
Flying Fast and Low Among Obstacles

Sebastian Scherer, Sanjiv Singh, Lyle Chamberlain and Srikanth Saripalli

Abstract— Safe autonomous flight is essential for widespread
acceptance of aircraft that must fly close to the ground. We have
developed a method of collision avoidance that can be used in
three dimensions in much the same way as autonomous ground
vehicles that navigate over unexplored terrain. Safe navigation
is accomplished by a combination of online environmental
sensing, path planning and collision avoidance. Here we report
results with an autonomous helicopter that operates at low
elevations in uncharted environments some of which are densely
populated with obstacles such as buildings, trees and wires. We
have recently completed over 1000 successful runs in which
the helicopter traveled between coarsely specified waypoints
separated by hundreds of meters, at speeds up to 10 meters/sec
at elevations of 5-10 meters above ground level. The helicopter
safely avoids large objects like buildings and trees but also wires
as thin as 6 mm. We believe this represents the first time an
air vehicle has traveled this fast so close to obstacles. Here we
focus on the collision avoidance method that learns to avoid
obstacles by observing the performance of a human operator.

I. INTRODUCTION

Today the threat of low-altitude obstacles constrain fielded
unmanned aerial vehicles (UAVs) to operate at high altitude,
or under close human supervision at low altitude. This is
because even a low-speed collision with the environment can
be fatal. Safe autonomous flight is essential for widespread
acceptance of aircraft that must fly close to the ground
and such capability is widely sought. For example, search
and rescue operations in the setting of a natural disaster
allow different vantage points at low altitude. Likewise,
UAVs performing reconnaissance for the police, news or the
military must fly low enough that the environment presents
obstacles.

Operationally, we would like a system that can safely
fly between coarsely specified waypoints without having
to know beforehand that the flight path is clear or that a
waypoint is even achievable. Flying close to and among
obstacles is difficult because of the challenges in sensing
small obstacles, and in controlling a complex system to avoid
obstacles in three dimensions. Some aspects of collision
avoidance are easier for air vehicles than ground vehicles.
Any object close to the intended path of an air vehicle must
be avoided as opposed to ground vehicles where deviations
from the nominal ground plane indicate obstacles and are
often not visible until they are close. The use of helicopters,
rather than fixed wing aircraft also helps because in the worst
case it is possible to come to a hover in front of an obstacle.

Sebastian Scherer, Sanjiv Singh and Lyle Chamberlain are with the
Robotics Institute, Carnegie Mellon University. Srikanth Saripalli is with
the CRES, University of Southern California.
email: [basti, ssingh, lylecham]@ri.cmu.edu,

srik@robotics.usc.edu

Fig. 1. The helicopter platform we used to test collision avoidance is
flying autonomously in between two poles 10 m apart. The rotor span of
this helicopter is 3.4 m

Still, the availability of appropriate sensors, logistical issues
of mounting a vehicle with sufficient sensing, computing
and communication gear, and the risk involved in such ex-
perimentation has kept researchers from significant progress
in this area. While some methods of obstacle avoidance on
aircraft have been implemented, none to our knowledge has
achieved the speed and endurance that we present here.

In order to operate in real time, we have developed
a layered approach, similar in a general way, to the ap-
proach used by autonomous ground vehicles that operate
in uncharted terrain: plan globally and react locally. Our
approach combines a slower path planning system with a
high-frequency reactive obstacle avoidance algorithm. The
planner updates a global path to the goal every few seconds,
while the reactive algorithm uses intermediate points along
the path as its short term goal to quickly avoid unforeseen
obstacles. The planner is based on Laplace’s equation, while
the reactive algorithm is an adaptation of a model of obstacle
avoidance by humans [1].

The system uses a novel scanning ladar that can detect
small (cm sized) obstacles at ranges of 100 m. Even poorly
reflective wires with sub-cm diameter can be detected from
75 m. All processing and control is done onboard. This
system has been implemented on a Yamaha RMax helicopter
shown in Fig. 1.

Below, we discuss related work in section II and sensor
processing in section III. Section IV explains our architecture
and algorithm. In section V we convey the setup of the flight
hardware. Section VI presents results from field tests.

II. RELATED WORK
Current UAV obstacle avoidance techniques can be cat-

egorized into two broad methods: Planning and Reactive.
Planning paradigms use a world map and plan a trajectory for

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA12.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2023

the vehicle to follow. Such approaches must find trajectories
that not only geometrically avoid obstacles but also ensure
that the dynamics of the vehicle are capable of following the
paths. This can be prohibitively expensive to compute if the
trajectory has to be continuously revised. In contrast, reactive
methods overcome the real-time problem by using a simple
formula to react to obstacles as they appear, but they cannot
guarantee an appropriate solution to every possible situation.

Vision-based reactive methods have been popular because
payload weight is a serious limitation for UAVs. For exam-
ple, Merrel et. al. [2] proposed to use optical flow in order to
compute how to avoid obstacles. The micro flyer developed
by Zufferey and Floreano in [3] is expected to reactively
avoid obstacles using very small 1-D cameras. Zapata and
Lepinay have proposed a reactive algorithm[4] similar to ours
in motivation, but we are aware only of simulated results
[5]. Hrabar and Sukhatme use vision in order to navigate in
canyon-like environments using optical flow[6]. This method
implicitly avoids the walls of the canyons by centering the
vehicle such that optical flow from both sides of the canyon is
equal. Byrne et al have demonstrated obstacle detection from
a wide-baseline stereo system that uses color segmentation
to group parts of the scene (even if lacking in optical texture)
into spatially contiguous regions for which it is possible to
assign range [7].

Larger helicopters such as our Yamaha RMax helicopter
on the other hand can afford more resources to explore alter-
native plans. One approach by Vandapel et. al. implements
a planning algorithm in [8] that uses point clouds in order
to determine a path tunnel network. While this work used
real data taken from a helicopter, the path produced was
only visualized and not executed. Kitamura et. al. [9] use an
octree representation of the world to plan paths using a 3-D
A* implementation[10]. Frazolli et. al. [11] on the other hand
use a concatenation of motion primitives in order to construct
valid paths that avoid obstacles and achieve a desired goal
pose. On our helicopter we use a Laplacian path planning
algorithm [12] that is similar to the approach used in [13]
and [14].

Shim and Sastry have proposed an obstacle avoidance
scheme that uses nonlinear model predictive control. Their
system builds controllers for arbitrarily generated trajecto-
ries. They have demonstrated results on a RMax platform
operating in a plane using a single-axis laser rangefinder
at speeds of 2m/s [15]. Our collision avoidance system
combines reactive and planning algorithms and therefore
enables travel at speeds limited only by the furthest distance
at which the smallest obstacle can be avoided. At the same
time, we know that our system can plan complicated paths
to arrive at a difficult goal without risking a collision.

III. PERCEPTION

Our experience with passive vision outdoors is that natural
lighting far exceeds the dynamic range of commercially
available imagers. Deep shadows can provide sharper edges
than occlusion boundaries of real objects and small objects
can be visually obliterated under very low or very bright

Fig. 2. A scene generated from a series of static scans of the environment
with buildings, trees and powerlines. The powerlines are visible at 170m.

Fig. 3. A laser rangefinder returns a signal indicating a hit. The signal
is mapped to a probability P (o|m). This probability is used to update the
relevant cells in the evidence grid.

lighting. Since we want to be able to detect even very
thin and poorly reflective objects such as powerlines and
telephone wires, the only modality with sufficient sensitivity
and small footprint is ladar. The downside of using ladar is
that it requires mechanical scanning and hence a significantly
larger package.

A. Sensor

We used a custom 3-D laser scanner from Fibertek Inc.
with a 30x40 degree field of view to sense the environment.
The scanner sweeps an oval pattern created by two con-
tinuously spinning lenses. Originally designed to operate as
an operator aid for human pilots, this pattern is particularly
suited to the detection of wires in many orientations as shown
in Fig. 2. This sensor facilitates collision avoidance because
it is sensitive enough to detect obstacles at distances much
greater than the stopping distance of the helicopter at the
maximum speed. For instance it can detect typical powerlines
at 100-150 m while the stopping distance is 40 m at a speed
of 10 m/s.

B. Evidence Grids

A three dimensional evidence grid[16] represents the
world because it is able to express the belief of a volume
of space being occupied. The grid is regular with each
cube storing the log-likelihood ratio of the voxel being non-
empty. If the log-likelihood ratio is larger than zero a cell is
considered occupied.

This data structure provides a way to accumulate more
information about obstacles from a sequence of instantaneous
ladar scans. For example a false positive range measurement
is erased if enough rays penetrate the cell containing a false
positive hit. Dust particles and rain drops can cause a false
obstacle to appear. Although the robot might react to such
false positives the false evidence will be erased if enough
evidence of empty volume is accumulated. However the same
is true for small real obstacles.

The beam of the ladar has a beam diversion at the
maximum range that is smaller than the evidence grid cell

ThA12.4

2024

Fig. 4. A 2D horizontal slice of an evidence grid from the McKenna MOUT
site at Ft. Benning, GA (USA). This model was created by flying part of the
shown path. Red(Dark) represents occupancy and white is evidence of free
space. An aerial image is overlayed on top of the evidence grid in order to
facilitate the interpretation and show the accuracy of the constructed model.
The grid spacing is 10 m.

size.Therefore processing of a new ladar hit is linear O(n)
in the number of cells that are affected by the ray from the
current location to the hit location. Since the work per cell
is only n, processing is fast.

The raw range sensor data is transformed to an occupancy
probability and the result is mapped into an evidence grid
using position and orientation information. Fig. 3 summa-
rizes the flow of data. The belief of a grid cell being
occupied is b(o) which represents the log-likelihood ratio
of the cell being occupied vs. free. We assume that the prior
probability of a cell being occupied is unknown P (o) =
0.5 → binitial(o) = 0.

The sensor model maps the signal returned from the
laser rangefinder to a probability of occupancy (o) given the
measurement (m): P (o|m). Each cell in the grid on the line
between a hit and the location of the robot is updated using
a update rule. The belief of the cells b(o) of the evidence
grid is then updated by

b(o) = b(o) + ln P (o|m)− ln(1− P (o|m)) (1)

Since the accuracy of the ladar is independent of range we
have a range-invariant sensor model. Furthermore a reported
hit is extremely likely to be from an obstacle. Accordingly,
for valid returns, we map the probability to a simple model
in which

ln P (o|m)− ln(1− P (o|m)) = 127 (2)

and
ln P (o|m)− ln(1− P (o|m)) = −1 (3)

We determined these values based on experiments with
the sensor and chose the values with the qualitatively best
evidence grid.

The evidence grid algorithm assumes a static scene. It will
however incorporate changes in the environment if it sees
enough evidence of empty space or occupancy. Accordingly
our algorithms will avoid moving obstacles suboptimally
since moving obstacles will create a smeared representation
in the evidence grid and no explicit tracking is performed.

A 2D slice of an evidence grid from McKenna MOUT at
Ft. Benning, GA (USA) is shown in Fig. 4. This model was

Fig. 5. Overall architecture of the algorithms. The higher the layer the lower
the frequency of execution. A path pg is produced in the planning layer and
transmitted to the reactive layer. The reactive layer produces commands
(v′d, θ̇′) that are then executed by the flight controller.

Fig. 6. A diagram illustrating the terms used in the control law. The
coordinates used are expressed in a robot centric reference frame.

created from data collected during the displayed flight path
and is overlayed with an aerial view of the site.

IV. OBSTACLE AVOIDANCE

Our layered obstacle avoidance architecture (Fig. 5) uses a
combination of a deliberative path planning algorithm with
a reactive collision avoidance method to compute a com-
mand. The algorithms are layered and executed at different
frequencies on one processor in order to be able to react
quickly to obstacles while still finding a global path to the
goal. At the lowest layer the speed controller slows and
accelerates the vehicle based on the distance to the closest
reachable obstacle and on the minimum turning radius. At
the next level, 3D Dodger, a reactive steering-space algorithm
produces steering commands in both horizontal and vertical
axes to actively avoid obstacles. At the highest layer, a path
planning algorithm generates a smooth path around obstacles
to the next goal. Here we present the details of the reactive
method only.

A. Reactive collision avoidance algorithm: 3D Dodger

Our formulation of the 3-D reactive obstacle avoidance
algorithm is based on the original formulation by Fajen
and Warren [1] used in their study of obstacle avoidance
in human subjects.

The algorithm uses a single goal point which attracts the
vehicle’s heading. The command is calculated based on only
angles and distances to obstacles and the goal point. The
vehicle relative angles and distances used in the formulation
are shown in Fig. 6.

A helicopter typically has four control inputs
{vxd, vyd, vzd, θ̇d}. However we impose an artificial
non-holonomic constraint for lateral velocities vyd = 0,
chiefly because we want the laser scanner to point in the
direction of travel. Since the magnitude of the velocity

ThA12.4

2025

Fig. 7. The attraction and repulsion surface for our modified control law.
Plot A and B show the independence of the goal attraction on each axis.
Since a sigmoid shapes the repulsion for the repulsion function in plot C
and D is not uniform.

vector is determined by the speed controller we are left
with 2 degrees of freedom: A heading rate θ̇ and a
vertical velocity component vzd. The goal and obstacles are
represented in spherical coordinates [r, θ, φ]. Accordingly
we also determine a vertical and horizontal turning rate[
θ̇, φ̇

]
to command the vehicle.

The goal has two angles θg, φg and a distance to the goal
dg. The attraction to the goal increases proportionally with
angle as shown in Fig. 7A-B and decreases exponentially
with distance. The vector of the two steering rates for goal
attraction is therefore defined as

−−−−→
attract(g) =

−→
kg

[
θg

φg

]
(e−c1dg + c2) (4)

Obstacles are also expressed in spherical coordinates. The
repulsion increases exponentially with decreasing angles and
decreases exponentially with increasing distance as shown in
Fig. 7C-D. Also larger angles from the other axis like φ for θ
decrease the repulsion from obstacles. The repulsion function
is −−−−−→

repulse(o) = −−→ko·[
sign(θo) · sigmoid(s1(1− |φo|

s2
))

sign(φo) · sigmoid(t1(1− |θo|
t2

))

]
(e−c3do)

[
e−c4|θo|

e−c4|φo|

]

(5)
where

sign(x) =

1 if x > 0
0 if x = 0
−1 if x < 0

(6)

and
sigmoid(x) =

1
1 + e−x

(7)

The resulting steering rate command sent is
−̇→
φ =

−−−−→
attract(g) +

∑

o∈O

−−−−−→
repulse(o) (8)

because we assume a superposition principle holds.

Since the off-axis angles have less weight than the angles
closer to the direction of travel the algorithm commits to
going around or over obstacles after it has reacted sufficiently
to an obstacle. For example, imagine the vehicle approaching
a telephone pole head on. Initially both the horizontal and
vertical Dodger controllers will respond to the pole, turning
up and say, to the left. But as the pole moves more to
the right, it falls out of the attention region of vertical
Dodger defined by the sigmoid function and remains in the
attention region of horizontal Dodger. The result is that the
vehicle stops its vertical avoidance maneuver and commits
to the horizontal avoidance. In another scenario, say the
vehicle approaches a wide building. Again, both Dodgers
initially react, but this time the building moves out of the
attention region of horizontal Dodger first. The result is that
the vehicle commits to the vertical maneuver and climbs
over the building. Allowing both Dodgers to initially react
and compete for control results in intrinsically choosing the
reaction that most quickly avoids the obstacle, while keeping
both options open initially.

B. Virtual range sensor

It is desirable to consider a minimal and relevant set of
obstacles to avoid because we assume that a superposition
principle holds and consequently sum all the obstacles. Ob-
stacles not visible from the current location of the robot have
no influence because it is not possible to collide with these
obstacles. Therefore it is sufficient to consider obstacles that
are in line-of-sight. Furthermore obstacles behind the current
direction of travel do not matter for obstacle avoidance and
can be ignored.

The set of obstacles oi ∈ O where

oi =

θi

φi

di

 (9)

determines the behavior in the presence of obstacles. The
virtual range sensor gives a range for a grid-discretized
latitude and longitude from a reprojected z-buffer, that is
created by rendering the evidence grid. The advantage of
this representation is that it considers the relative size of
an obstacle to be more important than the absolute size.
Large obstacles at a large distance have less influence than
small obstacles close to the robot. Furthermore the number
of obstacles is also limited by the discretization. The grid
of ranges to obstacles has a field of view of 140 degrees in
both axis and each grid cell represents the closest distance
in the volume of a 2x2 degree pyramid.

The obstacles considered by our reactive algorithm are
additionally limited by a box-shaped constraint. The yaw axis
of the box is defined by the location of the robot and the
current goal point. Since the box only extends 5 m below
the lowest point it allows the robot to fly at a low altitude
without being influenced by the ground as an obstacle.

Furthermore the box also reduces the amount of processing
because only obstacles inside the box need to be considered
for obstacle avoidance. The grid restricted by the box typ-

ThA12.4

2026

ically contains on the order of 30000 cells approximately
0.7% of the total number of cells in the evidence grid. The
evidence grid without the box contains 256x256x64 cells and
has a resolution of 1 m.

C. Determining the parameters

Our control law has a large number of parameters that need
to be set in order to generate a desired behavior. Overall there
are 12 constants

u = (kg, c1, c2, s1, s2, t1, t2, ko,1, ko,2, c3,1, c3,2, c4,2) (10)

Some of the parameters have an intuitive meaning and are
defined by the problem domain but some of the parameters
are tedious and difficult to set. The goal following parameters
kg, c1 and c2 were determined by hand since we had a
desired performance for pure goal following and tuning this
subset is intuitive. The values of s1, s2, t1, t2 are used to
shape the number of obstacles considered and were therefore
also fixed.

In order to learn the remaining parameters our pilot flies
the helicopter and tries to follow a straight line between a
start and goal point while avoiding a pole obstacle in one axis
as shown in Fig. 8. Data about the goal point, the obstacles,
and the flown path are recorded and used to determine the
unknowns of the described control model. The input to the
control model and human subject at any point in time is a
goal point pg and a set of obstacles O. The pilot flies the
helicopter pretending he is seeing the obstacles only when
the algorithm actually uses the the obstacle information.

Our training example is chosen to not require any sink or
climb maneuver. This reduces the number of parameters that
need to be learned, because only the horizontal commands
determine the behavior:

ue = (ko,1, c3,1, c4,1) (11)

Given a set u of parameters, we generate a path Pt =
{qi = (ki, li)|i = 1..n} with the same n number of points
as the training path segment Ps, which contains regularly
sampled points in the plane. Ps = {pi = (xi, yi)|i = 1..n}.

The error between the two paths is defined as the
Euclidean distance between each point pair : d(ū)i =√

(ki − xi)2 − (li − yi)2. Consequently, the total error min-
imized between two path segments is D(ū) =

∑n
i=1 d(ū)i.

The optimization procedure minimizes the error term
minūD(ū).

The path Pt is generated from a forward simulation of
the commands sent to the robot. Since the length of the
path and velocities are not controlled in this model, we
use the recorded speeds to ensure Pt has the same length
as the training path Ps. Since the space of parameters has
many local minima we randomly choose sets of parameters
uniformly distributed between 0 and 10.

The model of the helicopter used for training is not
perfectly accurate and therefore it was necessary to fine
tune the parameters on the actual helicopter to improve
the behavior of the real system. We varied the value of

Fig. 8. This figure shows the path used for training as a dashed line and
the actual path taken by the helicopter as a solid line. The path with the
fine-tuned learned parameters still is a adequate match for our training path.

ko systematically between 100% − 150% to fine tune the
behavior on a set of test cases.

Figure 8 shows the actual path of the helicopter overlaid
with the training input. The parameters used after fine-tuning
still adequately matched the prediction.

D. Integrating the Reactive and Planning Layer

Since a helicopter can come to a complete hover, it can
get around obstacles by moving horizontally or vertically.
However, we prefer to smoothly change the direction of
travel like a fixed wing aircraft, partly for energy reasons but
also because such motion keeps the sensor looking forward.
Hence, in the ideal case, the helicopter maintains a constant
speed while it maneuvers around obstacles.

This behavior is achieved by integrating the reactive layer
(3D Dodger and Speed Control) with the path planning layer
(Laplacian). Since the Laplacian planner looks far ahead to
the next waypoint (possibly 100s of meters ahead) it will
produce a nominal path that will not require the reactive
layer to escape by flying straight up or by turning around.
In the unlikely case that a large obstacle appears suddenly
before it is incorporated by the planning layer will however
cause an escape maneuver. Furthermore it is is necessary to
incorporate a planning layer because the reactive layer alone
can get stuck in some cluttered configurations of obstacles.

The planning layer runs at a lower frequency than the
reactive layer and produces a smooth path from the current
position to the next waypoint. However, the path is not a
prescription for the helicopter to follow in the short run.
Instead, a point on the path a fixed distance ahead of the
current position provides a near term goal for the reactive
algorithm. In case no path can be found by the path planning
algorithm the default desired path is used by the reactive
layer.

V. TESTBED

We fitted a Yamaha RMax helicopter (Fig. 9), originally
designed for crop-dusting operations, with an H∞ flight
control system made by weControl. The resulting system
provides a reliable platform capable of carrying a compara-
tively large payload (29 kg @ 1200 meters elevation). The
flight control system provides a robust velocity loop even in
the presence of strong gusty winds.

All processing of sensor data, path planning and collision
avoidance is performed on a Linux computer with a Pen-
tium M processor at 1.6 Ghz, 2 GB of RAM and 4 GB
compact flash. The onboard accelerated graphics processor
reduces computation of the virtual range sensor. The collision
avoidance system relies on an accurate position estimate

ThA12.4

2027

Fig. 9. The helicopter testbed, a Yamaha RMax, used for our experiments
has a payload of 29kg + fuel.

for registration of the ladar data into a coherent world
map. We use the Novatel SPAN system with a HG-1700
inertial measurement unit to provide accurate estimates of
six degree-of-freedom in position and attitude at 100Hz.

VI. RESULTS

We performed over 1000 successful obstacle-avoidance
legs on actual hardware. Speeds varied from 3 m/s to 10 m/s,
and the helicopter also avoided obstacles in up to 24 knot
winds. Our layered architecture allowed the reactive system
to quickly respond to obstacles, while the path planner
found a good general path. On several instances, this ability
to react quickly saved the helicopter from collisions with
wires that the sensor could only register at short ranges.
On the other hand, the path planner was invaluable for
finding routes around very large objects (such as tree lines or
buildings), where the reactive system would have a tendency
to oscillate or get stuck if left to itself. Finally, in cases
where both collision avoidance measures failed (during early
development due to software bugs), the speed control system
brought the helicopter to a stop before a collision occurred.

The development phase required 600 autonomous runs to
develop satisfactory performance. Once we reached a final
configuration, we ran more than 700 successful obstacle
avoidance runs, many of which ran in long continuous
sequences that maintained autonomy for up to 35 minutes
(restricted by fuel limitations). Only one error (discussed
below) required aborting a run. Other aborts were caused
when the safety pilot couldn’t keep up with the helicopter.

In Fig. 10 the helicopter follows a sequence of waypoints
through trees, a wire and over a town. At waypoint E the
helicopter is required to fly to a fairly tight hiding spot
between trees and buildings. There are approximately 10 m
between the obstacles and the location of the helicopter. The
altitude(8 m above ground) is so low that the helicopter is
not visible nor audible from the start of the path.

Notice also how the system begins to avoid obstacles in
both the vertical and horizontal axis before committing to
one or the other. This is a property of the 3-D Dodger
algorithm as shown in equation 5, which begins to evade with
both degrees of freedom until one direction becomes clear
of obstacles. This behavior allows the system to implicitly
decide which path provides the closest safe path as a function

Fig. 10. A flight through the McKenna MOUT site at Ft. Benning at 4
m/s. 8 m/s was commanded at the first and 6 m/s at the last two segments
of the path.

of vehicle dynamics. For example, in Fig. 10, the path
between points d and e is blocked by a long building. The
system begins to turn to go around it, and at the same
begins to climb over. As the vehicle climbs, it encounters
a free path on the vertical axis. The horizontal avoidance
component quickly drops off, and the vehicle follows a
vertical avoidance trajectory. The converse happens on the
leg between g and End. The system chooses to fly around
the tall tree rather than climb over it.

A ceiling or upper-limit of flight is helpful in cases
where the helicopter has to stay low for stealth or low-level
observation; however, forcing a robot to observe the ceiling
can result in an impasse (such as coming to a long tree line
which extends above the ceiling).We therefore force only
the path planning algorithm to respect the ceiling constraint,
while the reactive algorithm has no such constraint. The
system will obey the constraint if the planner can see a
way around, but otherwise will do what is necessary to
avoid obstacles and continue the mission. An example of
this situation during actual flight is shown in Fig. 11.

During the final testing phase of 700+ runs, we encoun-
tered only one dangerous bug in the behavior, twice in the
same location. In a cluttered environment sensor occlusions
are quite common and leave holes in the evidence grid. The
path planner will consequently plan a path through unseen
obstacles. This is not a problem as long as the sensor covers
this unknown area before the vehicle traverses it, as Dodger
will react immediately while the planner finds a new route.
In the error case, the planned path went through a large
patch of ground. The geometry of the scene and sensor

ThA12.4

2028

Fig. 11. Flying with and without ceiling when specified path is directly
through a building. If a ceiling has been specified, the vehicle tries to
stay below a specified altitude. On the run with ceiling, the system
begins by flying around buildings, but then ignores altitude constraint
and climbs to safely clear power lines. Key: Blue(dash-dot)→No ceiling.
Red(solid)→With Ceiling.

FOV prevented the sensor from seeing the patch before the
helicopter started descending in the direction of the ground.
This behavior was rare, as any holes in the evidence grid
are too small to fly through without having Dodger cause
an evasion. While the simple addition of a ground plane in
the evidence grid would have eliminated this behavior, we
believe it is essential that a UAV is able to point the range
sensor in the direction of travel.

Another perception problem is that of dust. The laser
that we use is very sensitive so that it can see wires from
large distances. Unfortunately, dust and pollen can have the
same signature as a small wire. Despite some fast spatial
filtering, observed dust clouds would occasionally divert
the helicopter’s flight path. Eventually the evidence grid
would clear these clouds using negative evidence. This false-
positive error does not cause dangerous behavior, but can
impede low altitude flight. On windy days in dusty areas the
system chose to fly higher to avoid dust clouds.

VII. CONCLUSIONS AND FUTURE WORK

We have developed a first-of-a-kind capability suited for
UAVs that avoids obstacles of various sizes and shapes
while flying close to the ground at significant speeds. In
our experiments, the uninhabited helicopter started with no
prior knowledge of the environment, having been provided
only a list of coarse waypoints separated by up to hundreds
of meters. The straight line path between the waypoints
often intersected obstacles. While we regularly ran collision
avoidance close to buildings, trees and wires between 4-
6 m/s, the system was tested at speeds above 10 m/s. To

accomplish these results our system uses a fast avoidance
method that stays away from obstacles intelligently coupled
with an online planning method that suggests a direction of
travel.

We intend to address a few issues in future work. Our
current method is not built to scale with significant increases
in speed and avoids the obstacle with the margin irrespective
of the speed. Ideally the reaction should depend on speed
to react earlier to obstacles if the speed is fast and later
if the speed is slow. Another issue is the tradeoff between
sensitivity to small obstacles and an excessive reaction to
large objects close by (such as in an urban canyon) even if
they are not in the path of the vehicle.

VIII. ACKNOWLEDGMENTS
The results demonstrated were the result of work done by

a large group of people. The authors gratefully acknowledge
the contribution Mike Elgersma and Samar Dajani-Brown for
the Laplacian algorithm; Henele Adams for his help with the
Ladar; Alan Touchberry, Tara Schesser and Robert Schley for
help with experimentation; Mark Delouis for extraordinary
piloting and maintenance skills; and Brad Looney for lead-
ership in the collision avoidance program.

REFERENCES

[1] B. Fajen and W. Warren, “Behavioral dynamics of steering, obstacle
avoidance, and route selection,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 29, no. 2, 2003.

[2] P. C. Merrell, D.-J. Lee, and R. W. Beard, “Obstacle avoidance for
unmanned air vehicles using optical flow probability distributions,”
Mobile Robots XVII, vol. 5609, no. 1, pp. 13–22, 2004.

[3] J. Zufferey and D. Floreano, “Toward 30-gram Autonomous Indoor
Aircraft: Vision-based Obstacle Avoidance and Altitude Control,” in
Proc. IEEE International Conference on Robotics & Automation,
2005.

[4] R. Zapata and P. Lepinay, “Flying among obstacles,” in Workshop on
Advanced Mobile Robots (Eurobot), Zurich, Switzerland, September
6-8 1999, pp. 81–88.

[5] R. Zapata and P. Liepinay, “Collision avoidance of a 3d simulated
flying robot,” in Proc. International Symposium on Robotics and
Automation, Saltillo, Coahuila, Mexico, December 12-14 1998, pp.
113–120.

[6] H. S. and S. G.S., “Omnidirectional vision for an autonomous he-
licopter,” in Proc. IEEE International Conference on Robotics &
Automation, vol. 1, 2003, pp. 558 – 563.

[7] J. Byrne, M. Cosgrove, and R. Mehra, “Stereo based obstacle detection
for an unmanned air vehicle,” in Proc. IEEE International Conference
on Robotics & Automation, May 2006.

[8] N. Vandapel, J. Kuffner, and O. Amidi, “Planning 3-d path networks
in unstructured environments,” in Proc. of the IEEE International
Conference on Robotics & Automation, 2005.

[9] Y. Kitamura, T. Tanaka, F. Kishino, and M. Yachida, “3-d path
planning in a dynamic environment using an octree and an artificial
potential field,” in Proc. IEEE/RSJ International Conference on Intel-
ligent Robots & Systems, 1995.

[10] Y. Kitamura, T. Tanaka, F. Kishino, and M.Yachida, “Real-time
path planning in a dynamic 3-d environment,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots & Systems, 1996.

[11] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion
planning for nonlinear systems with symmetries,” IEEE Transactions
on Robotics, vol. 21, no. 6, pp. 1077–1091, Dec. 2005.

[12] Jackson, Sharma, Haissig, and Elgersma, “Airborne technology for
distributed air traffic management,” European Journal of Control,
vol. 11, no. 4-5, December 2005.

[13] C. I. Connolly and R. A. Grupen, “The application of harmonic
functions to robotics,” Journal of Robotic Systems, vol. 10, no. 7,
pp. 931–946, 1993.

[14] Z. X. Li and T. D. Bui, “Robot path planning using fluid model,”
Journal of Intelligent and Robotic Systems, vol. 21, pp. 29–50, 1998.

[15] D. Shim, H. Chung, H. J. Kim, and S. Sastry, “Autonomous exploration
in unknown urban environments for unmanned aerial vehicles,” in
Proc. AIAA GN&C Conference, August 2005.

[16] M. C. Martin and H. Moravec, “Robot evidence grids,” Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-96-06, March 1996.

ThA12.4

2029

