= 2
cnn \’ \ University of Pennsylvania

"% | Libraries |
UNIVERSITY of PENNSYLVANIA SC h o) I a rIyCO mmons

Real-Time and Embedded Systems Lab (mLAB) School of Engineering and Applied Science

5-7-2019

Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning
using Temporal Logic

Yash Vardhan Pant
University of Pennsylvania, yashpant@seas.upenn.edu

Rhudii A. Quaye
University of Pennsylvania, quayerhu@seas.upenn.edu

Houssam Abbas
Oregon State University, houssam.abbas@oregonstate.edu

Akarsh Varre
University of Pennsylvania, akarshv@seas.upenn.edu

Rahul Mangharam
University of Pennsylvania, rahulm@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/mlab_papers

b Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

Recommended Citation

Yash Vardhan Pant, Rhudii A. Quaye, Houssam Abbas, Akarsh Varre, and Rahul Mangharam, "Fly-by-Logic:
A Tool for Unmanned Aircraft System Fleet Planning using Temporal Logic", NFM 2019: 11th Annual
NASA Formal Methods Symposium . May 2019.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/mlab_papers/118
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/mlab_papers
https://repository.upenn.edu/seas
https://repository.upenn.edu/mlab_papers?utm_source=repository.upenn.edu%2Fmlab_papers%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fmlab_papers%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=repository.upenn.edu%2Fmlab_papers%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/mlab_papers/118
mailto:repository@pobox.upenn.edu

Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning using Temporal
Logic

Abstract

Safe planning for fleets of Unmaned Aircraft Systems (UAS) performing complex missions in urban
environments has typically been a challenging problem. In the United States of America, the National
Aeronautics and Space Administration (NASA) and the Federal Aviation Administration (FAA) have been
studying the regulation of the airspace when multiple such fleets of autonomous UAS share the same
airspace, outlined in the Concept of Operations document (ConOps). While the focus is on the
infrastructure and management of the airspace, the Unmanned Aircraft System (UAS) Traffic
Management (UTM) ConOps also outline a potential airspace reservation based system for operation
where operators reserve a volume of the airspace for a given time inter- val to operate in, but it makes
clear that the safety (separation from other aircraft, terrain, and other hazards) is a responsibility of the
drone fleet operators. In this work, we present a tool that allows an operator to plan out missions for
fleets of multi-rotor UAS, performing complex time- bound missions. The tool builds upon a correct-by-
construction planning method by translating missions to Signal Temporal Logic (STL). Along with a
simple user interface, it also has fast and scalable mission planning abilities. We demonstrate our tool for
one such mission.

Keywords
uas mission planning - signal temporal logic - correct- by-construction planning - multi-rotor uas

Disciplines
Computer Engineering | Electrical and Computer Engineering

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/mlab_papers/118

https://repository.upenn.edu/mlab_papers/118

Fly-by-Logic: A Tool for Unmanned Aircraft
System Fleet Planning using Temporal Logic

Yash Vardhan Pant *', Rhudii A. Quaye *', Houssam Abbas?, Akarsh Varre!,
and Rahul Mangharam!

! Dept. of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia PA 19104, USA
{yashpant ,quayerhu, akarshv,rahulm}@seas.upenn.edu
2 Dept. of Electrical Engineering and Computer Science,

Oregon State University, Corvallis OR 97330, USA
houssam.abbas@oregonstate.edu

Abstract. Safe planning for fleets of Unmaned Aircraft Systems (UAS)
performing complex missions in urban environments has typically been
a challenging problem. In the United States of America, the National
Aeronautics and Space Administration (NASA) and the Federal Aviation
Administration (FAA) have been studying the regulation of the airspace
when multiple such fleets of autonomous UAS share the same airspace,
outlined in the Concept of Operations document (ConOps). While the
focus is on the infrastructure and management of the airspace, the Un-
manned Aircraft System (UAS) Traffic Management (UTM) ConOps
also outline a potential airspace reservation based system for operation
where operators reserve a volume of the airspace for a given time inter-
val to operate in, but it makes clear that the safety (separation from
other aircraft, terrain, and other hazards) is a responsibility of the drone
fleet operators. In this work, we present a tool that allows an operator to
plan out missions for fleets of multi-rotor UAS, performing complex time-
bound missions. The tool builds upon a correct-by-construction planning
method by translating missions to Signal Temporal Logic (STL). Along
with a simple user interface, it also has fast and scalable mission planning
abilities. We demonstrate our tool for one such mission.

Keywords: UAS mission planning - Signal Temporal Logic - Correct-
by-construction planning - Multi-rotor UAS

1 Introduction

It is inevitable that autonomous UAS will be operating in urban airspaces [1]. In
the near future, operators will increasingly rely on fleets of multiple UAS to per-
form a wide variety of complicated missions which could consist of a combination
of: 1) spatial objectives, e.g. geofenced no fly zones, or delivery zones, 2) tem-
poral objectives, e.g. a time window to deliver a package, 3) reactive objectives,
e.g. action when battery is low.

* These authors contributed equally

2 Pant et al.

In this paper, we present a tool ? that allows an operator to specify such
requirements over a fleet of UAS operating in a bounded workspace and generates
trajectories for all UAS such that they all satisfy their given mission in a safe
manner. In order to generate these flights paths, or trajectories, our tool relies on
interpreting the mission objectives as Signal Temporal Logic (STL) specifications
[2]. We then formulate the problem of mission satisfaction as that of maximizing
a notion of robustness of STL specifications [3]. Using the approach of [4], we
generate trajectories for all the UAS involved such that they satisfy the given
mission objectives.

1.1 Related work

Existing mission planner software for autonomous drone operations like ArduPi-
lot mission planner [5] and QGroundControl [6] offer UAS enthusiasts the ability
to quickly plan out autonomous UAS flights by sequencing multiple simple op-
erations (like take-off, hover, go to a way-point, land) together. However these
planners either cannot handle missions involving multiple UAS and complicated
requirements like co-ordination between UAS or completing tasks within given
time intervals, or require hand-crafted sequences of maneuvers to meet the re-
quirements in a safe manner. We propose a tool that can inherently deal with
multi-agent missions as well as timing constraints on completion of tasks while
guaranteeing that planned flight paths are safe. As opposed to existing mis-
sion planning software, our tool does not require the user to explicitly plan out
maneuvers for the drones to execute to follow out a mission, e.g. in the case
where two UAS have to enter the same region during the same time interval, our
method generates trajectories that ensure the two UAS do so without crashing
into each other without any user based scheduling of which drones enters first.

The tool presented here relies on interpreting a mission as a STL specification
and generating trajectories that satisfy it. While there are multiple methods
and tools that aim to solve such a problem, e.g. Mixed Integer Programming-
based [7] and based on stochastic heuristics [8], we use an underlying method [4]
that is tailored for generating trajectories for multi-rotor UAS, including those
that allow hovering, to satisfy STL specifications in continuous-time. A detailed
comparison can be found in [4,9].

1.2 Contributions

With this proposed tool we aim to bridge the gap between the ease-of-use of
the UAS mission planning software popular among amateur drone enthusiasts,
and the capabilities of academic tools [7, 8] for control/planning with STL spec-
ifications. By doing this, we generate trajectories for multi UAS fleets that can
satisfy complicated mission requirements while providing strong guarantees on
mission satisfaction as well as the ability of the multi-rotor UAS to follow out
their planned trajectories [4]. The main contributions of our tool are:

3 https://github.com/yashpant/FlyByLogic

Title Suppressed Due to Excessive Length 3

1. An easy to use graphical interface to specify mission requirements for multi-
rotor UAS fleets,

2. The ability to interpreting these as missions as STL specifications and au-
tomatically generate an optimization to maximize a notion of robustness of
this STL specification,

3. By interfacing to an off-the-shelf optimization solver, generation of trajecto-
ries that satisfy the mission requirements, are optimal with respect to mini-
mizing jerk [10], and respect (potentially different) kinematic constraints for
all UAS.

4. Does not require the UAS fleet operator to know how to write specifications
in STL, but through an object-oriented C++ library allows the advanced
user to generate custom missions specifications with even more flexibility
than the graphical interface.

¢

2 Fly-by-Logic: The tool

2.1 Architecture and outline

Figure 1 shows the architecture of the Fly-by-Logic tool. Through the user in-
terface in MATLAB, the user defines the missions (more details in section 2.2).
The mission specific spatial and temporal parameters are then read in by the
Fly-by-Logic C++ back-end. Here, these parameters are used to generate a func-
tion for the continuously differentially approximation of the robustness of the
STL specification associated with the mission. An optimization to maximize this
function [4] value is then formulated in Casadi [11]. Solving this optimization via
IPOPT [12] results in a sequence of way-points for every UAS (uniformly apart
in time). Also taken into account in the formulation is the motion to connect
these way-points, which is via jerk-minimizing splines [10] and results in trajecto-
ries for each UAS. Through the Fly-by-Logic library, the (original non-smooth)
robustness of these trajectories is evaluated for the mission STL specification
and displayed back to the user via the MATLAB interface. A positive value of
this robustness implies that the generated trajectories satisfy the mission and
can be flown out, while a negative value (or 0) implies that the trajectories do
not satisfy the mission [13] and either some additional parameters need to be
tweaked (e.g. allowable velocity and acceleration bounds for the UAS, time in-
tervals to visit regions, or a constant for the smooth robustness computation)
or that the solver is incapable of solving this particular mission from the given
initial positions of the UAS.

2.2 The mission template

Through the interface, the user starts by defining the number of way-points
N (same number for each drone), as well well as the (fixed) time, T that the
UAS take to travel from one way-point to the next. These way-points are the
variables that the tool optimizes over, and the overall duration of the mission is

4 Pant et al.

User Inputs

________________ N
~

. Y

’ \

Graphical User Interface
(MATLAB)

' Mission UAS
: Parameters Trajectories
: (YAML) (YAML)
Optimization Optimization :
solver formulation 1

Fly-by-Logic: Library for
maximization of smooth
! robustness of STL (C++) :

IPOPT CasADi

ROS planning and
control stack

<

To UAS

Fig. 1. The Fly-by-Logic tool-chain. Through a MATLAB-based graphical interface
(figure 2), the user defines the workspace and the multi UAS mission. This mission
is interpreted as an STL specification (of the form in equation 1), the parameters
of which are passed from the interface to the Fly-by-Logic C++ library. Through
interfacing with off-the-shelf optimization tools, trajectories that satisfy the mission
are generated for each UAS and visualized through the user interface. The way-points
that generate these trajectories can also be sent to a Robot Operating Systems (ROS)
implementation of trajectory following control to be deployed on board actual robots
(e.g. bit.ly/varvel8).

then H = NT seconds. Next, the user defines regions in a bounded 3-dimensional
workspace (see figure 2). These regions are axis-aligned hyper-rectangles and can
be either Unsafe no-fly zones (in red), or Goal regions that the UAS can fly to.
For each UAS, the user specifies their starting position in the workspace, as well
as the velocity and acceleration bounds that their respective trajectories should
respect. Finally, the user also specifies the time intervals within which the UAS
need to visit some goal sets.

Through the user interface, the user-defined missions result in specifications
corresponding to the following fragment of STL:

= Nu=1 Ad=1(Or~(pa € Unsafeu)) A Aaza (Or(|lpa = parll2 > dmin))A

Ng1 N1 (Or1 ,(pa € Goalg) A ... A Ore (pa € Goaly))

(1)

Title Suppressed Due to Excessive Length 5

s|

Plot Display Clean Map

6
4
2
ol

Mission Planner

Map - [Empty_map... ¥| N of Waypoints - | 20

#ofdones: 2 v Mission Mission Info

Samp. Time (s) | 0.05

of goals 2 v Load Mission | missiont.mat ” Mission
#ofetobs: 1 v ZEee. (R Rotiusbesss 04o0
Smooth (C) 30 Time between waypoints (s) : 1 — iz 2000
Drones | Start | v&a | Goall | Goal2 Goals Obstacles Control
1 [Dronet [22,0] [24] [05;10...[5 10,1 1 [3,3,24,4,4) (-1 -1.0,1,1,4]
2 Drone2 [2-20] [35] [510;1.. (RO | > [EEFEED] S
lission

Fig. 2. The user interface and the planned trajectories for a two UAS patrolling mission
(see example 1). Real-time playback can be seen at http://bit.ly/fblguiexmpl

Here, D, U, G are the number of UAS, Unsafe sets and Goal sets in the
mission respectively. I = [0, NT] is an interval that covers the entire mission
duration, while I;’d C I,Vi=1,...,cis the i*" interval in which UAS d must
visit Goal g. — is the boolean negation operator. py is the position of UAS d.

The symbol [J;¢ corresponds to the Always operator of STL and encodes the
requirement that a boolean formula ¢ should be true through the time interval
I. We use this operator to enforce that the UAS never enter the Unsafe zones
or get closer than d,;, meters of each other. Similarly, {;¢ corresponds to the
FEventually operator which encodes the requirement that ¢ should be true at
some point in time in the interval I. We use this to capture the requirement that
the a UAS visits a Goal region within the user defined interval I. More details
on STL and its grammar can be found in [14].

Example 1 Two UAS patrolling mission. Two UAS, starting off at posi-
tions [2,2,0] and [—2,—2,0], are tasked with patrolling two sets (in green), while
making sure not to enter the set in red, and also maintaining a minimum dis-
tance of 0.5m from each other. For a mission of time 20s, we set the number
of way-points to 20, and the time between them to be 1s. The timing constraints
on the patrolling are as follows: UAS 1 has to visit the first set in green in an
interval of time [0, 5] seconds from the missions starting time, has to visit the
other green set in the interval [5, 10] seconds, re-visit the first set in the in-
terval [10, 15], and the second set again in the interval [15, 20]. UAS 2 has a
similar mission, visiting the first set in the intervals the UAS 1 has to wvisit the

6 Pant et al.

second set and so on. Figure 2 shows the trajectories generated by our method,
and http: //bit. ly/ folguiezmpl shows a real-time playback of the planned
trajectories visualized through the user interface.

For the mission of example 1, the temporal logic specification is:

© = Noz1 Ni=1(Djo,20~(pa € Unsafen)) A O 201 (|[p1 — p2||2 > 0.5)A
Oo,51(p1 € Goaly) A Or5,101(p1 € Goalz) A Q0,151 (p1 € Goaly)A
Ons,201(p1 € Goalz) A Qpo,5(p2 € Goalz) A Op5,101(p2 € Goali)A
Ono,15) (P2 € Goalz) A Q15,20 (p2 € Goaly)

The tool comes pre-loaded with some example missions, and offers the user
the ability to save new missions, as well save and load workspaces as text files.
More details on the usage of the tool are in [15].

Note: Through the C++ library that forms the back-end for the tool, speci-
fications involving the nested operators Oy, 7, and ¢, 07, can be used in con-
junction with the template of equation 1. This functionality will be added to the
user interface at a later time.

2.3 Behind-the-scenes: Generating the trajectories

In order to generate the trajectories that satisfy the mission specification, an
optimization is solved (in the C++ back-end) to maximize, over N way-points
for each drone, the smooth robustness of the mission STL specification evaluated
for the UAS trajectories of NT seconds in duration. The constraints in the
optimization ensure that the resulting trajectories are such that the resulting
trajectories have velocity and accelerations within the user-defined bounds for
each UAS, i.e. are kinematically feasible for the UAS to fly. See [4] for details.

3 Conclusions and ongoing work

In this paper we presented Fly-by-Logic, a tool for planning for multi-rotor
UAS missions. By interpreting the missions as STL specifications, the underly-
ing method generates kinematically feasible trajectories to satisfy missions with
complicated spatial and temporal requirements while ensuring safety. Through
an example, we introduce the kind of missions that can be specified in the tool.
At the time of writing this paper, the tool is suitable only for offline trajectory
generation for UAS missions. In [4] the underlying method has been shown to
work in an online manner as well (see bit.ly/varvel2), and current work on
the tool is focused on wrapping the Fly-by-Logic C++ library as a ROS package
to seamlessly integrate with off-the-shelf planning and control implementations.
Also planned is a method to import 3-d maps for actual geographical locations
with Unsafe zones covering landmarks.

Title Suppressed Due to Excessive Length 7

References

10.

11.

12.

13.

14.

15.

. Federal Aviation Administration, “Concept of operations v1.0,” https://utm.arc.

nasa.gov/docs/2018-UTM-ConOps-v1.0.pdf, 2018, accessed: 2018-11-19.

. O. Maler and D. Nickovic, Monitoring Temporal Properties of Continuous Signals.

Springer Berlin Heidelberg, 2004.

. G. Fainekos, “Robustness of temporal logic specifications,” Ph.D. dissertation,

University of Pennsylvania, 2008. [Online]. Available: http://www.public.asu.edu/
~gfaineko/pub/fainekos_thesis.pdf

. Y. V. Pant, H. Abbas, R. A. Quaye, and R. Mangharam, “Fly-by-logic: control

of multi-drone fleets with temporal logic objectives,” in Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems. 1EEE Press,
2018, pp. 186-197.

. “Ardupilot mission planner,” ardupilot.org/planner/, accessed: 2018-12-15.
. “QGROUNDCONTROL intuitive and powerful ground control station for px4 and

ardupilot uavs,” qgroundcontrol.com, accessed: 2018-12-15.

V. Raman, A. Donze, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli,
and S. A. Seshia, “Model predictive control with signal temporal logic specifica-
tions,” in 53rd IEEE Conference on Decision and Control, Dec 2014, pp. 81-87.
Y. Annapureddy, C. Liu, G. Fainekos, and S. Sankaranarayanan, “S-
taliro: A tool for temporal logic falsification for hybrid systems,” in
Proceedings of the 17th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems: Part of the Joint FEuropean
Conferences on Theory and Practice of Software, ser. TACAS’11/ETAPS’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 254-257. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1987389.1987416

Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control using the
smooth robustness of temporal logic,” in Control Technology and Applications
(CCTA), 2017 IEEE Conference on. IEEE, 2017, pp. 1235-1240.

M. W. Mueller, M. Hehn, and R. DAndrea, “A computationally efficient mo-
tion primitive for quadrocopter trajectory generation,” in IEEE Transactions on
Robotics, 2015.

J. Andersson, “A General-Purpose Software Framework for Dynamic Optimiza-
tion,” PhD thesis, Arenberg Doctoral School, KU Leuven, 2013.

A. Wichter and L. T. Biegler, “On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming,” Mathematical Pro-
grammaing, 2006.

G. Fainekos and G. Pappas, “Robustness of temporal logic specifications for
continuous-time signals,” Theoretical Computer Science, 2009.

A. Donzé and O. Maler, Robust Satisfaction of Temporal Logic over Real-Valued
Signals. Springer Berlin Heidelberg, 2010.

“Fly-by-logic: User documentation,” https://github.com/yashpant/FlyByLogic,
accessed: 2018-12-15.

	Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning using Temporal Logic
	Recommended Citation

	Fly-by-Logic: A Tool for Unmanned Aircraft System Fleet Planning using Temporal Logic
	Abstract
	Keywords
	Disciplines

	tmp.1553531570.pdf.QqiVQ

