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A B S T R A C T

A challenging application scenario in the field of industrial Unmanned Aerial Vehicles (UAVs) is the capability
of a robot to find and query smart sensor nodes deployed at arbitrary locations in the mission area. This
work explores the combination of different communication technologies, namely, Ultra-Wideband (UWB) and
Wake-Up Radio (WUR), with a UAV that acts as a ‘‘ubiquitous local-host’’ of a Wireless Sensor Network (WSN).
First, the UAV performs the localization of the sensor node via multiple UWB range measurements, and then it
flies in its proximity to perform energy-efficient data acquisition. We propose an energy-efficient and accurate
localization algorithm – based on multi-lateration – that is computationally inexpensive and robust to in-field
noise. Aiming at minimizing the sensor node energy consumption, we also present a communication protocol
that leverages WUR technology to minimize ON-time of the power-hungry UWB transceiver on the sensors.
In-field experimental evaluation demonstrates that our approach achieves a sub-meter localization precision of
the sensor nodes – i.e., down to 0.6m – using only three range measurements, and runs in 4ms on a low power
microcontroller (ARM Cortex-M4F). Due to the presence of the WUR and the proposed lightweight algorithm,
the entire localization-acquisition cycle requires only 31mJ on the sensor node. The approach is suitable for
several emerging Industrial Internet of Things application scenarios where a mobile vehicle needs to estimate
the location of static objects without any precise knowledge of their position.
1. Introduction

In the last decade, Unmanned Aerial Vehicles (UAVs) have been
used in many applications, such as aerial inspection, surveillance,
ambient awareness, and industrial applications [1–3]. A recent trend is
their adoption as intelligent and ubiquitous coordinators of industrial
Wireless Sensor Networks (WSNs), relieving the need for expensive
infrastructure. WSNs are widely used for many practical industrial
applications, such as remote monitoring or parcel tracking in big ware-
houses [4–6]. Usually, industrial WSNs contain a large number of sim-
ple, cheap, and resource-constrained (e.g., battery-powered) wireless
sensor nodes deployed in wide indoor environments, such as ware-
houses and industrial facilities [5,7]. Within a WSN, data are first
collected in some local-host, which forwards the relevant information
to a central infrastructure that can be geographically decoupled from
the deployment area [8]. In this context, UAVs are envisioned as
an alternative to traditional gateways to overcome their limitations
in terms of bandwidth, range, energy consumption and the need for
physical infrastructure [7,9].

∗ Corresponding author.
E-mail address: vladn@iis.ee.ethz.ch (V. Niculescu).

A UAV can quickly fly to any location within the mission area and
reach all the WSN’s nodes. In most real-world scenarios, the UAV’s mis-
sion is to gather and exchange information from a group of sensor nodes
deployed in the mission area. Once the UAV is in the proximity of the
sensor node, it can act as an ‘‘intelligent and ubiquitous’’ local-host [9]
and perform short-distance and therefore low-power data exchange.
This can turn, for example, into a much longer lifetime of battery-
powered sensor nodes deployed in an Industry 4.0 or Internet-of-things
scenario, making the node last for months/years [10]. Furthermore, the
drone could also perform wireless power transfer to charge the sensor
node. By coming very close to the node, the drone can avoid power
transfer losses due to the distance between the two [10]. However,
in many real application scenarios, this vision is challenged by the
unknown location of the WSN’s nodes [8,11]. This is the case, for exam-
ple, in dangerous or inaccessible areas, where the precise deployment
of nodes is not feasible, such as areas affected by nuclear radiation
(e.g., areas near nuclear reactors) [12]. With the advance of Industry
4.0, WSNs play an increasingly important role within the context of the
vailable online 15 January 2022
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Table 1
Comparison against other localization systems. The red and green entries represent a lower and a higher
performance compared to our system, respectively. The entries in black represent a similar performance, if
applicable.

Metric [18] [19] [20] [21] [22] [23] Our work

Technology UWB WiFi BLE BLE UWB UWB UWB/WUR

Mean error
(empirical data)

1m N/A 0.8m 1m 0.4m N/A 0.6m

Mean error
(synthetic data)

N/A 10m N/A N/A N/A 0.12m N/A

# measurements 3 3 100 140 6 3 3

Infrastructure-
free

yes yes no no no yes yes

In-field
evaluation

yes no yes yes yes no yes

Closed-loop
demonstration

no no N/A N/A N/A no yes

Focus on energy
saving

no no no yes no yes yes
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Industrial Internet of Things (IIoT) and industrial smart buildings [13].
Such buildings often use industrial working spaces based on modular
environments (e.g., reconfigurable floors or walls). These can change
their configuration every time a new workshop is set up, and therefore
the position of the nodes has to be redetermined. Similarly, the sensor
nodes’ deployment can be affected by inaccurate positioning in the area
due to errors or hard-to-access areas (e.g., near a blast furnace) [13].

A potential solution to localize sensor nodes whose position is
not known a priori is adding localization modules to them. Accurate
estimation, small form factor, indoor operation capabilities, and low
price are the primary asset in localization system design, especially in
robotics and industrial WSN applications. A popular solution for local-
ization is by equipping the sensor nodes with GPS receivers. However,
GPS receivers consume on the order of tens of mW when active, and
equire around 30 s to acquire the first position measurement [14].
nfortunately, this would dramatically increase the cost and power
onsumption of each sensor node, making the overall WSN lifetime
onstraint (e.g., the multi-year period between recharges) extremely
ifficult to meet. Techniques for reducing energy consumption, such
s duty-cycling (i.e., enabling the GPS at a fixed period to obtain the
osition), have the disadvantage of introducing a high latency, which
ould result in long UAV mission times. Furthermore, GPS cannot
perate in many industrial scenarios, where the GPS signal is blocked
y the environment – i.e., GPS-denied areas –, and it is difficult to
btain sub-meter precision using absolute GPS positioning.

Ultra-Wideband (UWB) is an emerging technology enabling both
istance estimation (ranging) and communication [15]. However, UWB
as high power consumption when active (i.e., hundreds of mW). A
iable option to overcome the UWB’s high power consumption is to
ombine it with an ultra-low-power (i.e., a few μW) always-on receiver,
uch as Wake-Up Radio (WUR) technology [16,17]. WUR enables pure
synchronous communication that allows the sensor node to operate
n sleep mode and wake up only when useful data transmission is
equired — e.g., when the UAV comes close. In this work, we pair UWB
ommunication with WUR technology to achieve extremely energy-
fficient localization of nodes in WSNs with a UAV acting as a mobile
ateway. Due to the WUR, the UWB is only active for tens of ms during
localization cycle.
Multi-lateration is the heart of novel localization approaches based

n UWB [24]. State-of-the-Art (SoA) localization solutions address the
roblem of localizing a moving object within the receptive field of, at
east, three static UWB transceivers, called anchors. Although, in the
ontext of large nodes’ deployment areas, such as an industrial facility,
his approach might lead to an unaffordable infrastructure cost and
easibility issues. Therefore, in our approach UWB is used to address
2

he dual problem, i.e., the UAV acts as a ‘‘moving anchor’’ [18,24]. t
This paper proposes an energy-efficient localization system that
ombines UWB and WUR to enable UAVs to perform precise sensor
ode localization assuming Line-of-Sight (LOS) conditions for UWB
ommunication. The paper presents an embedded multi-lateration al-
orithm that can run on any low power MCU. Specifically, our work
rovides the following contributions:

• an accurate flight policy paired with a lightweight multi-lateration
algorithm, which guarantees an upper bound on the localization
error of 0.6m and runs in 4ms on an ARM Cortex-M4 MCU,
onboard our quadrotor;

• the combination of UWB and WUR technologies; the WUR enables
the drone to perform ‘‘on-demand’’ wake-up, preventing the node
from wasting energy in ‘‘always-on’’ or ‘‘duty-cycled’’ operation
modes. A communication protocol orchestrates the interaction
between our UAV (i.e., a quadrotor) and the sensor nodes. Thanks
to the proposed protocol, the sensor node’s energy consumption
is ∼ 31mJ for the whole localization and acquisition process;

• an in-field experimental evaluation of our UAV prototype, demon-
strating its closed-loop functionality and a thorough analysis of
the localization accuracy with in-field acquired UWB range mea-
surements — i.e., affected by real-world noise.

ltimately, our in-field evaluation shows that the proposed multi-
ateration algorithm is up to 50% more accurate than SoA, comparing
t to similar ‘‘moving anchor-based’’ solutions [18].

The paper is structured as follows: Section 2 presents related works
n UAVs, ranging technologies, and multi-lateration algorithms. Sec-
ion 3 presents the theory behind our proposed multi-lateration algo-
ithm and flight policy. Section 4 presents the hardware architecture
nd our communication protocol. Section 5 reports on experimental
esults, discussing and analyzing the main factors that influence local-
zation accuracy and energy consumption. Section 6 discusses further
actors (i.e., non-LOS conditions, range magnitude) which can impact
he localization accuracy of our system. Finally, Section 7 concludes the
aper.

. Related work

Recent literature has shown an increasing interest in combining
AVs with WSNs for industrial applications, highlighting the reduction

n cost/power compared to traditional long-range communications [9,
1]. A common class of localization techniques employs range-based
echnologies [18,20,22], where the node’s location is computed relative
o multiple measurements from different spots visited by the UAV —
.e., way-points. The distance or angle (range information) between

he drone and the node can be precisely measured using Received



Sustainable Computing: Informatics and Systems 34 (2022) 100666V. Niculescu et al.
Signal Strength Indicator (RSSI) [8], Time of Arrival (ToA) [24], Time
Difference of Arrival (TDoA) [25], and Angle of Arrival (AoA) [26]
techniques.

Wifi and Bluetooth are RSSI-based solutions, often mentioned as
trendy choices due to their vast availability and reduced-price [8,27,
28]. Bluetooth Low Energy (BLE) is a widely used technology in low
power WSNs because it presents a reduced power consumption of a
few tens of mW [29]. However, its precision when performing distance
measurements is minimal and sensitive to noise. In [21], the proposed
BLE-based localization scheme shows a minimum ranging error of
about 1m, which leads to a localization error of around 2m, even in
the optimistic case of more than a hundred measurements from seven
fixed spots (i.e., anchors).

In contrast to these approaches, a novel ToA ranging method is
represented by the UWB technology, which determines the range via
the round trip time of the UWB signal, achieving centimeter accuracy
in LOS conditions [24]. However, the ranging precision does not imply
the same localization precision, which strongly depends on the rela-
tive position among way-points, noise on the ranging medium, and
uncertainty in the UAV’s self-localization — e.g., imprecise GPS coordi-
nates. This paper proposes an energy-efficient and accurate localization
system combining UWB and wake-up radio to detect battery-operated
sensor nodes when their location is not precisely known.

Moving into the algorithmic navigation techniques based on ToA
technology, multi-lateration is the most widely used due to its trade-off
between computational requirements and localization accuracy, and we
report a detailed comparison of the most relevant works [18–20,22] in
Table 1. The table states the minimum mean error and its associated
number of needed range measurements and the need for infrastructure,
which indicates if the respective system works with fixed or mobile
anchors. Furthermore, we evaluate if a localization system is tested
with in-field acquired data and which solutions are deployed on a
drone. Lastly, the table also compares energy-saving aspects for the
sensor nodes, which is crucial for the WSN’s lifetime.

The authors of [22] propose to use a cost function to penalize
the localization error, but their approach requires a heavier memory
footprint compared to our solution. Even if Table 1 indicates a smaller
mean error associated with this work compared to our solution, their
system uses six range measurements (and therefore more energy than
ours), and it only works with an ad-hoc infrastructure — i.e., fixed
anchors. [19] presents a localization algorithm that optimizes a cost
function designed to minimize both the localization error and the
energy consumed by a drone, but their approach has an inevitable
accuracy drop due to the error/energy trade-off. The authors of [18]
present a localization algorithm that bounds the localization error with
a multi-lateration strategy similar to ours. Although, it requires a ∼ 40%
longer path (and flight time) to achieve the same accuracy of our
approach. Furthermore, [30] presents a precise (up to 0.04m accuracy
in an ideal scenario) multi-lateration localization method called RB-
MML, which is used in a wide range of localization systems [20] due to
its reduced computational complexity given by its closed-form solution.
However, this approach is mathematically developed assuming ideal
conditions, and therefore it performs poorly in the presence of noise.
In our previous work [31], we propose a solution for a drone looking for
wireless sensor nodes exploiting UWB but only focusing on experiments
with synthetic data. In this work, we extend our investigation by
reproducing the experiments from [31] using empirical data. Moreover,
we propose a flight policy for upper bounding the localization error and
a communication protocol for achieving energy-efficiency for the node.
Lastly, we perform an in-field evaluation of our prototype mounted on
a commercial drone.

Even if the theoretical foundation of localizing sensor nodes with
UAVs – i.e., moving anchors – has been addressed in several previ-
ous works [18,19], most of them report results based only on ideal
synthetic data and/or lack of in-field deployment and demonstration.
In contrast to them, we propose a lightweight algorithm that can run
3

Fig. 1. Geometrical representation of two way-points.

even in resource-constrained embedded platforms, achieving sub-meter
localization accuracy in the presence of real-world effects, such as noise
on the UWB range measurements and GPS localization inaccuracy.
Moreover, our localization approach works with the minimum number
of three range measurements, reducing flight time and the energy cost
for the UWB communication. Lastly, due to the proposed WUR-based
approach and the communication protocol, the energy consumption on
each sensor node is minimized to a few tens of mJ, which leads to a
power consumption of only 3.9 μW when the node is waiting for a new
localization-acquisition cycle.

3. The localization methodology

One of the main contributions of the paper is proposing an energy-
efficient and accurate approach enabling UAVs to find wireless sensor
nodes randomly deployed in the mission area. Thus, the paper focuses
on a 2-dimensional (2D) use case, where all sensor nodes are deployed
on the ground at the same altitude level. However, many key aspects
of the proposed 2D use case also apply to the 3D case. Moreover,
the 2D use case is still representative of most practical application
scenarios [18,20] with WSNs.

3.1. Background: UWB multi-lateration

The purpose of a multi-lateration algorithm is to estimate the posi-
tion of a not-localized static object on the ground – the sensor node in
our case – with high accuracy, using way-points as input. A way-point
is a structure of type (𝑥𝑑 , 𝑦𝑑 , 𝑟), where the pair (𝑥𝑑 , 𝑦𝑑 ) represents the
drone position (e.g., GPS position) [18], and 𝑟 is the range measurement
from the drone to the node (i.e., ground projection in a 2-D plane).
Apart from the ranging error, the drone’s GPS position and altitude
measurements are also affected by noise, which consequently influ-
ences the accuracy of the multi-lateration estimation. More way-points
lead to a more accurate estimation but also increases both the mission
time, with more spots to be visited, and the number of transmitted
packets, therefore increasing the energy consumption.

A common solution for fast multi-lateration is the RB-MML [30],
which is used in a wide range of localization systems [8,27] due to its
advantage of having a closed-form solution. Considering a noise-free
scenario, the coordinates of the node and the 𝑁 acquired way-points
(𝑥𝑖, 𝑦𝑖, 𝑟𝑖), with 𝑖 = 1, 2,… , 𝑁 , satisfy Eq. (1).

(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 = 𝑟2𝑖 (1)

By subtracting the 𝑁th equation from the first 𝑁 − 1 equations,
results in a linear system of 𝑁 − 1 equations as the quadratic terms
in 𝑥 and 𝑦 are canceled out, and the system can be solved in the least-
squares sense. If the range distance measurements are not affected by
any noise, RB-MML, as well as all other methods, provides the optimal
node position using only three way-points. Computing the solution of
RB-MML requires a few simple matrix multiplications, but when used
in field applications, its accuracy drops quickly due to the inevitable
measurement noise, as shown in Section 5.

Assuming that the noise that affects the range measurements is
Gaussian with zero-mean, the maximum likelihood estimate is obtained
by minimizing the cost function in Eq. (2) [22]. Therefore, the optimal
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solution which minimizes the cost function is the pair (�̃�, �̃�) that makes
the range measurements ‘‘the most likely’’. Our optimization problem
is represented by the non-convex and non-linear function in Eq. (3). To
avoid local minima, it is crucial to choose proper initialization values
for (𝑥, 𝑦), otherwise, the final solution might lead to high-cost values.

𝐿(𝑥, 𝑦) =
𝑁
∑

𝑖=1
(
√

(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 − 𝑟𝑖)2 (2)

(�̃�, �̃�) = arg min𝐿(𝑥, 𝑦) (3)

3.2. Embedded multi-lateration algorithm

In the 2D case, the geometrical interpretation of a single way-
point (𝑥1, 𝑦1, 𝑟1), suggests that the sensor node is somewhere on the
circumference of the circle with center in (𝑥1, 𝑦1) and radius 𝑟1. With
a second way-point, the number of possible locations for the node is
reduced to two possibilities: the two points given by the intersection of
the two circumferences, as shown in Fig. 1. We note as 𝐂𝟏 the circle of
radius 𝑟1 and center in (𝑥𝑐1, 𝑦𝑐1) and as 𝐂𝟐 the circle of radius 𝑟2 and
center in (𝑥𝑐2, 𝑦𝑐2). The intersection points of the two circles (𝑥1, 𝑦1)
and (𝑥2, 𝑦2) can be easily computed using the equations in [32]. The
proposed approach computes the cost function in Eq. (2) for both the
two candidate points, considering all the 𝑁 way-points, and we select
as (𝑥0, 𝑦0) the one which leads to the smaller cost.

Algorithm 1 Gradient descent with adaptive learning rate. 𝐂𝟏 and 𝐂𝟐
are the two circles depicted in Fig. 1, whose intersection gives the two
candidate points for initializing the gradient descent.
(𝑥1, 𝑦1) and (𝑥2, 𝑦2) ← 𝐂𝟏 ∩ 𝐂𝟐;
𝐿1 = 𝐿(𝑥1, 𝑦1);
𝐿2 = 𝐿(𝑥2, 𝑦2);
if 𝐿1 < 𝐿2 then

(𝑥0, 𝑦0) = (𝑥1, 𝑦1);
else

(𝑥0, 𝑦0) = (𝑥2, 𝑦2);
end
𝑥 = 𝑥0;
𝑦 = 𝑦0;
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 0;
while (iterations <20) do

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 1;

𝐻𝐿(𝑥,𝑦) ←
⎡

⎢

⎢

⎣

𝜕2

𝜕𝑥2
𝐿(𝑥, 𝑦) 𝜕2

𝜕𝑥𝜕𝑦𝐿(𝑥, 𝑦)
𝜕2

𝜕𝑦𝜕𝑥𝐿(𝑥, 𝑦)
𝜕2

𝜕𝑦2
𝐿(𝑥, 𝑦)

⎤

⎥

⎥

⎦

;

[

𝛼1
𝛼2

]

← [𝐻𝐿(𝑥,𝑦)]−1
[ 𝜕

𝜕𝑥𝐿(𝑥, 𝑦)
𝜕
𝜕𝑦𝐿(𝑥, 𝑦)

]

;

𝑥 ← 𝑥 − 𝛼1
𝜕
𝜕𝑥𝐿(𝑥, 𝑦);

𝑦 ← 𝑦 − 𝛼2
𝜕
𝜕𝑦𝐿(𝑥, 𝑦);

end

In an ideal case, where the range measurements are not affected by
any sensor noise, the solution (𝑥0, 𝑦0) represents the global minimum
of the optimization problem given by Eq. (3) and leads to a cost
equal to zero. However, in practice, range measurements are never
noise-free, and the noise standard deviation impacts how far (𝑥0, 𝑦0)
is with respect to the global minimum of the optimization problem.
Nevertheless, range measurements have a precision of 10 cm, as they
are acquired via UWB. Since the UWB distance measurements are in
the range of meters, their cm error practically results in having the
(𝑥0, 𝑦0) solution located near to the global minimum. In our work,
we do not provide any formal demonstration on the optimality of our
multi-lateration algorithm for minimizing the cost function because this
optimization problem is non-linear, non-convex, and can have several
local minima. However, we use empirical evidence to prove that in
4

Fig. 2. Effect of noise (dashed circles) for small (a) and large (b) 𝛼 angle leading to
a wrong localization (red dots). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

practice, our approach converges to the global minimum. To determine
the global minimum ground truth, we performed a grid search varying
𝑥 and 𝑦 with a step of 0.5 cm and chose the global minimum as the
pair (x,y) that leads to the smallest cost. We ran 1000 experiments, and
we observed that in all situations, the proposed algorithm initialization
(𝑥0, 𝑦0) is found in a convex vicinity of the global minimum, and with
such an initialization, the algorithm finds the global minimum in every
experiment. Consequently, we use (𝑥0, 𝑦0) as the initialization value for
the optimizer.

The proposed optimization approach is a gradient descent algorithm
meant to run in a low-resources embedded platform. To minimize the
number of iterations until convergence, we use Newton’s update rule
to online adjust the learning rate of the algorithm with respect to the
inverse of the Hessian matrix [33], as shown in Algorithm 1. With this
choice, the optimizer converges faster in the first few iterations and the
learning rate decreases as they progress (on average from 0.5 to 0.001).
Experimentally, we observed that Algorithm 1 achieves a difference
of less than 1mm between two consecutive iterations after less than
20 iterations. In this way, our algorithm is not data-dependent, and
the iteration number – and also running time – is always constant and
predictable (4ms for an ARM Cortex M4@168MHz).

3.3. The flight policy

Recalling the geometrical representation from Fig. 1, we consider
two other similar situations depicted in Fig. 2. In both sub-figures,
the solid-line circles (blue and green) represent two noise-free range
measurements, associated with two distinct way-points. However, in
practice, both range measurements are affected by noise. Without loss
of generality and only for the sake of this example, we can consider
the case of only one of the two being corrupted by noise, as the dashed
circle indicates in Fig. 2.

Comparing Fig. 2(a) with Fig. 2(b), it is clear that the higher the
overlapping of the two areas defined by the two circles is, the higher
the localization error is. This overlapping degree can be geometrically
paired to the angle formed by the two way-points and the node position
— called alpha (𝛼). We point out that this example is only given to
motivate that the locations where the range measurements are acquired
have an impact on the node localization error, and this is why we only
considered that one range measurement is noisy. However, everything
applies also to the case of multiple noisy range measurements, as it
is also considered in Section 5. Our flight policy aims to minimize
the localization error, keeping the number of way-points low and,
therefore, the number of range measurements.

To keep our flight policy as general as possible, we propose to use
three equally spaced way-points, which involve the drone flying the
shape of an equilateral triangle and acquire a range measurement in
each vertex (A, B, and C), as Fig. 3(a) shows. Given the three way-
points measurements and the sensor node position (N), we can always
derive three angles with respect to 𝑁 (𝐴𝑁𝐵, 𝐵𝑁𝐶, and 𝐶𝑁𝐴). We call
𝛼1 and 𝛼2, the two smaller angles among the three for which no other
way-point lies in between, as represented in Fig. 3(b). This policy leads
us to three possible cases:
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Fig. 3. (a) Sequence of way-points (A, B, and C) acquisition. (b) shows the node
position (N) and the two 𝛼 angles.

• 𝑁 is inside or on the triangle;
• 𝑁 is outside the triangle, and 𝛼1 and 𝛼2 are non-zero;
• 𝑁 is outside the triangle and 𝛼1 or 𝛼2 is zero — i.e., two vertexes

are collinear to 𝑁 .

Since the localization error depends on the sum of 𝛼1 and 𝛼2, and
increases as this sum decreases, as thoroughly analyzed in Section 5,
the last case of collinear vertexes represents our worst-case, because it
leads to the smallest sum. Therefore, bounding the localization error
for this case will also bound the error for any possible alpha angle.
When the drone acquires the first range measurement (𝑟) in A, the only
parameter which can be set before moving to the next locations (B and
C) is the edge length of the triangle (𝑑). In this worst-case, the relation
between 𝑑, the non-zero 𝛼, and 𝑟 is given by Eq. (4) which is used to
bound the error, enforcing a minimum alpha angles sum (e.g., 𝛼1 + 𝛼2).
As Eq. (4) represents the case of the sensor node (N) lying outside the
triangle, it holds for sums of alpha angles smaller than 60°. Higher sums
of alpha angles that would lead to a smaller localization error cannot
be guaranteed a priori with our strategy, even if they can be obtained
in practice during the mission. Thus, to have analytical guarantees on
sub-meter errors (i.e., paired to ≥ 60° sum of angles), we would need a
flight policy based on more than three way-points.

𝑑 =
2𝑟 sin 𝛼(sin 𝛼 +

√

3 cos 𝛼)
4 cos2 𝛼 − 1

(4)

4. System architecture

This section introduces the hardware design of the proposed sys-
tem and the communication protocol. The combination of the two
enables precise and energy-efficient interaction between a commercial
quadrotor and the sensor nodes randomly deployed in the mission area.

4.1. Hardware design

To run our multi-lateration algorithm, we designed an add-on
printed circuit board (PCB), called localization unit as shown in Fig. 5A,
to be placed aboard a commercial standard-size drone. It manages
the communication with the nodes, acquires the range measurements,
performs the sensor node localization, and sends trajectory commands
to the drone; therefore, it handles all the operations in closed-loop.
The localization unit features an ARM Cortex M4 MCU, a GPS module
uBlox M8T, a high precision barometer TE MS6511, a UWB module
Decawave DWM1000, and a radio transceiver TI CC1200 . The GPS
module is used only to determine the latitude and the longitude of the
drone, while the barometer provides altitude information relative to
the ground level, resulting in a complete 3-D position estimation of the
drone. The 868MHz onboard radio transceiver is used to emit wake-up
beacons to wake up the sensor nodes deployed on the mission area.

Fig. 5B shows the designed and implemented wireless sensor node
that is equipped with solar energy harvesting that continuously charges
the battery of the sensor node. The sensor node features an STM32L433
MCU, the same UWB module used on the localization unit, a custom
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WUR module [16], and an energy harvesting subsystem, built around
the TI BQ25570 converter — the harvester can extend the battery
lifetime of the node, but in this work, we do not perform any analysis
on the harvesting capabilities, since it is out of the scope of UWB-
based sensor node localization. The MCU manages the sensor’s data
acquisition, and it is in charge of controlling the UWB module in the
ranging process as well as its power mode. The UWB module uses a chip
antenna1 and it is configured for the maximum transmit power and the
smallest data-rate (110 kbps) to maximize the operating range (up to
150m LOS). It uses a center frequency of 3.99GHz and a bandwidth
of 500MHz. The WUR module is responsible for waking up the MCU
when a wake-up beacon is received from the localization unit and it
features addressing capabilities to elicit the response by a single node
of the WSN. The sensor node hosts the WUR designed from [16]. In
our implementation, the WUR achieved a sensitivity of -55 dBm while
listening for beacons, that in combination with the radio transceiver of
our localization unit (TI CC1200) can cover a range up to 35m using
a −2.3 dBi2 antenna and 14 dBm of output power. During the whole
localization-acquisition cycle, the sensor node consumes a total energy
of 31mJ.

4.2. Communication protocol

The goal of the proposed asynchronous communication protocol is
to exploit the WUR, achieving highly energy-efficient interaction during
the localization-acquisition cycle between the localization unit and
the sensor nodes. nodes. The protocol enables sequential localization,
which means that the drone localizes one sensor node after the other.
Because it is not possible to perform concurrent UWB ranging with
addressing, overlapping UWB range measurements from multiple nodes
would result in the same total localization time. Furthermore, in our
application scenario, we use the addressing capabilities of the WUR
to ensure that only one node is woken up at a time and responds to
the drone for performing localization. The order in which the drone
sends the wake-up messages, dictates which node would reply first, in a
scenario where multiple nodes are located in the drone’s vicinity. Fig. 4
describes, without loss of generality, the drone-nodes interaction for
three way-points. It also highlights the power regime of each module
on the sensor node — i.e., MCU (M), UWB (U), and WUR (W) black
when active. Table 2 shows the sensor node’s power consumption for
the following main states:

Listening: All node’s electronics are in the lowest power mode:
sleep mode. The MCU’s core and its peripherals are disabled, but when
the WUR receives a wake-up radio beacon, the MCU is woken up via
interrupt, entering the ranging state. When a wake-up beacon is sent
by the localization unit only the addressed node is activated, leaving
all the others inactive (in listening state). During this state the power
consumption on the sensor node for the MCU, UWB and WUR modules
are 0.2 μW, 1.4 μW, and 2.3 μW, respectively — total 3.9 μW as reported
in Table 2.

Ranging: In this state, the node initiates the double-sided two-way
ranging process sending a UWB message, waiting for a reply from the
localization unit, and going back to the listening state in case of time-out
on the reply message. During this state, the UWB module operates at
its maximum power (400mW peak) to achieve a high communication
range. When the ranging process is complete, the localization unit
obtains a distance measurement, the node enters the waiting state, and it
waits either for a new iteration of the ranging acquisition or to perform
the data transfer to the localization unit — i.e., acquisition state.

Waiting: After the drone acquires a range measurement, it cal-
culates the distance to the next way-point using Eq. (4), and it flies

1 https://datasheet.lcsc.com/szlcsc/Partron-ACS5200HFAUWB_C224424.
pdf.

2 http://linxtechnologies.com/wp/wp-content/uploads/ant-868-cw-
hwr.pdf.

https://datasheet.lcsc.com/szlcsc/Partron-ACS5200HFAUWB_C224424.pdf
https://datasheet.lcsc.com/szlcsc/Partron-ACS5200HFAUWB_C224424.pdf
http://linxtechnologies.com/wp/wp-content/uploads/ant-868-cw-hwr.pdf
http://linxtechnologies.com/wp/wp-content/uploads/ant-868-cw-hwr.pdf
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Fig. 4. The localization protocol. The labels MCU (M), UWB (U), and WUR (W) are marked with black when active.
Fig. 5. (A) Our prototype is based on a commercial-of-the-shelf (COTS) Parrot Bebop 2
extended with our localization unit. (B) Sensor node, both v1 and v2 (optimized form
factor).

Table 2
Sensor node power consumption (per state).

Listening Ranging Waiting Acquisition

3.9 μW 300mW 1.2mW 300mW

there to perform a new range acquisition. During this time, the node’s
MCU reduces its clock frequency to 100 kHz to save energy, and all
other node’s electronics go in sleep mode, keeping the memories in a
persistent state, with a total power consumption of 1.2 μW. The sensor
node iterates between ranging state and waiting state until the drone
obtains all the expected range measurements (three in Fig. 4), in which
case it enters the acquisition state.

Acquisition: Once the localization unit has obtained all the re-
quired range measurements, it runs the multi-lateration algorithm and
flies above the localized node to acquire its data. During this flight,
the node is in the waiting state to wake up once the drone has reached
its position and starts the UWB data exchange. For the data transfer,
the UWB is set to the highest data-rate (i.e., 6.8Mbps) to reduce the
transfer time and peaking at 300mW of power consumption. Once the
data acquisition is completed, the node goes back to the listening state.

5. Experimental results

This section presents the experimental results and analysis of the
embedded multi-lateration algorithm presented in Section 3 and evalu-
ated on the prototypes presented in the previous section. The evaluation
is performed with three types of data: synthetic range measurements,
real-world UWB measurements acquired on the ground, and real-world
UWB measurements obtained with a flying drone. Our synthetic data
are generated by altering the range measurements by zero-mean Gaus-
sian noise (𝜎𝑟 = 10 cm, according to the UWB module data-sheet),
leaving the way-points location unaltered. The main difference between
real-world UWB measurements acquired on the ground vs. a flying
drone is the GPS positioning errors, not present in the former. Although,
all real-world measurements are characterized by non-Gaussian noise
6

Fig. 6. The red spots indicate the location where the drone acquires a new way-point.
(a) Alpha angle is varied. (b) Way-point density is varied.

Fig. 7. Localization error as a function of alpha angle (𝛼1 = 𝛼2), for the configuration
shown in Fig. 6(a). (a) Synthetic data. (b) Real-world UWB measurements.

– in contrast with synthetic data – due to factors like Non-Line-of-
Sight (NLOS) conditions or antenna delays, which can have a significant
impact on the overall localization accuracy. Other works [34] show
that the UWB error statistics (i.e., mean and variance) depends on the
UWB antenna orientation and can reach values up to 0.4m.

In the rest of this section, we refer to the way-point structure
(𝑥𝑑 , 𝑦𝑑 , 𝑟), where 𝑥𝑑 and 𝑦𝑑 are calculated by converting GPS latitude
and longitude, into Cartesian coordinates (east-north-up coordinate sys-
tem). The ground distance – i.e., the 3D projection on the ground of the
UWB range measurement – is calculated as 𝑟 =

√

𝑧2 − 𝑎2, where 𝑧 is the
UWB range measurement, and 𝑎 is the altitude (onboard barometer).

5.1. Localization accuracy with synthetic and ground data

In the first experiment described in Fig. 6(a), the node position is es-
timated via multi-lateration performing an acquisition procedure where
the drone visits three different way-points on a circular trajectory, and
it acquires a new measurement for each of them. The alpha angle (𝛼)
is represented as a central angle due to the selected trajectory, and we
always enforce two equal alpha angles (𝛼1 = 𝛼2) by selecting the visited
way-points. A smaller alpha angle implies a shorter flying distance
and a faster way-point acquisition, which is essential to minimize the
overall drone’s energy consumption.
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Fig. 8. Localization error as a function of the two alpha angles. (a) Synthetic data. (b)
Real-world UWB measurements.

Fig. 9. Localization error as a function of way-point number and UWB energy
consumption. (a) Synthetic data. (b) Real-world UWB measurements.

Fig. 7 shows the mean localization error, as a function of the
alpha angles, both with synthetic data (Fig. 7(a)) and with real-world
UWB measurements acquired on the ground (Fig. 7(b)). For the for-
mer experiment, the alpha angle is swept in the range 7°-34°, and
between 8°-30° for the latter, with an incremental step of 2° for both
of them. This localization error is evaluated for both the proposed
approach and the RB-MML algorithm [30]. Results highlight how our
approach outperforms the RB-MML baseline for both synthetic and real-
world data. In Fig. 7(a), we have a reduction of ∼ 6× of the peak
error (𝛼 = 7°) and minimum error for the proposed algorithm as low
as 12 cm vs. 58 cm for RB-MML. In Fig. 7(b), we observe a reduction of
∼ 5× of the peak error (𝛼 = 8°) and minimum error for the proposed
algorithm as low as 20 cm vs. 36 cm for RB-MML. For small alpha angle
values, both algorithms seem to perform better on real-world data,
since different antenna’s orientations can lead to a UWB measurements
standard deviation lower than 10 cm — as it is assumed for the synthetic
data.

In Fig. 8, we present a second experiment based on the configuration
shown in Fig. 6(a), but this time we explore the localization error
trade-off of different alpha angles. The results for both synthetic and
real-world data demonstrate how the localization error depends on the
sum of both angles, and how it can be significantly reduced, increasing
them. We can also observe that the error is equally dependent on
both alpha angles, being almost constant along the main diagonal and
its parallels (i.e., from top-left to bottom-right corner). Although, the
results for the real-world UWB measurements show higher variance
on all diagonals due to additional source of noise, like biases and/or
antenna delays.

In Fig. 9, we report the mean localization error as a function of
the number of way-points, considering them uniformly distributed on
the semi-circumference of a circular trajectory, as shown in Fig. 6(b).
Also, in this case, our proposed multi-lateration approach performs on
average 2× better than RB-MML for synthetic data, and 20% better
on real-world UWB measurements. From Fig. 9, we can see how our
approach improves increasing the number of way-points from 3 to 13,
of 40% and 30%, using synthetic data (Fig. 9(a)) and real-world UWB
7

Table 3
Energy consumption as a function of the duty cycle and number of way-points (UWB
and WUR only).

Number of way-points

3 8 13

no WUR(UWB) DC
1.5% 12969 mJ 12983 mJ 12997 mJ

1% 8549 mJ 8663 mJ 8677 mJ

0.5% 4329 mJ 4343 mJ 4357 mJ

WUR – 17 mJ 31 mJ 46 mJ

measurements (Fig. 9(b)), respectively. Such an improvement comes at
the price of increased UWB activity and flight time due to the additional
range measurements to be acquired. Fig. 9 not only shows how the
localization precision changes with the number of way-points, but also
the total energy consumed by the node’s UWB and, therefore, the trade-
off between precision and energy. The sensor node’s UWB energy
consumption is proportional to the number of way-points, and it ranges
between 9mJ (3 way-points) and 41mJ (13 way-points).

In Table 3, we perform a quantitative two-dimensional analysis of
the sensor node’s energy consumption. In this experiment, the node
waits in the listening state for one hour, and then the drone wakes it up
to perform the localization and acquisition. The energy that we report
in Table 3 represents the energy consumed by the UWB and WUR only.
Along the horizontal direction, our results show the energy demands
when the number of UWB range measurements increases. Furthermore,
we also include a second dimension of exploration along the vertical
direction. We present how the consumed energy increases when we
use the UWB module instead of the WUR in the listening state. Due to
the high power consumption during receiving, we use duty-cycling so
that the UWB is periodically waking up to poll for a message from the
drone, and then it goes back in the sleep mode. We choose a duty-
cycle (DC) value of 1 ± 0.5%, because this is a realistic value that
would result in a latency of less than 1 s — higher latencies would limit
unrealistically the flying speed of the drone. When using the WUR in
the listening state, the energy consumption depends more on the number
of way-points, because the WUR energy consumption (8mJ) is smaller
than the energy consumed by the UWB during ranging. On the other
hand, for the scenarios that use UWB and duty-cycling in the listening
state, the energy consumption is almost constant along the table lines
due to the high energy consumption of the duty-cycled UWB. Table 3
shows that the most energy-efficient configuration (17mJ) corresponds
to three way-points with the WUR used for listening. In comparison,
the highest energy consumption (12 997mJ) corresponds to the other
extreme of the secondary diagonal, which uses 13 way-points and a
duty-cycle of 1.5%.

In the next experiment, we investigate the energy consumption for
multiple configurations of the number of way-points, and the packet
size exchanged during the acquisition state, the latter depending on
the specific use-case. In this experiment, we assume the drone flying
with an average speed of 3m s−1 and a travel-distance between two
consecutive way-points of 10m. Fig. 10 shows the cumulative energy
consumption for all node’s electronics in the ranging state, waiting state
and acquisition state. We observe that the consumed energy is directly
proportional to both factors. The lowest energy consumption (30.8mJ)
corresponds to the configuration of 3 way-points and a packet size of
100 B, while the highest energy consumption (60.6mJ) corresponds to
the other extreme of the table’s secondary diagonal.

The previous experiments show that the main parameters of our
system are the number of way-points and the packet size. In Fig. 11, we
show the energy consumption (log scale) of each module (i.e., WUR,
MCU, and UWB) and its cumulative percentage contribution to the
total (norm scale). Every module is shown in the ranging, waiting,
and data acquisition states. Note how the energy of the ranging state
only depends on the number of way-points, while the data acquisition
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Fig. 10. Energy consumption as a function of the packet size and number of
way-points.

Fig. 11. The energy consumption of each electronic module during the ranging, waiting
and data acquisition states.

state is affected only by the packet size, and the consumption of the
waiting state is independent of both parameters. In this experiment, we
keep the drone’s trajectory constant in length regardless of the number
of way-points, resulting in the same flight time for all configurations.
We point out that the UWB is the most dominant module in terms of
energy consumption in the ranging and acquisition states, while the
MCU consumes more energy than the WUR or UWB in the waiting
state, where the UWB is inactive. In the right subfigure, we show
the energy consumption during the acquisition state and the total
cumulative energy (i.e., including the energy consumed during ranging
and acquisition) for three configurations of number of way-points and
packet size: i) 3 way-points and 100 bytes, ii) 8 way-points and 500
bytes and iii) 13 way-points and 1000 bytes. We observe that the UWB
consumes the most energy among the three electronic modules due
to its high power consumption when active. Since in our application
scenario we prioritize energy-efficiency, we choose to use three way-
points, which is also a good trade-off between localization error and
energy consumption as Fig. 9(b) shows.

Regarding the error in the node’s localization, the UWB packet size
(i.e., data acquisition phase only) does not play an important role.
However, the number of bytes transmitted once the sensor node is
localized and the drone has approached it is a specific parameter of the
use case. For example, a sensor node equipped with a pressure sensor
that takes few measurements before the drone visits it, would need to
transmit a small packet. On the other side, a sensor node equipped with
a camera would need to transmit much larger packets due to the large
size of the images. An extensive evaluation of this specific aspect would
be, therefore, out of the scope of this manuscript, where we can use the
smallest possible data packet size.

5.2. Localization accuracy with a flying drone

In this section, we aim to confirm, with in-field experiments, the
insights and system’s properties highlighted with the data analysis from
Section 5.1. Thus, we use our drone prototype on an outdoor football
grass-field mission area of 40 × 40 m, situated in a semi-urban envi-
ronment at 450m above sea level with an environmental temperature
8

Fig. 12. Mean localization error as a function the two alpha angles — peak error in
parentheses.

Fig. 13. Error as a function of alpha angle (𝛼1 ≈ 𝛼2).

of ∼20 °C. We chose this environment because it is representative of the
large open-space industrial facilities. However, the functionality of our
system is not restricted to the operation range of UWB or WUR. In the
scenario we envision, the drone’s trajectory is commanded to scan the
whole mission area with a resolution lower than the maximum range
of the WUR. The localization mission only starts when a node receives
the wake-up. In the multi-lateration algorithm, the Cartesian system’s
origin corresponds to the drone’s take-off point, from which it flies at
a constant 15m altitude. The sensor nodes are randomly distributed
in the mission area at unknown locations — by the drone. Their
Cartesian coordinates are recorded to be used as ground-truth for the
localization error calculation. The drone’s self-localization is performed
by the aboard GPS module, representing an additional source of error
– root-mean-squared-error of 0.6m – compared to the ideal scenario in
Section 5.1.

In Fig. 12, we present the same exploration of the localization error
as a function of the alpha angles shown in Fig. 8. This time the real-
world UWB measurements are collected from our flying prototype,
following the flight trajectory presented in Section 3.3. Since in this
case, the real-world measurements include all the non-ideal effects of
the in-field demonstration (e.g., the drone’s self-localization errors),
the localization accuracy drops on average of 4× compared to the
synthetic data case (Fig. 8(a)), and of 52% on average if compared to
the real-world measurements acquired on the ground (Fig. 8(b)).
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Fig. 14. Localization error as a function of distance between the drone and the sensor
node.

The almost constant error on the main diagonal – and its parallels –
is also confirmed in Fig. 12, showing how the error depends on the sum
of the two angles. This characteristic of the error distribution allows us,
without any loss of generality, to consider only one of the two alpha
angles in Fig. 13. We show the localization error, and its second-order
polynomial fitting, for both cases of three and five way-points — in
red and green, respectively. For small alpha angles (𝛼 < 20°), we can
observe outliers that lead to errors up to 3.7m and 1.9m, for three and
five way-points, respectively. Instead, for alpha angles of over 20° (sum
of 40°), the mean error is always below 1m. Since the additional way-
points do not increase the sum of the alpha angles – i.e., the flight
trajectory remains the same just increasing the number of ranging spots
visited – it brings an improvement only for alpha angles lower than 20°,
filtering part of the outliers out. For both considered cases, the mean
of the error is around 0.6m for angles higher than 40°, being lower
bounded by the GPS position uncertainty. To ensure a certain mean
error bound, a minimum alpha angle needs to be achieved, as it is
guaranteed by the flight policy introduced in Section 3.3. We provide
a sample dataset containing the raw data acquired with our system to
facilitate the reproduction of our results.3

6. Discussion

We investigated the influence of the alpha angle and the number of
way-points on the localization error. Furthermore, we also investigated
how the localization error increases when the position of the way-points
is not precisely known, being affected by the drone’s self-positioning er-
rors (i.e., GPS). This section discusses further factors that can influence
the localization error and how their effect can be mitigated. Moreover,
it also provides a brief overview of what is required to perform 3D
sensor node localization.

Our localization scenario only focuses on LOS situations, where no
obstacles are found between the drone and the sensor node. Even if this
is not representative of all possible scenarios, it is still relevant for most
outdoor scenarios (e.g., crop field monitoring, oceanographic sensing)
and some indoor scenarios, such as greenhouses or industrial open
spaces. However, our approach would still work in NLOS conditions,
albeit with a decreased localization precision. For example, [35] shows
that a human subject positioned right between the drone and the
node during ranging introduces a bias of about 0.5m. According to a
synthetic data simulation that we performed, this would result in a lo-
calization error increased by 0.6m for an alpha angle of 60°. To mitigate
the NLOS effects, additional sensors (i.e., visual, inertial) can be used
to detect and reject the outliers among the range measurements, but
we leave this investigation for future works.

Another interesting exploration is the influence of the range magni-
tude on the localization error. We run a synthetic data simulation using
a similar scenario to the one depicted in Fig. 6 where the alpha angle is

3 https://github.com/vladniculescu/UWB-WUR-Bebop-Localization.
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fixed to 60° and the radius is swept in the range 10m - 50m with a step
of 1m. For every radius value, we report the localization error averaged
for 300 runs of the multi-lateration algorithm, considering the same
standard deviation 𝜎𝑟 = 0.1m for the ranging noise as in Section 5. The
results in Fig. 14 show that the localization error tends to stay constant
across the whole distance range, leading to a mean error of about 0.1m
for our approach and 0.22m for RB-MML. We further observe that our
approach produces a smoother estimation which results in a standard
deviation of ∼1 cm, compared to RB-MML, which is less robust to noise
and whose standard deviation is ∼3 cm.

Lastly, we also investigate the influence of the altitude on the local-
ization error by performing synthetic data experiments. To perform this
investigation, we choose the locations of three way-points so that they
define an equilateral triangle with the coordinates (0,0), (10,0) (5,8.7),
just as in the Flight Policy. The node’s position is chosen (5,-20), and it
has to be determined by the localization algorithm. In this experiment,
we sweep the altitude in the range 5m–20m with a step of 1m. For
each case, we alter the drone-node distances (for each way-point)
with Gaussian noise (𝜎 = 0.1m), we project the measurements on the
ground and estimate the position of the node using the proposed multi-
lateration algorithm. We perform 300 such localization experiments
for each altitude value and report the average localization error. We
observe that the localization error increases linearly with the altitude
for both RB-MML and our approach. In the altitude interval 5m–20m,
the localization error is 0.48m–0.58m for RB-MML and 0.3m–0.38m for
our approach. We can observe that the decrease in the altitude reduces
the localization error, and for a 15m span, the error only changes by
25%.

In this work, we address the 2D sensor node localization scenario,
which is relevant for a wide range of applications as motivated in
Section 1. However, the localization system can be extended to 3D in
future work, which would come with additional challenges and needs.
For instance, 3D localization would require an adjusted Flight Policy
that could upper bound the 3D localization error. Furthermore, due to
the need to estimate the height of the sensor node, more accurate drone
altitude estimation is necessary (than the barometer). Lastly, because
the range measurements in 3D are geometrically paired with spheres
and not with circles as in 2D, the multi-lateration algorithm proposed
in Section 3 requires a different initialization approach.

7. Conclusions & future work

This paper proposed an energy-efficient and accurate localization
system that enables mobile vehicles to precisely localize wireless sensor
nodes randomly deployed in the environment. The proposed approach
combines the benefits of two different communication technologies,
such as UWB and WUR, with a robotic platform that acts as a ‘‘ubiq-
uitous local-host’’ of a WSN. Our system comprises a lightweight and
accurate multi-lateration algorithm, an energy-efficient communication
protocol, and a closed-loop prototype featuring our custom hardware.
The proposed algorithm runs in 4ms on a low-power MCU, bounding
the localization error to 0.6m. To enable the in-field demonstration, we
developed a localization unit – that extends the functionalities aboard
a COTS quadrotor – and the sensor nodes deployed in the environment.
Our experimental results demonstrate how our approach can overtake
SoA solutions with sub-meter real-world localization accuracy, running
aboard a resource-constrained flying drone. Ultimately, the optimized
communication protocol enables significant energy saving on the sensor
node consuming only 31mJ, during the whole interaction with the
drone, and 3.9 μW during listening.

As future work, our localization solution can be further extended
to 3D, where the sensor node’s altitude is also estimated. This would
involve augmenting our cost function with an additional variable 𝑧.
Furthermore, the system can be further extended to work in NLOS
conditions and an experimental analysis can show how the size and
material of the obstacles impact the localization error. Moreover, our

https://github.com/vladniculescu/UWB-WUR-Bebop-Localization
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algorithms could be ported to a nano-drone and prove their functional-
ity in an even more computationally-constrained system, where more
than 50% of the system resources are allocated for the control and
estimation algorithms.
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