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Abstract: This study aimed to expand the knowledge on the application of the most common
industrial byproduct, i.e., fly ash, as a supplementary cementitious material. The characteristics of
cement-based composites containing fly ash as supplementary cementitious material were discussed.
This research evaluated the mechanical, durability, and microstructural properties of FA-based
concrete. Additionally, the various factors affecting the aforementioned properties are discussed,
as well as the limitations associated with the use of FA in concrete. The addition of fly ash as
supplementary cementitious material has a favorable impact on the material characteristics along
with the environmental benefits; however, there is an optimum level of its inclusion (up to 20%)
beyond which FA has a deleterious influence on the composite’s performance. The evaluation of
the literature identified potential solutions to the constraints and directed future research toward
the application of FA in higher amounts. The delayed early strength development is one of the
key downsides of FA use in cementitious composites. This can be overcome by chemical activation
(alkali/sulphate) and the addition of nanomaterials, allowing for high-volume use of FA. By utilizing
FA as an SCM, sustainable development may promote by lowering CO2 emissions, conserving natural
resources, managing waste effectively, reducing environmental pollution, and low hydration heat.

Keywords: cementitious composites; fly ash; supplementary cementitious material; mechanical
properties; durability; microstructure

1. Introduction

Industrial solid waste makes up a sizable portion of human-generated wastes, which
come in a vast range of forms and are highly complex in nature [1–3]. Heavy metals are
found in the majority of industrial wastes, such as red powder, metal cleaning, and ra-
dioactive waste [4–6]. Inappropriate handling of solid industrial waste can lead to leachate
penetrating soil and groundwater, causing environmental irreversibility and endangering
human health [7–9]; moreover, global warming and climate change are the two most seri-
ous environmental problems caused by CO2 emissions [10–12]. The construction industry
substantially impacts the environment, accounting for a significant portion of CO2 emis-
sions [13–15]. Each ton of cement produced emits about 0.8 tons of CO2 [16–18], and cement
production is increasing globally [19] due to the increasing demand for concrete [20–22].
Researchers worldwide are constantly on the lookout for new materials that can be utilized
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in place of, or in addition to, cement [23]. Since the last decade, the application of supple-
mentary cementitious materials (SCMs) such as silica fume, fly ash (FA), slags, etc., as a
cement replacement has been emphasized [24–26]. SCMs hydrate cement hydraulically or
pozzolanically in pore solution [27–29]. Thus, utilizing industrial solid waste in construc-
tion as SCMs is an effective approach for eco-friendly construction [30]; it could reduce
cement demand, reduce CO2 emission, and solve waste management problems. From the
various kinds of industrial byproducts that can be used as SCMs, the most common is FA.

FA is a byproduct of coal combustion that is accumulated at the top of boilers, particu-
larly in coal-fired power plants [31,32]. The omitted mineral particles or mineral materials
within the coal liquefy, evaporate, consolidate, or agglomerate during/after burning. By
rapidly cooling in the post-combustion portion, sphere-shaped, amorphous FA grains are
created due to surface tension force. When the entrapped volatile matter reaches a high tem-
perature, it expands inside, forming a hollow cenosphere. Some residues may crystallize,
while others may become glassy, reliant on the composition of residues and the heat-
ing/cooling circumstances [33]. FA is considered an SCM that is used in place of cement in
cementitious materials [34,35]. FA increases workability, decreases the hydration heat, and
thermal cracking in cementitious materials at initial ages, and improves the mechanical and
durability characteristics of cementitious composites, mostly at later ages [36,37]. The appli-
cation of FA is also being investigated in the manufacture of geopolymer concrete [38–40];
however, this study is limited to reviewing their utilization in cementitious composites.

The amorphous silica in FA reacts with the calcium hydroxide to form calcium-silicate-
hydrate (CSH) [41]. FA’s pozzolanic reaction boosts its utility not only in concrete but
also in a variety of other construction applications [42]. Due to the pozzolanic process,
the strength gain lasts significantly longer than with normal concrete [43]. Additionally,
FA increases the workability of concrete by reducing bleeding [44]. FA has been shown
to improve the long-term compressive strength (CS) of normal and recycled aggregate
concrete [45]. Microstructural examination of FA samples following early curing reveals an
abundance of un-hydrated spherical FA particles. Despite this, after a year of curing, the
microstructure of FA samples appeared to be very compact, with no evidence of dehydrated
FA particles [46]. FA requires a longer period of time to hydrate. As a result, during the
initial phases of curing, low CS has been found. The strength development of FA, on the
other hand, is dependent on its chemical and physical characteristics. It has been observed
that FA with a fine particle size distribution had a better CS than FA with a coarse particle
size distribution [47]. The binder causes the concrete to shrink during the hydration process,
and excessive shrinkage can result in severe cracks in the concrete structure. FA is beneficial
for shrinkage mitigation [48]. It has been noted that the use of large volume FA in concrete,
specifically 50% replacement of cement with FA, resulted in a 30% reduction in shrinkage
when compared to ordinary concrete [49].

The use of FA in low (<30%) and high (>30%) volume in concrete is a pioneering
move that has already altered the worldwide concrete industry’s approach. Mostly, FA
is disposed of in landfills, which has had severe implications, the majority of its portion
has been successfully utilized in the concrete industry for the last three to four decades.
Additionally, the frequent generation of FA has compelled government officials and experts
to develop a more dependable method of consuming it, while the application of FA to
the development of sustainable concretes will almost certainly alter the future building
industry [50–52]. Even though FA has been extensively investigated over the last few
decades, experts have discovered some inconsistent results regarding the mechanical and
durability characteristics of concrete. The chemical and physical features of FA have a
major effect on the mechanical and durability characteristics of concrete. Additionally, the
characteristics of FA vary depending on the source. This study focused on reviewing the
mechanical, durability, and microstructural characteristics of FA-based concrete; the various
factors influencing the aforesaid properties are highlighted, and limitations associated with
the use of FA in concrete are described. Based on the review of the literature, possible
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solutions to the limitations are provided, and future research is directed to the application
of FA in larger quantities.

2. Properties of Fly Ash
2.1. Physical and Chemical Properties

FA is a primary solid waste generated by coal-fired energy plants, and these plants
are looking for economically viable ways to dispose of it. FA particles are generally
spherical, solid/hollow in nature, mainly glassy (amorphous), with particle sizes varying
from <1 µm to 150 µm [53–55]. The scanning electron microscopy (SEM) micrographs of
the FA are shown in Figure 1. FA has a specific gravity of 2.1 to 3.0 [56] and a specific
surface area of 170 to 1000 m2/kg [57]. FA can range in color from tan to grey to black,
based on the quantity of unburned carbon present [35,58]. Besides the environmental
advantages of waste disposal and CO2 reduction [59,60], FA increases workability [61],
decreases the hydration heat and thermal cracking in concrete at the initial stage [62],
and improves the performance of cementitious materials, especially at later stages [36,63].
Regardless of the advantages of FA, 100% application of FA is not possible due to a variety
of reported limitations [64]. The ASTM categorizes FA into two categories: “C” and “F” [65].
FA classified as “Class F” is mostly generated by burning anthracite or bituminous coal
containing SiO2, Al2O3, and Fe2O3 concentrations greater than 70%. While “Class C” FA
is generated by burning lignite or sub-bituminous coal that consists of 50% to 70% of the
aforementioned chemicals [66]. Class F is a typical pozzolan and composed of silicate glass
that has been modified with aluminum and iron [67]. CaO amount is less than 10% in
“Class F” FA [68]; thus, to form CSH through pozzolanic reaction, Ca(OH)2 formed during
cement hydration is required; therefore, the chemical composition of FA performs a major
part in determining its performance in cementitious composites [69]. The range of element
oxide concentrations found in “Class F” and “Class C” FA has been listed in Table 1. As can
be seen, there is a considerable difference in the element oxides contained within a single
kind of FA, which might be ascribed to differences in source, processing conditions, and
so on. There is a crucial need to utilize more FA in the construction materials due to the
increase in FA production globally.
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Table 1. Element oxides range in fly ash types.

Element Oxides
Range of Element Oxides (%)

Class F Class C

SiO2 37.0–62.1 11.8–46.4
Al2O3 16.6–35.6 2.6–20.5
Fe2O3 2.6–21.2 1.4–15.6
CaO 0.5–14.0 15.1–54.8
MgO 0.3–5.2 0.1–6.7
SO3 0.02–4.7 1.4–12.9

Na2O 0.1–3.6 0.2–2.8
K2O 0.1–4.1 0.3–9.3
TiO2 0.5–2.6 0.6–1.0
P2O5 0.1–1.7 0.2–0.4
MnO 0.03–0.1 0.3–0.2
LOI 0.3–32.8 0.3–11.7

2.2. Cementing Efficiency and Pozzolanic Properties

Smith [72] proposed the notion of cementing factor (k) in order to develop a reason-
able approach for incorporating FA into cement/concrete. Cementing efficiency can be
employed to ascertain the overall quality, durability, and performance of composites. In
general, FA has a low cementing efficiency at initial stages and acts more such as filler, but
the pozzolanic feature turns out to be efficient at later ages, causing a significant increase in
strength [73–75]. This clearly indicates that the pozzolanic reaction improves the cementing
efficiency of FA with age. According to Smith [72], “the FA mass might be considered
similar to the cement mass in terms of CS development.” In other words, “k” is a factor
that accounts for the variation among the contribution of cement to the development of
a particular property and the contribution of mineral admixtures. CS tests are frequently
used to measure this cementing efficiency due to their simplicity and repeatability. The “k”
value of FA is determined by a variety of its intrinsic qualities, including physical prop-
erties such as particle size, distribution, and shape, as well as chemical composition [76].
Additionally, it was also reported that the “k” factor is dependent on other parameters
such as the curing time, the concrete strength, and the FA type [77]; therefore, it was also
discovered that the “k” value is dependent on external factors such as the water/cement
ratio (w/c). They stated that for conventional FA, “k” is a function of the w/c and that
the cementing efficiency of FA tends to decline as the w/c increases [78]. On the contrary,
Smith [72] asserted that it is unaffected by the w/c.

Apart from cementing efficiency, pozzolanicity is another critical term in the context
of FA concrete. Among the numerous favorable benefits of FA in cement/concrete, the
pozzolanic effect is believed to be the most important [66]. The pozzolanic reaction is
mostly dependent on the Al2O3 and SiO2 content of FA and is stimulated by the Portlandite
generated during cement hydration to generate a more hydrated gel. This gel plugs the
capillary pores in the matrix, increasing its strength [79]. As a result, FA’s reactivity is
greatly dependent on its chemical properties; however, all pozzolanic materials are made
of aluminosilicate glass that combines with Ca(OH)2 formed during hydration of cement
to yield hydration products [80].

3. Properties of Composites Containing Fly Ash
3.1. Workability

FA has plasticizing properties that improve the workability of the composites [81].
Lee et al. [82] reported the subsequent factors as possible reasons for FA’s plasticizing effect.
Firstly, increased composite volume due to FA’s lower density than cement. Secondly,
FA decreases the flocculation of cement grains because of the dilution effect. Thirdly, the
slower reaction rate of FA reduces hydration product growth at the initial time. Besides
these causes, the spherical shape of FA grains facilitates the movement of nearby particles
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by the ball bearing effect, particularly at high replacement levels. Thus, FA can be a more
cost-effective method with a low environmental effect to increase the workability than
chemical superplasticizer [83]. Bentz et al. [84] also validated the positive impact of FA
on the workability of the mix. The type of FA used also has a substantial impact on the
workability of composites. According to Ponikiewski and Golaszewski [85], high calcium
FA has a detrimental effect on workability, which adversely influences the mechanical
strength of composites. The fresh state characteristics of a mix mostly depend on the
flowability of cement paste, which is affected by a variety of aspects such as water-binder
ratio (w/b), type, and quantity of SCM [86]. Conversely, some researchers reported a drop
in the workability of mixes with FA addition at higher amounts [87]. The decrease in
workability might be the high-water demand due to the smaller size and larger surface
area of FA.

Lee et al. [82] highlighted the following aspects as possible explanations for FA’s
plasticizing action. To begin, increased paste volume due to FA’s lower density than cement.
Second, FA lowers the flocculation of cement particles due to the diluting effect. Thirdly,
because of the FA’s slower reaction rate as a result of the lowered development of hydration
products at an initial age. In addition, the spherical shape of FA grains facilitates the
movement of nearby fragments via the ball bearing effect, particularly at high replacement
levels; thus, FA can be a more cost-effective method of increasing flowability than chemical
superplasticizers [83]. Bentz et al. [84] also validated the favorable effect of FA on the
fluidity of the mix. As previously observed [82], replacing cement with FA reduces yield
stress due to the decreased density of FA and hence decreases the number of flocculated
cement grain to cement particle contacts. The FA type utilized has also a considerable effect
on the fresh properties. According to a study, high calcium FA has a detrimental effect on
workability, which in turn has a negative effect on strength and durability [85]. The fresh
state performance of a concrete is primarily dependent on the flowability of the cement
paste, which is influenced by a variety of elements such as w/b, type, and dose of SCM [88].

Apart from these parameters, prior research has also demonstrated that the packing
density of the cement-based composites also has a significant role in determining the
cement paste’s flowability, particularly at low w/b ratios [82,89]. Essentially, increased
packing density results in decreased water demand, which results in increased water being
released (after voids filling) to cover the solid fragments and lubricate the cement paste [90];
however, a higher specific surface area significantly increases the amount of solid surface
area that can be covered with water [91–93]. These simultaneous actions of tiny fillers
can enhance packing density while decreasing the quantity of surplus water per surface
area; thus, to achieve a balance between the desired increase in packing density and the
unwanted increase in surface area, a filler that is finer than cement but coarser than nano
silica/silica fume is required [94]. This indicates that the fineness of the FA impacts the
end material’s properties. As a result, it has been concluded that some studies show lower
water required for concrete workability due to the refined pores and spherical morphology
of FA; others report a higher water requirement due to its increased surface area. This
well-documented incompatibility between water demand and FA usage must be rectified.

3.2. Compressive Strength

Numerous tests are used to determine the concrete performance, but CS is often re-
garded as the most critical. CS tests provide a clear indication of the varied properties of
concrete. The literature established that CS is related to a variety of mechanical and dura-
bility attributes directly or indirectly [95]. In other words, CS and the quality of concrete
are inextricably related. FA’s physical properties, particularly its size and shape, have a
substantial effect on the performance of cement-based materials. Additionally, the chemical
composition has been considered a base to ascertain the appropriateness of FA for use as
SCM [96]. Thus, the hydration process of the FA-cement mix is strongly affected by the
intrinsic characteristics of FA, for instance, crystalline structure, chemical and physical
properties [97], as well as external factors such as w/b, replacement ratio, and curing
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temperature. FA fineness is a major factor [98] in controlling the appropriateness of FA in
cementitious composites, as the FA grain size has a substantial impact on the performance
of composites [99]. The packing and nucleation effects on the cement hydration are highly
reliant on the particle size of the FA used [100]. Chindaprasirt et al. [100–102] conducted
a thorough investigation to examine the effect of the fineness of FA on the composites’
properties; they reported that using finer FA resulted in an increase in CS. It was discovered
that coarse FA is less reactive and needs extra water, producing a more porous mortar.
The detrimental effects of coarser FA are described as a cause of decreased strength. Nu-
merous findings have indicated that the application of FA impairs the early-age strength
development of composites [82,103–105]; however, FA generally enhances the strength
and durability of composites over time, as it consumes the Ca(OH)2 produced during the
hydration of cement and makes secondary hydrates, for example, CSH [106].

The quantity of FA used as cement replacement in composites also affects their prop-
erties. The 28-days CS results of specimens at various replacement levels of FA have
been provided in Table 2. In addition, the influence of FA replacement ratio, based on
past studies, on 28-days CS of composites compared to the reference samples without
FA has been shown in Figure 2. Barbuta et al. [107] observed a decrease in CS with the
use of FA, and a higher quantity of FA as cement replacement resulted in greater loss of
CS. The samples without fibers showed a decrease in CS by 11.3%, 30.4%, 24.8%, 33.7%,
and 59.7%, with FA content of 10%, 15%, 20%, 30%, and 40%, respectively, related to the
controlled sample. A comparable pattern was also noticed with the samples containing
fibers. Gencel et al. [108] assessed the impact of FA on the properties of composites using
10%, 20%, and 30% FA in place of cement. A reduction in CS was observed with the use
of FA, compared to the reference mix, also shown in the figure. The reduction in CS was
more at higher FA contents. Huang et al. [109] studied the impact of two kinds of FA
depending on loss on ignition (LOI) amount, i.e., low LOI (4.6%) and high LOI (7.8%) FA.
The outcomes discovered that utilizing low LOI FA at lower proportions enhanced the CS.
The maximum increase in CS was examined at 40% content of FA having 16.8% higher CS
than that of the reference sample; however, at increased proportions of FA, the CS reduced,
which may be ascribed to the finer grain size in low LOI FA, which made the microstructure
denser and more compact. The CS reduced with the addition of high LOI FA was because
of greater particle size and lower pozzolanic activity; it was also reported that the CS of
composites containing higher contents of FA was improved at a later age (1 year) compared
to the controlled sample because of the slow pozzolanic reaction.

The effect of FA addition has been investigated in self-compacting concrete (SCC). For
example, substituting 35% FA for cement results in a 10% reduction, but substituting 55%
FA leads to a 24% reduction compared to the control SCC mix [110]. Similarly, a reduction
of approximately 46% and 35% have been seen in containing 50% FA mix, after 7 and 90
days of curing, respectively, when compared to a control SCC mix; moreover, at a 70% FA
incorporation level in SCC, a severe reduction of approximately 63% and 47% was seen
after 7 and 90 days of curing, respectively [111,112]. The presence of cement additives has a
considerable effect on the CS of FA-based SCC. The addition of cement additives improves
the performance of FA-based SCC mixtures at both low and high curing temperatures.
Silica fume, metakaolin, and limestone filler have all been used previously to increase the
CS of SCC mixes. At 90 days, a reduction of nearly 29%, 42%, and 15% was seen for a 50%
level of FA with limestone filler (15%), metakaolin (20%), and silica fume (10%) in SCC,
respectively [111,113,114].
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Table 2. Compressive strength (28-days) of composites containing fly ash.

Reference Replacement Ratio (%) Compressive Strength (MPa)

Barbuta et al. [107], without fibers

0 33.4
10 29.7
15 23.3
20 25.2
30 22.2
40 13.5

Barbuta et al. [107], with 0.25%
and 30 mm long fibers

0 33.4
10 31.8
15 27.4
20 25.4
30 19.6
40 14.4

Barbuta et al. [107], with 0.25%
and 50 mm long fibers

0 33.4
10 29.8
15 24.1
20 27.2
30 20.9
40 11.3

Gencel et al. [108], with 0% FSA
0 52.2

10 44.7
20 36.8
30 29.6

Gencel et al. [108], with 25% FSA
0 50.7

10 45.4
20 37.8
30 31.3

Gencel et al. [108], with 50% FSA
0 53.9

10 45.8
20 36.6
30 29.6

Gencel et al. [108], with 75% FSA
0 55.6

10 46.4
20 37.3
30 30.3

Paliwal and Maru [115]

0 26.4
5 27.8

10 29.4
15 28.2
20 27.5

Huang et al. [109], 24 MPa
concrete and low LOI fly ash

0 25.0
20 25.4
40 25.6
60 23.5
80 20.9

Huang et al. [109], 35 MPa
concrete and low LOI fly ash

0 34.5
20 36.5
40 40.3
60 34.5
80 30.0

Huang et al. [109], 35 MPa
concrete and high LOI fly ash

0 34.5
20 34.9
40 34.1
60 30.5
80 25.2

FSA: ferrochromium slag aggregate, LOI: loss on ignition.
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FSA: ferrochromium slag aggregate [107–109,115].

3.3. Split-Tensile Strength

Another essential mechanical characteristic of concrete is its tensile strength, which
has a significant effect on the extent and size of cracking in concrete structures. Because
concrete is weak in tension, it is critical to do a pre-evaluation of their split-tensile strength
(STS) [116,117]. The use of FA in cementitious composites has a detrimental effect on STS.
The 28-days STS results of composites containing FA as SCM are displayed in Table 3.
Figure 3 is generated on the data acquired from the literature depicting the variation
in 28-days STS due to the replacement of cement by FA. Mostly, a reduction in STS is
observed, especially at higher replacement ratios. From the experimental data performed
by Barbuta et al. [107], the samples without fibers showed a decrease in STS by 8.1%, 8.1%,
48.3%, 29.6%, and 48.3% with FA content of 10%, 15%, 20%, 30%, and 40%, respectively, as
compared to the control sample. The sample containing fibers (0.25% and 50 mm long) and
10% FA showed 12.8% higher STS when compared to the control sample; however, with
the further addition of FA, STS was reduced. Gencel et al. [108] studied the combined effect
of FA as SCM and ferrochromium slag as an aggregate replacement on STS of composites.
They also reported decreasing trend with the addition of FA. The STS of specimens without
ferrochromium slag was reduced by 9.7%, 20.7%, and 30.2%, with FA content of 10%, 20%,
and 30%, respectively, compared to the sample without FA. A similar pattern of decreasing
STS with FA addition was also noted in specimens containing ferrochromium slag as
aggregate replacement.
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Table 3. Split-tensile strength (28-days) of composites containing fly ash.

Fly Ash

Reference Replacement Ratio (%) Split-Tensile Strength (MPa)

Barbuta et al. [107], without fibers

0 1.72
10 1.58
15 1.58
20 0.89
30 1.21
40 0.89

Barbuta et al. [107], with 0.25%
and 30 mm long fibers

0 1.72
10 1.51
15 1.37
20 1.05
30 1.71
40 1.02

Barbuta et al. [107], with 0.25%
and 50 mm long fibers

0 1.72
10 1.94
15 1.45
20 0.87
30 1.82
40 0.85

Gencel et al. [108], with 0% FSA
0 5.20

10 4.70
20 4.12
30 3.63

Gencel et al. [108], with 25% FSA
0 5.31

10 4.74
20 4.17
30 3.66

Gencel et al. [108], with 50% FSA
0 5.24

10 4.78
20 4.19
30 3.78

Gencel et al. [108], with 75% FSA
0 5.30

10 4.83
20 4.22
30 3.70

FSA: ferrochromium slag aggregate.
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STS was increased at higher curing ages in comparison to lower curing ages, as
examined in most previous findings. According to published reports, FA interacts with
calcium ions from Ca(OH)2 to CSH, the binder phase. Due to the lack of CSH and Ca(OH)2
in FA-containing concrete, it is unable to build early age strength [118,119]; moreover, the
addition of FA reduces the STS of SCC mixtures due to its intrinsic propensity to reduce
water [112,120]; however, in FA-based mixes, a considerable increase in STS has been seen
with an increase in curing time, despite the presence of minor decrements. Due to the
extensive research conducted to date on the effect of curing on FA-based mixes, similar
improvements have been noticed in various studies [121].

3.4. Flexural Strength

The review of the past studies revealed that using FA at lower replacement levels can
improve the flexural strength (FS) of composites, as shown in Table 4. Figure 4 is generated,
indicating the percentage variation in 28-days FS of specimens at various replacement
levels of FA. The improvement of 20.33% was observed in the FS when 10% FA was used
SCM, while further increase in FA content decreased the FS compared with the reference
specimen [107]. The results of Barbuta et al. [107] of specimens with 30 mm long fibers
exhibited improvement in FS of 10.4%, 0%, 18.7%, and 8.2% with FA content of 10%, 15%,
20%, and 30%, respectively. While FS reduced by 8.2% at 40% replacement of FA. The
specimens containing 50 mm long fibers showed 10.4%, 14.3%, 36.8%, 12.6%, and 7.7%
increase in FS when 10%, 15%, 20%, 30%, and 40% cement was replaced by FA, respectively.
Hence, it resulted that using a higher amount of FA has a negative influence on FS [107,108],
as shown in Figure 4. Paliwal and Maru [115] noted maximum FS at 10% FA content as
cement replacement. It can be concluded that the size, type, chemical composition, and
content of FA used in cementitious composites have distinct effects on their mechanical
properties. The finer particle size improves, while coarser particle size reduces the strength
of composites [109]. Additionally, lower content of FA improves while higher FA content
reduces the strength of composites [107–109]; hence, finer FA and a lower replacement ratio
are preferable.

Table 4. Flexural strength (28-days) of composites containing fly ash.

Fly Ash

Reference Replacement Ratio (%) Flexural Strength (MPa)

Barbuta et al. [107],
without fibers

0 1.82
10 2.19
15 1.62
20 1.53
30 1.62
40 1.04

Barbuta et al. [107], with
0.25% and 30 mm long fibers

0 1.82
10 2.01
15 1.82
20 2.16
30 1.97
40 1.67

Barbuta et al. [107], with
0.25% and 50 mm long fibers

0 1.82
10 2.01
15 2.08
20 2.49
30 2.05
40 1.96
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Table 4. Cont.

Fly Ash

Reference Replacement Ratio (%) Flexural Strength (MPa)

Paliwal and Maru [115]

0 3.48
5 3.88

10 4.44
15 4.14
20 3.62

Huang et al. [109], 35 MPa
concrete and low LOI fly ash

0 5.1
20 5.3
40 5.2
60 5
80 3.7

Huang et al. [109], 35 MPa
concrete and high LOI fly ash

0 5.1
20 5
40 5.1
60 4.5
80 3.2

LOI: loss on ignition.
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Figure 4. Influence of fly ash as cement replacement on 28-days flexural strength of
composites [107,109,115].

3.5. Durability
3.5.1. Chloride Penetration

The addition of FA also enhances the durability performance of cementitious com-
posites. Saha [122] investigated the durability properties of concrete containing FA at
various replacement levels and curing ages of 28 and 90 days. The results of the chlo-
ride ion penetration test revealed a decrease in penetration depth with FA addition (see
Figure 5). At 28-days of curing, the chloride ion penetration depth reduced by around
18%, 39%, 52%, and 61% at FA content of 10%, 20%, 30%, and 40%, respectively. After
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180 days, chloride penetration decreased marginally for all samples. The incorporation
of 10%, 20%, 30%, and 40% FA content resulted in chloride ion penetration reduction of
about 7%, 27%, 48%, and 53%, respectively, compared to the control mix. While the volume
of the paste remains constant for mixes, the penetration of chloride ions into the matrix
is determined by two fundamental factors, including the interlinking pores of the matrix
and the free hydroxyl ion in the pore solution. Due to the finer particle size of FA, it may
have minimized the interconnecting spaces and decreased the chloride ion penetration.
FA can help concrete perform better over time in terms of CS, STS, FS, porosity, chloride
penetration, creep, capillary absorption, drying shrinkage, surface scaling, and sulphate
attack. Mainly, FA enhanced CS marginally but greatly increased the long-term STS and
FS of concretes [123–125]. Class F FA in concrete provided more CS and chloride pene-
tration resistance than Class C FA, and the maximum long-term CS was achieved for a
FA concrete (67% Class F FA) at the age of seven years, along with exceptional surface
scaling resistance [126]. Even when exposed to a sea environment for five years, FA con-
crete demonstrated strength development. Additionally, utilizing FA in concrete can help
prevent chloride permeability and rusting of embedded steel bars [127]. All these long-term
advantages can be ascribed to the pozzolanic nature of FA, which improves the amount of
CSH, causing cross-linking hydrates at the molecular level and a compact and crack-free
microstructure, thereby enhancing durability [125].
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3.5.2. Shrinkage

One of the main causes of concrete cracking is the strains caused by shrinkage. While
the stresses created by restricted shrinkage have no effect on the structure’s integrity, they
do raise the likelihood of durability issues [128,129]. While drying shrinkage occurs as a
result of the concrete losing water, autogenous shrinkage occurs as a result of a variation
in macroscopic volume when no moisture is transported to the adjacent environment. As
a result, composites’ shrinkage must be considered cumulative, taking into account both
drying and autogenous deformations. According to reports, volume variation because of
shrinkage can frequently be addressed utilizing fillers such as FA [130]. A previous study
found that SCM-based composites displayed more drying shrinkage than conventional
cement-based composites [131]. Particularly, mixes comprising FA shrink more during the
drying process than mixtures, including micro silica and slag cement. The pore structure
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of a concrete mixture containing SCMs such as FA, micro silica, and slag cement is more
refined than that of a concrete mixture comprising only cement. As a result, these mixtures
have a greater number of smaller capillary spaces, and thus, the water removal from these
pores might result in increased drying shrinkage [94]. Another study also noted that
composites with a greater proportion of SCMs have a finer pore structure, which may
enhance free shrinkage proportionately [132]. Specifically, the loss caused by autogenous
shrinkage can be considerably decreased by the inclusion of FA in composites [133]. Both
Class C and Class F FA are thought to be beneficial for minimizing drying shrinkage [134].
The inclusion of FA reduces shrinkage by densifying the mix and preventing internal
moisture evaporation [135]. Another reason for the limited shrinkage documented in
the literature is the existence of un-hydrated FA grains in the matrix, which act as fine
aggregates [136]; however, a few studies have found that FA with a smaller particle size
than cement increases autogenous shrinkage [137]. A small-sized FA reduces the space
between particles, which reduces the pore size in the paste and, as a result, capillary
pressure increases in the paste while consuming water in the hydration process. While
some research finds decreased shrinkage as a result of FA addition, a few others report
an increase in shrinkage properties as a result of FA incorporation; thus, the influence of
varying quantities of distinct FA types on the shrinkage of cement-based materials must be
investigated to identify how shrinkage is reduced in FA concrete.

3.5.3. Sulfate Resistance

The effect of FA on the resistance of mortar and concrete to sulphate attack has been
widely studied. The significant range in performance of FA cement blends is due to
the variety of FA kinds and compositions, as well as changes in mix proportions and
construction techniques. In general, low Ca FA is more resistant to sulphate than high Ca
FA because it can consume more Ca(OH)2 from the hydrated cement paste, generating
more sulfate-resistant CSH without incorporating additional reactive phases present in
high Ca FA that can accelerate sulfate-induced deterioration, while high Ca FA can hydrate
independently during the generation of additional Ca(OH)2, hence accelerating sulfate-
induced deterioration [138]. Apart from changes in calcium concentration, the amount
of oxides in FA, including silica, alumina, and iron, as well as their amorphous and
crystalline forms, has been demonstrated to have a substantial effect on their sulphate attack
efficacy. FA containing less than 5% CaO is anticipated to have no reactive alumina and
hence would not react with external sulphates to create expansive ettringite crystals [139].
Most of the studies reported an increase in sulphate resistance of the concrete with FA
addition [140–142].

3.5.4. Water Absorption

Water absorption (WA) is a feature of cementitious materials that are directly associated
with its durability or long-term behavior. The existence of pores, cracks, and fissures in
the matrix increases WA, which influences the mechanical and other durability aspects.
In general, an increase in WA associated with an increase in FA indicates an increase in
the volume of accessible pores [114,143]. Pitroda et al. [144] concluded that when 10% FA
is replaced with cement, the WA of concrete decreases. Additionally, they discovered an
increasing trend in WA as the level of cement replaced by FA increased by more than 10%.
The WA of FA-incorporated concrete, on the other hand, was found to be greater than
those of conventional concrete. In contrast, Hatungimana et al. [145] noticed a reduction
in the WA of concrete with FA addition, as depicted in Figure 6. They reported that WA
values increased as the amount of FA substitution increased, probably because the 28-day
curing period was insufficient to complete the pozzolanic reaction; however, at 10% and
20% FA content, the WA of the samples was reduced by 14.6% and 12.2%, respectively,
compared to the control mix. Whereas at 30% FA content, the FA concrete sample exhibited
a comparable WA capacity to that of the control mix. Finally, the results indicated that FA
could be employed as an SCM with some prudent engineering judgments [144].
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Figure 6. Water absorption of concrete at various contents of fly ash [145].

3.6. Microstructure

Gunasekara et al. [146] performed SEM evaluation to explore the microstructure
of composites without FA and composites with FA. The SEM analysis of samples was
carried out at the age of 28-days. A dense, compacted, and uniformly distributed matrix
was observed for the sample without FA, while cracked, porous, and partially reacted
FA grains were observed in the sample containing FA. These observations are consistent
with the reduced mechanical properties of FA-based composites, as discussed earlier.
Ahad et al. [147] also studied and compared the microstructure of a reference mix without
FA and a mix containing 30% FA, as depicted in Figure 7. Crack was observed in the matrix
of the reference mix (Figure 7a). This may be due to the high heat of cement hydration
resulting in the micro-cracks in the matrix. Though voids in the matrix are less and a denser
and compacted matrix can be observed. Micro-cracks are not observed in the matrix of
composite containing FA because FA addition reduced the heat of hydration; however,
more voids and partially reacted FA particles are observed resulting in less dense matrix
(Figure 7b). This also supports the detrimental effects of FA on cementitious composites.
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Saha [122] performed a microstructural study of FA concrete, and their micrographs are
shown in Figure 8. Figure 8a illustrates the microstructural images of cracked cementitious
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material containing 40% FA as an SCM at the age of 28 days. Ettringite needles initiate to
form in the voids of the binder matrix and on the surface of the FA. Smooth spherical FA
grains are also visible, indicating that the FA has been hydrated during its first phase. FA has
a somewhat spherical shape, and the existence of spherical grains in the microstructure of
the matrix at the age of 28 days suggests that the FA grains have not reacted with the cement
during the early hydration phase. Due to exposure to a harsh environment, the spherical
form of FA rapidly spoils in cement mix and is substituted with ettringite needles [148,149].
This corroborates the idea that FA retards concrete hydration. Figure 8b illustrates the
microstructure of FA concrete after 180 days of curing. The spherical grains were substituted
by ettringite as a result of the pozzolanic reaction of FA. The voids between the aggregates
are densely packed with ettringite needles. Additionally, the ettringite needles are longer,
fill up the gaps in the cement mix; therefore, the ettringite needles fill the spaces between
the aggregates by the pozzolanic reaction of FA. As a result, FA concrete produces a denser
binder matrix than normal concrete [122].
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4. Discussions

The challenges correlated with the manufacture and application of cement are well
known. The growing need for concrete, and therefore cement, poses a severe danger
to both the environment and human life. In this context, scholars are concentrating on
the use of SCMs that can substitute cement in the manufacture of concrete, encouraging
eco-friendly development. This study examined the usage of the most common industrial
byproducts, i.e., FA, in cementitious composites as SCMs. This study highlighted and
discussed the most critical sections, including the properties of FA, the characteristics
of composites containing FA as SCMs, i.e., workability, compressive, split-tensile, and
flexural strength, durability, and microstructural properties. Table 5 has been prepared to
summarize the various parameters examined in this study for FA use as SCM. As can be
noticed from the table, FA utilization contributes to construction sustainability. In addition
to the sustainable benefits, FA has the further advantage of low heat of hydration. FA
is a pozzolanic material and is utilized as SCM in cement-based composites. The use of
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FA as cement replacement in lower replacement ratios (up to 20%) has a positive effect
on the mechanical and durability properties of composites, while at higher replacement
ratios, it has a negative effect; moreover, the size of FA alters the properties of composites.
The smaller size FA is preferable, as it has a more positive impact on the performance
of composites.

Table 5. Comparison of various aspects of utilizing silica fume and fly ash in cementitious materials.

Aspect Detail

Sustainability

Reduction in CO2 emission
Effective waste management

Decreases environmental pollution
Preserve natural resources

Cost-effective
Low heat of hydration

Influence on material
properties

Inconsistent influence on workability
Enhances the performance of composites when used in lower

replacement ratios (up to 20%)
Negative influence on material’s performance at higher proportions

Limitations Utilization at higher replacement levels is not preferable
Low early strength development

FA consumption has increased in the concrete industry because of its benefits, which
include reduced hydration heat and increased durability; however, due to the slow poz-
zolanic action, its contribution to strength begins only at a later age. Attempts have been
undertaken to address this well-documented FA deficit using a variety of approaches.
Chemical activation is one of these ways and can be accomplished using either alkali or
sulphate. In alkali activation, the glass phases of FA are broken down to expedite the
reaction at an early stage [150], whereas, in sulphate activation, sulphate combines with the
aluminum oxide in the glass phase of FA to form ettringite [151]. In each of these instances,
strength is developed at a young age [152]. Alkali activation of FA is a physicochemical
method that converts powdered ash to a material with excellent cementitious characteris-
tics [153,154], developing high mechanical strength and exceptional bonding to reinforcing
bars [155]. The use of nanoparticles in FA-based cementitious composites to accelerate its
early strength gain is becoming more common as a result of its benefits. The nanoparticles
serve as nuclei for the cement, accelerating hydration and densifying the microstructure
and interfacial transition zone, hence decreasing permeability [156]. Additionally, the
combination of FA and nanomaterials enables the hydration product to be tightly bound,
which is a critical element in accelerating the pozzolanic process since it compensates for
the poor initial strength growth [157–159]; hence, the strength of the FA-based cementitious
composites can be increased by various methods, including those covered above. For
successful strength enhancement via alkali activation or nanoparticle addition, knowledge
of the properties of FA is required. Ca/Si and Ca/Al ratios are regarded as critical factors in
the formation of CSH gel in the case of nano addition and alumino silicate gel in the case of
alkali activation, respectively. Using either of these approaches, it is possible to replace up
to 60% of cement with FA without sacrificing strength or durability [94]. For high-volume
FA concrete, a ternary blend of cement, FA, and nanomaterials can be advised.

5. Conclusions

The present study aimed to review the different aspects of the fly ash (FA) application
as supplementary cementitious material (SCM) in cement-based materials. The influence
of the FA characteristics of the mechanical, durability, and microstructural properties of the
material is discussed. The various limitations of the FA use in higher proportions, and their
potential solutions are described. This study reached the following conclusions:

• The influence of FA incorporation on the workability of fresh concrete was found
to be inconsistent. Some studies reported an increase in the workability because of
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FA spherical shape, increased volume of the mix due to lower density of FA, and
slower development of hydration products due to FA addition; however, some studies
found a reduction in the workability of the fresh mix due to the smaller size and larger
surface area of FA.

• Numerous studies have demonstrated that the application of FA inhibits composites’
early-age strength development; however, FA mostly improves the strength of con-
crete over time by consuming the Ca(OH)2 produced during cement hydration and
producing secondary hydrates such as CSH; moreover, the mechanical strength of the
composites improves when FA is incorporated in lower concentrations (up to 20%).
In addition, finer particle size FA enhances while coarser particle size FA reduces the
mechanical strength of composites.

• The resistance of composites to chloride penetration increases with the addition of FA,
especially at later ages. The finer particle size FA decreases the interconnecting voids
in the matrix, and pozzolanic action further improves the microstructure, resulting in
increased resistance to chloride penetration.

• There is a contradiction regarding the influence of FA on the shrinkage of cementitious
composites. FA incorporation may increase shrinkage due to the creation of a higher
amount of small capillary spaces, which facilitates the evaporation of water, causing
higher shrinkage. In contrast, due to finer particle size FA addition, the density and
compactness of the mix increases, which prevents the internal moisture evaporation,
causing reduced shrinkage.

• The influence of FA on sulphate resistance of composite is determined by the FA type.
Generally, low calcium FA (Class C) exhibits more resistance to sulphate resistance than
high calcium FA (Class F). This is because low calcium FA consumes more Ca(OH)2 to
form CSH, compared to the high calcium FA.

• The incorporation of FA as SCM up to 20% content is beneficial to composites in
terms of reducing water absorption; however, at higher replacement levels, the water
absorption capacity increases.

• The slow early strength development is one of the major drawbacks of FA use in
cementitious composites; however, this can be overcome by chemical activation (al-
kali/sulphate) and/or adding nanomaterials, and this can facilitate high volume usage
of FA.

• Using FA as SCM will promote sustainable development due to reduction in CO2
emissions, preservation of natural resources, effective waste management, reduction
in environmental pollution, and low heat of hydration.

6. Future Recommendations

After reviewing the different aspects of the FA application as SCM, this study suggests
the following future research directions:

• Despite the numerous stated procedures for using FA in large quantities, 100% uti-
lization of FA has not been accomplished due to the existence of some grey areas
highlighted in this study that must be addressed in the future to increase FA’s usage as
SCM. Future studies should be directed on resolving the stated disparities in shrinkage,
water demand, and faster curing.

• While some attributes of structural performance, such as flexural and shear resistance,
have been covered previously, additional research is necessary to support the case
for FA concrete usage in reinforced concrete structures. These may include the bond
strength of steel rebars, the examination of beam-column junctions, and seismic design.

• Since FA reactivity is based on multiple factors, trying to control one property may
deteriorate other properties. For example, while decreasing the w/b in high volume
FA concrete increases early/late age strength, the mix results in early-age cracking.
Thus, it is critical to consider the combined effect of multiple parameters in order to
maximize the benefits of FA and cement in an optimum planned mix.
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• Presently, there is a growing tendency toward the production of geopolymers that
include 100% FA [160]; however, to promote the applicability of geopolymer concrete,
certain shortcomings such as curing regime, availability of activators, efflorescence,
and alkali-silica reaction [39] must be addressed. In this respect, it is reported that
designed FA concrete, which can replace up to 60% of cement, is a superior alternative
in terms of strength and durability.

• Based on the comprehensive examination of FA as SCM, it is proposed that further fly
ash classifications be added to the existing ASTM classifications.
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112. Şahmaran, M.; Yaman, İ.Ö.; Tokyay, M. Transport and mechanical properties of self consolidating concrete with high volume fly
ash. Cem. Concr. Compos. 2009, 31, 99–106. [CrossRef]

113. Anjos, M.A.S.; Camões, A.; Jesus, C. Eco-Efficient self-compacting concrete with reduced Portland cement content and high
volume of fly ash and metakaolin. Key Eng. Mater. 2015, 634, 172–181. [CrossRef]

114. Wongkeo, W.; Thongsanitgarn, P.; Ngamjarurojana, A.; Chaipanich, A. Compressive strength and chloride resistance of self-
compacting concrete containing high level fly ash and silica fume. Mater. Des. 2014, 64, 261–269. [CrossRef]

115. Paliwal, G.; Maru, S. Effect of fly ash and plastic waste on mechanical and durability properties of concrete. Adv. Concr. Constr.
2017, 5, 575–586.

116. Ibrahim, M.H.W.; Hamzah, A.F.; Jamaluddin, N.; Ramadhansyah, P.J.; Fadzil, A.M. Split tensile strength on self-compacting
concrete containing coal bottom ash. Procedia-Soc. Behav. Sci. 2015, 195, 2280–2289. [CrossRef]

117. Yoshitake, I.; Komure, H.; Nassif, A.Y.; Fukumoto, S. Tensile properties of high volume fly-ash (HVFA) concrete with limestone
aggregate. Constr. Build. Mater. 2013, 49, 101–109. [CrossRef]

118. Singh, N.; Singh, S.P. Carbonation and electrical resistance of self compacting concrete made with recycled concrete aggregates
and metakaolin. Constr. Build. Mater. 2016, 121, 400–409. [CrossRef]

119. Singh, N.; Singh, S.P. Carbonation resistance and microstructural analysis of low and high volume fly ash self compacting concrete
containing recycled concrete aggregates. Constr. Build. Mater. 2016, 127, 828–842. [CrossRef]

120. Liu, M. Self-Compacting concrete with different levels of pulverized fuel ash. Constr. Build. Mater. 2010, 24, 1245–1252. [CrossRef]
121. Kapoor, K.; Singh, S.P.; Singh, B. Durability of self-compacting concrete made with Recycled Concrete Aggregates and mineral

admixtures. Constr. Build. Mater. 2016, 128, 67–76. [CrossRef]
122. Saha, A.K. Effect of class F fly ash on the durability properties of concrete. Sustain. Environ. Res. 2018, 28, 25–31. [CrossRef]
123. Gonen, T.; Yazicioglu, S. The influence of mineral admixtures on the short and long-term performance of concrete. Build. Environ.

2007, 42, 3080–3085. [CrossRef]
124. Li, G. Properties of high-volume fly ash concrete incorporating nano-SiO2. Cem. Concr. Res. 2004, 34, 1043–1049. [CrossRef]
125. Thomas, M.D.A. Optimizing the Use of Fly Ash in Concrete; Portland Cement Association: Skokie, IL, USA, 2007; Volume 5420.
126. Naik, T.R.; Ramme, B.W.; Kraus, R.N.; Siddique, R. Long-Term Performance of High-Volume Fly Ash. ACI Mater. J. 2003, 100,

150–155.
127. Kwon, S.-J.; Lee, H.-S.; Karthick, S.; Saraswathy, V.; Yang, H.-M. Long-Term corrosion performance of blended cement concrete in

the marine environment—A real-time study. Constr. Build. Mater. 2017, 154, 349–360. [CrossRef]
128. Al-Saleh, S.A.; Al-Zaid, R.Z. Effects of drying conditions, admixtures and specimen size on shrinkage strains. Cem. Concr. Res.

2006, 36, 1985–1991. [CrossRef]
129. Holt, E.; Leivo, M. Cracking risks associated with early age shrinkage. Cem. Concr. Compos. 2004, 26, 521–530. [CrossRef]
130. Rao, G.A. Long-Term drying shrinkage of mortar—Influence of silica fume and size of fine aggregate. Cem. Concr. Res. 2001, 31,

171–175. [CrossRef]
131. Mokarem, D.W.; Weyers, R.E.; Lane, D.S. Development of a shrinkage performance specifications and prediction model analysis

for supplemental cementitious material concrete mixtures. Cem. Concr. Res. 2005, 35, 918–925. [CrossRef]
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