% of one another on an hour- 
by-hour basis. A similar level of agreement has been

o
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F ig . 2. A  comparison of CO  ̂ flux densities between the 
FLUXNET reference set of instruments and instruments at the 
Italian CarboEuroflux site. Here b(0) is the zero intercept and 
b(l) is the slope of the regressive curve, and E is the coefficient 
of determination.

found by comparing open- and closed-path CO^ sen
sors. Side-by-side comparisons between open- and 
closed-path water vapor sensors, on the other hand, are 
not as good. The absorption and desportion of water 
vapor on tubing walls can cause water uptake to be 
underestimated by 20%.

a  Gap filling
Most clients of eddy flux data, for example mod

elers, require uninterrupted time series. It is the intent 
of the micrometeorological community to collect eddy 
covariance data 24 hours a day and 365 days a year. 
However, missing data in the archived records is a 
common feature. Gaps in the data record are attributed 
to system or sensor breakdown, periods when instru
ments are off-scale, when the wind is blowing through 
a tower, when spikes occur in the raw data, when the 
vertical angle of attack by the wind vector is too se
vere, and when data are missing because of calibration 
and maintenance. Other sources of missing data arise 
from farming operations and other management activi
ties (e.g., prescribed bum of grasslands). Rejection cri
teria applied to the data vary among the flux tower 
groups. Data might be rejected, when stationarity tests 
or integral turbulence characteristics fail (Kaimal and 
Finnigan 1994; Foken and Wichura 1996), when pre
cipitation limits the performance of open-path sensors, 
during sensor calibration, or when spikes occur in in
strument readings. Other criteria used to reject data 
include applications of biological or physical con
straints (lack of energy balance closure; Aubinet et al.
2000) and a meandering flux-footprint source area 
(e.g., Schmid 1994). If the wind is coming from a 
nonpreferred direction as may occur over mixed stands, 
a certain portion of the data will need to be screened. 
In addition, rejection probability for some sites is higher 
during nighttime because of calm wind conditions.

The average data coverage during a year is between 
65% and 75% due to system failures or data rejection 
(Falge et al. 2001). Tests showthatthis observed level 
of data acceptance provides a statistically robust and 
oversampled estimate of the ensemble mean. So the 
filling of missing data does not provide a significant 
source of bias error.

b. Accuracy assessment
Errors associated with the application of the eddy 

covariance method can be random or biased (Moncrieff 
et al. 1996). Random errors arise from sensor noise and 
the random nature of atmospheric turbulence. Fully 
systematic bias errors arise from errors due to sensor
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drift, limited spectral response of instruments, limited 
sampling duration and frequency, and calibration er
rors. Selectively systematic bias errors arise from mis
application of the eddy covariance method, as when 
advection or storage occurs. Formal discussions on er
rors associated with long-term flux measurements 
were reported in previous papers by our colleagues 
(e.g., Goulden et al. 1996a; Moncrieff et al. 1996; 
Aubinet et al. 2000). For clarification, we provide a 
summary of their findings. Moncrieff et al. (1996) 
demonstrate how random sampling errors diminish 
greatly as the number of samples increase. The over
all random error using a dataset of 44 days is about 
0.4 qmol m^  ̂s f  This figure of merit is close to the 
“flux detection” level that many of us see with our field 
measurements. Accumulated over a year, this random 
error is ±53 g C m^  ̂y r ',  a value that agrees with a 
formal error analysis by Goulden et al. (1996a,b).

Fully systematic bias errors associated with imper
fect sensor response, sensor orientation, and sampling 
frequency and duration are typically compensated by 
applying spectral transfer functions to the flux cova
riance calculations (Moore 1986; Massman 2000). 
Depending on instrument configuration, wind speed, 
and thermal stratification, corrections can range from 
a few to 50 percent.

Selectively systematic bias errors are more diffi
cult to assess. A cohort of carbon flux researchers sus
pect that they may be underevaluating the nighttime 
measure of CO^ fluxes, despite attempts to measure 
the storage term (Black et al. 1996; Goulden et al. 
1996a; Baldocchi et al. 2000; Aubinet et al. 2000). 
Potential explanations include insufficient turbulent 
mixing, incorrect measurement of the storage term of 
CO^ in the air space and soil, and the drainage of CO  ̂
out of the canopy volume at night. At present, several 
teams of investigators are applying an empirical cor
rection to compensate for the underestimation of night
time carbon flux measurements. This correction is based 
on CO^ flux density measurements obtained during 
windy periods or by replacing data with a temperature- 
dependent respiration function (Black et al. 1996; 
Goulden et al. 1996a,b; Lindroth et al. 1998). Most 
researchers presume that data from windy periods rep
resent conditions when the storage and drainage of 
CO^ is minimal (Aubinet et al. 2000).

When using FLUXNET data, the user should rec
ognize that some sites are more suitable for construct
ing annual sums than others. Yet good science can be 
produced from the nonideal sites, too. They can pro
vide information on physiological functioning, tem

poral dynamics, and response to the environment dur
ing the day. We also note that the factors that cause 
large bias errors associated with noctumal CO^ fluxes 
may not cause significant errors to water vapor fluxes, 
since evaporative fluxes are near zero during the night. 
Consequently, studies comparing integrated annual 
measurements of evaporation with lysimeters and 
watersheds show good agreement (Barr et al. 2000; 
Wilson et al. 2000). On the other hand, tests of sur
face energy balance closure suggest that turbulent 
fluxes at some sites are systematically 10% to 30% too 
small to close the energy budget, raising the possibil
ity that CO 2  fluxes are similarly underestimated 
(Aubinet et al. 2000). The solution to this problem 
remains unresolved at the time of this writing.

7. Recent findings

As we write this report, 69 site-years of carbon 
dioxide and water vapor flux data have been published 
in the literature. Table 1 presents a survey of the an
nual sums of net carbon dioxide exchange. Most sites 
are net sinks of CO^ on an annual basis. Magnitudes 
of net carbon uptake by whole ecosystems range from 
near zero to up to over 700 g C m^  ̂y r f  Largest val
ues of carbon uptake are associated with temperate for
ests (conifer and deciduous) growing near the southem 
edge of that climate range. The substantial rate of net 
carbon uptake by tropical and temperate forests sites, 
under study, is an indicator that these sites have expe
rienced substantial amounts of disturbances in the rela
tively near past (50-100 yr) and have not reached 
long-term steady state.

On close inspection of Table 1, we note that sev
eral sites are sources of CO .̂ Sites losing carbon di
oxide include boreal forests and tundra, which are 
experiencing disturbance of long-term carbon storage 
pools (Goulden et al. 1998; Lindroth et al. 1998; 
Oechel et al. 2000), and grasslands, which were bumt 
(Suyker and Verma 2000) or were suffering from 
drought (Meyers 2001). The maximum carbon lost by 
these sites on an annual basis does not exceed 
100 g C m-2.

With the plethora of long-term carbon flux data 
available, we can quantify seasonal pattems of carbon 
fluxes across a variety of climates, biomes, and plant 
functional groups. Figure 3 shows the annual pattem 
of weekly CO^ exchange for several temperate broad
leaved deciduous forests. Broadleaved forests lose 
carbon during the winter, when they are leafless and
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T able 1. List of published yearlong studies of net biosphere-atmosphere CO  ̂exchange, W. Negative signs represent a loss of 
carbon from the atmosphere and a net gain by the ecosystem.

N Observation Principal
Site Vegetation (g C yi^^) year investigator Citation

a. Temperate broadleaved deciduous forests

Italy Beech, Fagus -470 1994 R. Valentini Valentini et al. (1996)

France Beech, Fagus -218 1996 A. Granier Granier et al. (2000)
-257 1997

Denmark Beech, Fagus -169 1997 N. O. Jensen Filegaard et al. (2001)
-124 1998

Iceland Poplar -100 1997 H. Thoreirsson Valentini et al. (2000)

Saskatchwan, Aspen -160 1994 T. A. Black Black et al. (1996)
Canada -144 1994

-8 0 1996
-116 1997
-290 1998

Oak Ridge, TN Acer, Quercus -525 1994 D. Baldocchi Greco and
-610 1995 Baldocchi (1996);

Maple, oak -597 1996 Wilson and
-652 1997 Baldocchi (2000)
-656 1998
-739 1999

Petersham, MA Acer, Quercus -280 1991 S. Wofsy W ofsy et al. (1993)
-220 1992

Maple, oak -140 1993 Goulden et al.
-210 1994 (1996a,b)
-270 1995

Borden, ON, Canada Maple, Acer -8 0 1996 X. Lee/J. Fuentes Lee et al. (1999)
-270 1997
-200 1998

Indiana Deciduous forest -240 1998 H. P. Schmid Schmid et al. (2000)

Takayama, Japan Broadleaf deciduous -120 1994 Yamomoto et al.
-7 0 1995 (1999)

-140 1996
-150 1997
-140 1998

h. M ixed deciduous and evergreen forests, temperate and Mediterranean

Belgium Conifer and broadleaf -430 1997 M. Aubinet Valentini et al. (2000)

Belgium Conifer and broadleaf -157 1997 R. Ceulemans Valentini et al. (2000)

c. Tropical forests

Amazon Tropical forest -102 1995 J. Grace Malhi et al. (1998)

d. N eedleleaf evergreen, conifer forests

Sweden Pinus sylvestris 90 1995 A. Lindroth Lindroth et al. (1998)
-5 1996
80 1997

Picea abies -190 1997

Italy Picea abies -450 1998 R. Valentini Valentini et al. (2000)
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T a b l e  1. Continued.

Site Vegetation
V

(g C m-  ̂yr ')
Observation

year
Principal

investigator Citation

d  Needleleaf, evergreen, conifer forests

France Pinus pinaster -430 1997 P. Berbigier Berbigier et al. (2001)

Germany Picea abies -7 7 1997 Valentini et al. (2000)

Germany Picea abies -330
-480

-45

1996
1997
1998

Ch. Bemhofer Valentini et al. (2000)

Germany Conifer -310
-490

1996
1997

A. Ibrom Valentini et al. (2000)

Germany Picea abies -7 7 1997 E.-D. Schulze Valentini et al. (2000)

Netherlands Pinus sylvestris -210 1997 H. Dolman Valentini et al. (2000)

United Kingdom Picea sitchensis -670
-570

1997
1998

J. M oncrieff Valentini et al. (2000) 
Valentini et al. (2000)

Finland Pinus sylvestris -230
-260
-190

1997
1998
1999

T. Vesala Valentini et al. (2000) 
Markkanen et al. 

(2001)

Howland, ME Conifer -210 1996 D. Hollinger Hollinger et al. (1999)

Florida Slash pine -740
-610

1996
1997

H. Gholz Clark et al. (1999)

Florida Cypress -8 4
-3 7

1996
1997

H. Gholz Clarke et al. (1999)

Manitoba, Canada Picea mariana 70
20

-1 0

1995
1996
1997

Goulden et al. (1998)

Metolius, OR Pinus ponderosa -320
-270

1996
1997

B. Law Anthoni et al. (1999)

Wind River, WA Pseudotsuga menzieii -167  
to -220

1998 K. T. Paw U Paw U et al. (2000, 
unpublished manuscript)

Prince Albert, 
SK, Canada

Picea mariana -6 8 1995 P. Jarvis Malhi et al. (1999)

e. Broadleaved evergreen, M editerranean forests

Italy Quercus ilex -660 1997 R. Valentini Valentini et al. 
(2000)

f  Grassland

Ponca, OK Tall-grass prairie 0 1997 S. B. Verma Suyker and Verma 
(2001)

Little Washita, OK Grazed grassland 41 1997 Meyers (2001)

g. Tundra

Alaska Tundra 40 W. Oechel Oechel et al. (2000)
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dormant, and gain carbon during the summer grow
ing season. What differs most among broadleaved for
est sites is the timing of the transition between gaining 
and losing carbon. The site in the southeastern United 
States (Tennessee) is the first to experience spring 
growth and photosynthesis, followed by the site in 
Denmark and one in the northeast United States (Mas
sachusetts). The Harvard Forest in Massachusetts is 
on the eastern side of the North American continent. 
It experiences a later spring than the more northerly 
Danish site because the climate of Denmark is mod
erated by the Gulf Stream. During the peak of the 
growing season, these three sites, separated by sev
eral thousand kilometers, experience similar daily 
sums of carbon uptake (around weeks 23-24). And 
the two North American sites, separated by over 
1000 km, experience similar weekly sums of net CO^ 
exchange from about week 23 to 35. In the autumn, 
the Danish site is the first to drop leaves and respire, 
and the most southem site is last. Another feature to 
be gathered from this figure is how ideal and nonideal 
sites affect the measurement of respiration. During the 
winter the Tennessee site experiences extremely low 
rates of respiration. This site is situated on rolling ter
rain and near several power plants. Cold air drainage 
causes CO^ to drain out from under the flux tower, 
and plume impaction causes downward carbon fluxes 
that counter the upward respiratory flux.

Based on data in Fig. 3, one may suspect that phe- 
nological timing of spring and autumn would be a 
major factor causing site variability among net carbon 
exchange of temperate deciduous forests. We quan
tify this effect in Fig. 4 by plotting annual net eco-

40
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Oak Ridge, TN, 36° N 
Harvard Forest, MA, 42° N20
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system CO^ exchange versus length of growing sea
son in days; for convenience, we define the growing 
season as the period over which mean daily CO^ ex
change is negative, due to net uptake by the biosphere. 
We observe that net ecosystem CO^ exchange in
creases 5.7 g C m~̂  for each day that the length of the 
growing season increases. The predictive power of this 
result is very robust, as variations in the length of the 
growing season account for 83% of the variance of 
CO2  exchange that is observed. The coherent response 
of net ecosystem CO^ exchange of the deciduous for
est biome reflects their broadly similar growing sea
son climate, age, and disturbance history. It also gives 
us confidence in the accuracy of independent research 
sites across the network. On the basis of this figure, 
one may conclude that site-to-site measurement errors 
and biases may be relatively small compared to vari
ance caused by ecological and meteorological factors.

In Fig. 4, we also added a data point from a tropi
cal forest, which experiences a year-round growing 
season. On the basis of data from the Tropics we ex
pect the regression curve to reach an asymptote as the 
growing extends beyond 220 days. Consequently, one
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F ig . 3. Annual course of weekly net eeosystem CO  ̂exehange 
(N E E ) for three temperate deeiduous forests, loeated in Oak Ridge, 
Tennessee; Petersham, Massaehusetts; and Denmark.

E ig . 4. Annual net eeosystem CO  ̂exehange: Impaet of length 
of growing season (in days) on temperate broadleaved forests and 
one tropieal forest (Brazil). Here, is the zero intereept and 
is the slope of the regression eurve, and is the eoeffieient of 
determination. Dashed lines are the standard error of the regres
sion at the 95% level.
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should not extrapolate the regression line out to 365 
days. Nor do we advocate using this plot for estimat
ing year-to-year variability in net ecosystem CO^ ex
change at a site. To illustrate this point we show an 
example of year-to-year variation of the annual cycle 
of CO^ exchange at Harvard Forest (Fig. 5), the site 
with the world’s longest measurement record. Other 
factors, such as the presence or absence of snow cover, 
degree of cloudiness (Goulden et al. 1996b; Lee et al. 
1999), and drought (Wilson and Baldocchi 2000) im
pose variance on the annual carbon budget, too.

The seasonal trend of CO^ exchange experienced 
by conifer forests is affected by latitudinal differences, 
which shorten or lengthen the growing season, and 
by continental position, which forces conifer ecosys
tems to experience oceanic, Mediterranean, or conti
nental climates. To illustrate these points we present 
data on seasonal patterns of net CO^ exchange from 
three contrasting conifer forest systems (Fig. 6). The 
North Carolina site is at a temperate and humid lo
cale in the southeastern United States. There, the 
canopy is able to take up carbon all year. The Oregon 
site experiences cool, wet winters and dry, warm sum
mers. It assimilates carbon during the late winter, 
spring, and autumn, but experiences large reductions 
in carbon dioxide uptake during the dry summer 
growing season (there are instances when it loses car
bon, too). The Finnish site is in the boreal zone. The 
trees are dormant during the cold winter, but the for
est stand loses carbon due to soil and microbial res
piration under the snow pack. In the spring, the onset 
of photosynthesis is much delayed compared to the 
more southerly temperate sites, and its conclusion is 
sooner in the autumn.
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F ig . 6. Seasonal course of net weekly CO  ̂exehange over con
trasting eonifer forests during 1997.

With longer datasets, alternative analytical meth
ods can be used to interpret them. Application of Fou
rier transforms to yearlong and multiyear flux 
measurement records provides a means of quantify
ing the timescales of flux variance (Baldocchi et al.
2001). The dominant time periods over which carbon 
dioxide fluxes vary can be days, weeks, seasons, and 
years. Figure 7 shows the power spectra of CO^ fluxes

Grassland, Little Washita, OK 
Conifer Forest, Hyytiala, Finland 
Deciduous forest. Oak Ridge, TN 
Corn, Bondville, IL
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F ig . 7. Power spectrum of CO  ̂flux over the eourse of a year 
at sites of contrasting elimate, functionality, and structure. Power 
spectra for the other sites were derived from time series of 1 yr 
in duration. The power spectra on the y  axis are multiplied by 
natural frequency (n) and are normalized by variance.
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over a variety of field sites on a daily timescale. These 
variations in CO^ and water vapor exchange are forced 
by daily rhythms in solar radiation, air and soil tem
perature, humidity, CO ,̂ stomatal aperture, photosyn
thesis, and respiration. On a weekly timescale, 
fluctuations in CO^ and water vapor exchange are in
duced at midlatitude sites from synoptic weather 
changes that are associated with the passage of high 
and low pressure systems and fronts. Weather events 
cause distinct periods of clear sky, overcast, and partly 
cloudy conditions, which alter the amount of available 
light to an ecosystem, how light is transmitted through 
a plant canopy, and the efficiency by which it is used 
to assimilate carbon (Gu et al. 1999). The passing of 
weather fronts also changes air temperature, humid
ity deficits, and pressure. On seasonal timescales, 
changes in the sun’s position alter the amount of sun
light received, the air, soil, and surface temperature of 
the ecosystem, and its water balance. Superimposed 
upon these meteorological factors is a variance caused 
by phenology and seasonal changes in photosynthetic 
capacity (Wilson et al. 2000). The timing and occur
rence of leaf expansion, senescence, leaf fall, fine root 
growth and turnover, and seasonal changes in photo
synthetic capacity and leaf area index are examples of 
phonological factors affecting low-frequency fluctua
tions in canopy CO^ exchange. Prolonged wet and dry 
spells are other factors that exert variance on the spec
tral record.

Canopy-scale quantum yield represents the initial 
slope of the relation between net ecosystem CO^ ex
change and the photosynthetic photon flux density. 
Canopy-scale quantum yield is of particular interest, 
as it is a parameter used by many biogeochemical car-
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bon cycling models to translate remotely sensed ra
diation measurements to an areawide estimate of car
bon uptake (Ruimy et al. 1995; Cramer et al. 1999). 
Figure 8 shows that the canopy-scale quantum yield 
depends on the sky conditions, as well as temperature. 
The canopy-scale quantum yield is nearly double un
der cloudy skies, as compared to clear skies.

Combining data from the North American and 
European networks gives us a wider breadth of infor
mation on how CO2  flux densities respond to tempera
ture. The temperate zone of Europe is displaced 
northward, as compared to North America, due to the 
presence of the Gulf Stream. Summer temperatures 
in Europe are on the order of 15°-20°C, while in North 
America summer temperatures are in the range of 20°- 
30°C. Figure 9 indicates that the temperature at which 
peak gross CO^ exchange occurs is several degrees 
lower for many European sites than for their North 
American counterparts. These data suggest that glo
bal carbon flux models will need to vary CO^ flux- 
temperature response curves for North America and 
Europe, in support of findings by Niinemets et al. 
(1999).

With regard to meteorology, FEUXNET can pro
vide new information on how the biosphere affects 
the partitioning of net radiation into sensible (H) and 
latent heat (XE) exchange, as quantified by the Bowen 
ratio. Figure 10 shows the yearly course in Bowen ra
tio for several selected sites. During the winter, the 
Bowen ratio is variable, and in many instances large.

35

30O
C Q) 
3  (Q
I  IL
ao o 
3 >1 
«  “ ■ 5 o0) C

25

20

15

b[0] 3.192 
b[1] 0.923 
r " 0.830

0)
10

3020 2510 155

F ig . 8. Seasonal variation of initial quantum yield of a eonifer 
(Seots) pine forest in Finland. Quantum yield is the initial slope 
of the response between eanopy CO  ̂exehange and photosynthetie 
photon flux density. PAR is photosynthetieally aetive radiation.
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F ig . 9. The relation between the optimum temperature for 
eanopy-seale gross primary produetivity vs maximum mean 
monthly air temperature during the summer growing season. 
These data show how photosynthesis adapts to elimate. Here b(0) 
is the zero intereept and b(l) is the slope of the regression eurve, 
and E is the eoeffieient of determination. Dashed lines are the stan
dard error of the regression at the 95% level.
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with H  being up to 6 tim es greater than XE. 
Occurrences of negative Bowen ratios are recorded 
as well and are attributed to radiative cooling and the 
presence of water on the surface. In both instances, 
stable thermal stratification is associated with the 
downward transfer of sensible heat. The timing of 
leaf-out in the temperate broadleaved forest and grass
land biomes affects the Bowen ratio markedly. The 
presence of leaves causes Bowen ratios to drop in 
magnitude, compared to their leafless states, and 
range between 0 and 1. The timing of leaf-out also 
has a distinct impact on the humidity and tempera
ture of the planetary boundary layer (Schwartz 1996) 
and the seasonal pattem of its maximum height (Wil
son and Baldocchi 2000; Yi et al. 2000).

There is a growing trend toward using coupled 
carbon-water flux models in global climate and fore-
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casting models (Foley et al. 1998). The trend is war
ranted because information on photosynthesis con
strains the information on stomatal conductance, a 
variable needed to compute sensible and latent heat 
exchange. Figure 11 shows how well carbon and wa
ter fluxes are coupled for two functional forest groups. 
Water use efficiency can be defined as the regression 
slope between NEE and EE in Fig. 11. We observe 
that broadleaved forests use water more efficiently 
than conifer forests, by a factor of almost 1.5. 
Furthermore, variations in latent heat flux explain 
more of the variance in CO^ exchange of broadleaved 
forests than it does for conifer forests; the coefficients 
of variation were 0.77 and 0.42, respectively. Another 
conclusion that can be drawn from this information 
relates to carbon sequestration and carbon storage. 
Greater carbon uptake cannot be achieved without the 
availability and use of water. Ecosystems with high 
rates of carbon uptake use more water.

The Euroflux community published results show
ing that gross primary productivity is relatively con
stant (Valentini et al. 2000). Theoretical calculations 
also support the idea that gross primary productivity 
is relatively constant for the range site characteristics

conifer forests
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is the eoeffieient of determination.
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studied by the Euroflux network. The Euroflux data, 
however, come from a relatively narrow range of plant 
architectural and functional types (closed conifer and 
deciduous forests) and climate conditions, so one can 
question how applicable the results may be across a 
wider range of conditions. Using a biophysical model 
(Baldocchi and Meyers 1998), we predict that gross 
primary productivity (GPP) of plants via photosynthe
sis is an asymptotic function of leaf area index, leaf 
nitrogen, and the fraction of photosynthetieally active 
radiation that the canopy intercepts (Fig. 12).

There is a growing body of literature that is at
tempting to understand the impact of stand age on 
carbon and water fluxes (Amiro et al. 1999; Schulze 
et al. 1999; Eaw et al. 2001, manuscript submitted to 
Global Change B io l; K. T. Paw U et al. 2001, manu
script submitted to Ecosystems). Productivity is as
sumed to diminish with age, and disturbances affect 
the relative ratio between canopy carbon uptake and 
soil respiration, and the ratio between canopy transpi
ration and soil evaporation. An attribute of a global 
network, such as FEUXNET, is the occurrence of sites 
with similar species and functionality but different 
ages. Based on the data surveyed in Table 1, part d, 
we can draw the conclusion that the net carbon ex
change of old growth conifer forests is not carbon 
neutral (e.g., K. T. Paw U et al. 2001, manuscript 
submitted to Ecosystems). A direct comparison of flux 
densities of carbon dioxide and water vapor that were 
measured over an old age Ponderosa pine stand in
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Oregon (Metolius) and a young stand in northern 
Califomia (Blodgett) are shown in Fig. 13. Peak rates 
of evaporation are almost triple for the young stand, 
as compared to the old stand. Net daytime carbon as
similation fluxes of the young and old stands are out 
of phase during the summer growing season (seen at 
18 months in Fig. 13). The old stand is most produc
tive during the spring and autumn periods, while soil 
water deficits restrict summertime rates of CO^ up
take. The young stand experiences greatest rates of 
uptake during the summer, and peak rates of the young 
stand can exceed peak rates of the old stand in the 
summer by 14% (-140 g C m“̂  month“  ̂ near month 
30 vs -120 near month 18). Simulation modeling, 
which includes the effects of tree age, suggested that 
the milder winters and ample annual rainfall in the 
young stand allow it to have a higher leaf area than 
the old forest, allowing more carbon uptake through 
the year (Eaw et al. 2001, manuscript submitted to 
Global Change Biol). Site management also has a 
substantial impact on carbon and water fluxes at the
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young site. The removal of understory shrubs in 1999 
reduced both CO^ uptake and evaporation.

8. Conclusions

A global network of long-term measurement sites 
has been established and is producing new informa
tion on how CO2  and water vapor between the terres
trial biosphere and atmosphere vary across a broad 
spectrum of biomes, climates, and timescales. The sci
ence generated so far indicates that rates of net car
bon uptake by tropical and temperate forests are 
substantial and exceed estimates previously generated 
with biospheric modeling systems. Gross primary 
productivity of forest ecosystems may not be constant, 
but may depend on plant architecture (e.g., on leaf 
area), foliage photosynthetie capacity, and the amount 
of sunlight absorbed.

Carbon net ecosystem exchange of broadleaved 
deciduous forests strongly depends on length of grow
ing season, but is sensitive to perturbations such as 
droughts, clouds, winter snow cover, and early thaw
ing, too. Conceming conifer forests, the conclusions 
are not as unifying. Seasonal and annual sums of net 
carbon exchange by boreal, semiarid, temperate, and 
humid conifers differ among one another and for 
different physiological reasons.

The response of canopy-scale CO^ exchange to 
sunlight varies with cloud cover as clouds alter the di
rection of incoming sunlight and how it penetrates into 
a canopy. The response of canopy-scale CO  ̂exchange 
to temperature is sensitive to the local climate. The 
temperature optima for canopy photosynthesis are dif
ferent for similar functional forest types in Europe and 
North America.

9. Future plans

The presence of sites on less than ideal terrain af
fords the micrometeorological community to take the 
challenge and assess the impact of advection on the 
measurement of long-term fluxes. Given the current 
tower site distribution, there is a need to develop 
transect studies at anchor sites, so we can study spa
tial pattems in greater detail and better assess the im
pact o f forest stand age, biodiversity, and land 
disturbances. Aircraft flux studies can be used to aug
ment and extrapolate tower information in the spatial

domain. More physiological and stand stmcture stud
ies will be needed to aid in the interpretation of tower 
measurements and to provide contextual information 
to test ecophysiological models.

As data accumulate, new questions are arising 
about how to interpret fluxes made over mixed stands. 
Frontal passages cause the annual sums of ecosystem 
CO2  exchange to be biased, as associated changes in 
wind direction and speed cause a tower site to view a 
different flux footprint (Amiro 1998) or expose the 
ecosystem to different temperature and humidity re
gimes. Over sites with inadequate fetch or mixed veg
etation in the flux footprint, flux densities that are 
measured will vary with wind direction. As knowl
edge evolves we may have to evaluate annual sums 
by weighting field measurements on the basis of wind 
direction and the appropriate flux footprint probabil
ity density functions (Schmid 1994). On the flip side, 
we can use information from different wind directions 
to address questions relating to the role of biodiver
sity on mass and energy exchange of ecosystems.
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