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Abstract We have been conducting a project to digitize the

Bayon temple, located at the center of Angkor-Thom in the

kingdom of Cambodia. This is a huge structure, more than

150 meters long on all sides and up to 45 meters high. Dig-

itizing such a large-scale object in fine detail requires de-

veloping new types of sensors for obtaining data of vari-

ous kinds related to irregular positions such as the very high

parts of the structure occluded from the ground. In this ar-

ticle, we present a sensing system with a moving platform,

referred to as the Flying Laser Range Sensor (FLRS), for

obtaining data related to these high structures from above

them. The FLRS, suspended beneath a balloon, can be ma-

neuvered freely in the sky and can measure structures in-

visible from the ground. The obtained data, however, has

some distortion due to the movement of the sensor dur-

ing the scanning process. In order to remedy this issue, we

have developed several new rectification algorithms for the

FLRS. One method is an extension of the 3D alignment
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algorithm to estimate not only rotation and translation but

also motion parameters. This algorithm compares range data

of overlapping regions from ground-based sensors and our

FLRS. Another method accurately estimates the FLRS’s po-

sition by combining range data and image sequences from a

video camera mounted on the FLRS. We evaluate these algo-

rithms using a IS-based method and verify that both methods

achieve much higher accuracy than previous methods.

Keywords Large-scale 3D scenes · Cultural sites · Moving

range sensors · Alignment · Shape rectification

1 Introduction

Preserving cultural heritage objects is a very important mis-

sion for us because they are deteriorating or being destroyed.

Digital preservation, measuring such objects in three dimen-

sions and representing them in digital forms, is one of the

best ways to accomplish this preservation.

For the past seven years, we have been conducting a

project entitled “the Great Buddha Project (Miyazaki et al.

2005; Ikeuchi et al. 2003)” to develop sensors and software

for digital preservation of large-scale outdoor structures

of cultural interest. Along with this project, we have also

archived several cultural heritage objects such as the Ka-

makura Great Buddha in Kamakura, Japan, and the Atchana

Buddha in Skhotai, Thailand. We are currently extending

these projects by attempting the challenging project of digi-

tizing the Bayon temple in the Angkor ruin in Cambodia.

The Bayon Temple (Fig. 1) is located at the center of

Angkor-Thom in the Kingdom of Cambodia and unites the

outlook and traditions of ancient India and the Khmer. The

temple, constructed around the end of the 12th century, is

well known for its size (more than 150 meters long and
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up to 45 meters high), its 51 towers, its 173 calm, smiling

faces carved on the towers, and its double corridors carved

in beautiful and vivid bas-relief.

We have been digitizing the Bayon Temple with the co-

operation of the Japanese government team for Safeguarding

Angkor (JSA) since 2002. The motivation for this digitiza-

tion project is twofold: the historical value of digitally pre-

serving the Bayon Temple in the current form and the tech-

nical challenge of applying current technologies to large-

scale cultural heritage objects. Regarding the technical side,

we have encountered various issues and derived solutions to

meet three goals:

1. To extend the geometric pipeline to determine the shape

of extremely large-scale objects

2. To extend the photometric pipeline to be able to texture

the site in the real color against strong and variable envi-

ronmental illuminations

3. To develop new types of sensors that can measure regions

invisible from conventional ground-based laser range

sensors

For the first goal, alignment, which determines relative

relations between range data sets, is one of the main com-

ponents of our geometric pipeline. Traditional alignment al-

gorithms (Besl and McKay 1992; Chen and Medion 1992;

Zhang 1994) cannot be applied to our numerous range data

Fig. 1 The Bayon Temple

sets. We developed two kinds of alignment algorithms for

large-scale site modeling. One is a rapid alignment algo-

rithm using graphics hardware (Oishi et al. 2005). The other

is an accurate simultaneous registration algorithm running

on a PC cluster reducing the influence of error accumulation

(Nishino and Ikeuchi 2002; Oishi et al. 2003).

With respect to the second goal, two issues, illumination

and size, need to be considered in handling a large outdoor

object such as the Bayon Temple. Compensation of illumi-

nation effects is necessary (Kawakami et al. 2005) because

illumination conditions vary during the picture-taking ses-

sion. The second issue is the size: aligning more than 1000

color images over one single geometric model needs a global

bundle adjustment (Kurazume et al. 2002).

With respect to the third goal, digitizing large-scale struc-

tures requires developing new types of sensors for obtain-

ing range data of various kinds situated in irregular posi-

tions. One class of such irregular positions is the very high

portions of the structures occluded from the ground. Fig-

ure 2, for instance, shows a part of the 3D model taken by

conventional laser range sensors, such as commercial sen-

sors, which require a stable base. There are several regions

without range data at the roofs, which are invisible from the

ground. For scanning high positions, temporary scaffolds are

often built around structures. However, this scaffold method

is impractical for large cultural heritage objects because they

detract from the appearance of these priceless objects and

also shaking occurs at the top of the high scaffolds.

To overcome this difficulty, we proposed a novel 3D mea-

surement system, a Flying Laser Range Sensor (FLRS) (Hi-

rota et al. 2004), suspended from the underside of a balloon

platform (Fig. 3). Several helicopter-based sensors (Miller

and Amidi 1998; Thrun et al. 2003) have been proposed for

large-scale site modeling. We avoided using a helicopter as

the platform for the sensor for three reasons. First, the high

frequency vibrations from the helicopter engine make it dif-

ficult to design rectification algorithms. Second, even though

helicopters have high maneuverability, it is still not entirely

safe to use them in proximity to very important cultural her-

itage structures. Third, helicopters are considered as strate-

gic, and we cannot import and export them freely. Thus, our

sensor was designed with a balloon platform.

Fig. 2 Lack of data for regions

invisible from the ground
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Fig. 3 The Flying Laser Range

Sensor

Fig. 4 A sample snapshot compared with the distorted range data ob-

tained by the FLRS

Measurement by the FLRS has a unique problem: the

FLRS moves during its scanning and thus provides dis-

torted range data, as shown in Fig. 4. There are several

works dealing with shape rectification and alignment of non-

rigid objects (Feldmar and Ayache 1996; Szeliski and Laval-

lée 1996; Hähnel et al. 2003; Chui and Rangarajan 2003;

Jain et al. 2007). However, because we deal with deformed

range data due to movements of the range sensor during the

scanning process, conventional rectification and alignment

methods for non-rigid models are not appropriate for our ob-

jective. We therefore developed new rectification algorithms

suitable for the distorted range data taken by the moving

range sensor. In this article, we describe two methods to rec-

tify 3D range data.

• 3D alignment (3DA) based method

• Structure from motion (SFM) based method

These methods do not rely on motion sensors: our FLRS

combined with software rectification can achieve higher

accuracy than hardware solutions. The two methods have

slightly different purposes: one emphasizes accuracy and the

other emphasizes ease of use. The first method, 3DA-based,

can be applied easily, but the results are less accurate, espe-

cially under strong wind. The second method, SFM-based,

can achieve high accuracy, but it requires preparation for

scanning such as the calibration and synchronization of sen-

sors.

The first method, the 3DA-based method, is an exten-

sion of our 3D alignment algorithm, 3DTM (Wheeler and

Ikeuchi 1995). This algorithm assumes that the FLRS is usu-

ally used in conjunction with a ground-based sensor. It ap-

plies to data related to structures that are both visible and

invisible from the ground-based sensor, and to data from

overlapping regions. The 3DTM algorithm determines ro-

tation and translation parameters and compares data in the

overlapping regions of two range images, while the 3DA al-

gorithm determines motion parameters in addition to rota-

tion and translation parameters (Masuda et al. 2005).

The second method, the SFM-based method, uses dis-

torted range data gathered by a moving range sensor and

image sequences gathered by a video camera mounted on

the FLRS. Combining image sequences and range data, we

estimate the sensor motion parameters. This method can

obtain camera motion parameters of much greater accu-

racy than those obtained by a full-perspective factorization

(Han and Kanade 1999), with beginning factorization re-

sults as initial estimations. Finally, using refined camera

motion parameters, the distorted range data are rectified

(Banno and Ikeuchi 2005).

We compare the results of our algorithms against a iner-

tial sensor (IS) based method using a regular and an angular

accelerometer on the FLRS; verify that the proposed meth-

ods achieve high accuracy. Then we compare two proposed

methods.

This article is organized as follows: Sect. 2 explains the

design issues of our FLRS system. The first method, the

3DA-based method, is presented in Sect. 3. In Sect. 4, we

describe the SFM-based rectification method, which utilizes
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image sequence and range data. Experimental results by

both methods are described in Sect. 5, in which we compare

the two methods as well as the IS-based method. Finally, in

Sect. 6 we present our conclusions as well as some digital

photographs of the Bayon temple created from our 3D data.

2 Flying Laser Range Sensor Hardware

The FLRS (Flying Laser Range Sensor) was developed to

measure large-scale objects from the air by using a balloon

as a base rather than constructing scaffolds. With respect

to the measurement principle, the passive stereopsis method

could capture images without the influence of balloon mo-

tion. However, its results would lack the accuracy needed

for the preservation and repair of cultural heritage objects.

The laser radar method is suitable for outdoor measurement

of large objects, and we therefore adopted a laser range sen-

sor that uses the “time-of-flight” principle. Figure 5 shows

a close-up of the FLRS and a scene showing the measure-

ment process being carried out in the Bayon temple. A video

camera is mounted on the platform near the range sensor

(Fig. 5a) to check the scanning area and to stock the image

sequences.

We have two types of FLRSs, which have different range

capacities. Each FLRS is composed of a scanner unit, a con-

troller and a personal computer (PC). These three units are

suspended beneath a balloon.

The scanner unit includes a laser range finder specially

designed to be suspended from a balloon. Figure 6 shows

the interior of the scanner unit. It consists of a spot laser

radar unit and two mirrors. We chose the LARA25200 and

LARA53500 supplied by Zoller+Fröhlich GmbH (http://

www.zf-lase.com/) as laser radar units because of their high

sampling rate. Each laser radar unit is mounted on an FLRS

Fig. 5 FLRS. a Close-up. b Measurement scene

scanner unit. The two systems equipped with LARA25200

and LARA53500 are respectively referred to as the “25 m

sensor” and the “50 m sensor”.

There are two mirrors inside each unit to give direction to

the laser beam. One is a polygonal mirror with four reflec-

tion surfaces, which determines the azimuth of the beam.

In normal use, this mirror, which rotates rapidly, controls

the horizontal direction of the laser beam. The other is a

plane mirror (swing mirror) that determines the elevation of

the laser beam. The plane mirror swings slowly to control

the vertical direction of the laser beam. Combining two mir-

rors, both sensors take a range image in a one-second mea-

surement with more pixels along the horizontal direction

(900 pixels) than vertical direction (160 pixels). The view

angle of this image is 45◦ horizontal and 30◦ vertical. In ad-

dition, the 25 m sensor takes a range image of 900 × 800

pixels with the same view angle in a five-second measure-

ment. The specifications of two units are shown in Table 1.

Figure 6 shows the interior view of the 25 m sensor. The

laser beam emitted from the LARA is first directed to a sur-

face of the polygonal mirror. Then the polygonal mirror re-

flects the laser beam into the plane mirror. The plane mirror

also reflects the beam into the outside of the unit (lower part

of Fig. 6).

Fig. 6 Interior of a scanner unit (25 m sensor)
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Table 1 The specifications of the 25 m and 50 m sensors

25 m Sensor 50 m Sensor

Ambiguity interval 25.2 m 53.5 m

Minimum range 1.0 m 1.0 m

Resolution 1.0 mm 1.0 mm

Sampling rate ≤625,000 pixels/s ≤500,000 pixels/s

Linearity error ≤ 3 mm ≤5 mm

Range noise at 10 m ≥1.0 mm ≥ 1.5 mm

Range noise at 25 m ≥1.8 mm ≥ 2.7 mm

Laser output power 23 mW 32 mW

Laser wavelength 780 nm 780 nm

Angle Resolution

Horizontal 0.05◦ 0.05◦

Vertical 0.02◦ 0.02◦

Horizontal field ≤90◦ ≤90◦

Vertical field ≤ 30◦ ≤30◦

Scanning period/range

image ≤15 s ≤1 s

2.1 Controller Unit and PC

The controller is composed of a signal processing unit, an

interface unit, a mirror controller, and a power supply unit.

The signal processing unit receives the signals from the PC

and performs actual control of rotation angles of the mirrors

and the laser radar unit. The range data obtained by the laser

radar and the angle data obtained by the mirror encoders are

synchronized and combined in the interface board.

The PC includes a CPU board, an image capture board,

and several PCI boards. Main commands for the mirror op-

erations and the laser on/off are sent through the LAN cable

between the PC and the controller unit. The synchronized

range data and encoder data set are transmitted to the PC via

one of the PCI boards. The data set is stored in the PC and

converted into 3-dimensional shape data. The PC on the bal-

loon platform is operated remotely via another laptop PC on

the ground through a LAN cable.

2.2 Operation

The balloon is filled with helium gas; the diameter of the bal-

loon is 5.0 meter and its maximum buoyancy is about 60 kgf.

The balloon is made of a particularly flexible chloroethene,

which avoids rapid expansion of a hole in an emergency.

Floating in the air, the balloon is controlled by several

hands on the ground with four pieces of rope. To scan an

objective region, the FLRS is broadly moved to a nearby site

by humans. The facing direction of the FLRS is controlled

by the pan and tilt mechanism, which can point the scanner

unit from the horizontal direction to the area directly below,

with a scope of 180 degrees from side to side. Monitoring

the video images, we can adjust the direction.

The combination of the polygonal mirror’s rotation and

the plane mirror’s swing makes up a range image that al-

ternates between a raster scan order and its reverse order.

This mechanism can record the depth value and the timing

of each pixel in the range image because the sampling rate of

the laser radar is known. In addition, the video camera on the

FLRS is synchronized with the laser radar; the image cap-

ture board on the PC begins to stock the image sequence in

30 fps simultaneously with the start of the scanning process.

3 3D Alignment with Deformation Parameters

In measuring large-scale objects, we can utilize some range

data sets taken by another range sensor fixed on the ground.

The ground-base sensors can measure many of the regions;

our FLRS was originally devised to complement the mea-

surement for regions that are invisible from the ground.

Some parts of a range image taken by the FLRS are also

taken by another range sensor fixed on the ground. Based

on these overlapping regions, we derive an algorithm that

rectifies the distorted range data obtained by the FLRS, and

aligns them to the range data taken by the ground-based sen-

sors.

In the first half of this section, we describe a robust

method to estimate the translation and rotation parameters

for a conventional non-rigid body alignment. The second

half deals with an alignment between a ground-based sen-

sor’s data and deformed data. The extended method rectifies

the distorted FLRS data and aligns them to the other range

data of the ground-based sensor.

3.1 Robust Determination of Translation and Rotation

Parameters

Several alignment algorithms that estimate translation and

rotation parameters for the registration of rigid bodies have

been proposed. Besl and McKey designed an alignment al-

gorithm, referred to as the Iterative Closed Point (ICP) al-

gorithm, of a pair of range data by finding corresponding

point pairs and determining rotation and translation parame-

ters to reduce the sum of squared distances (SSD) among

these pairs (Besl and McKay 1992). However, this algo-

rithm only handles cases when one data set is a subset of

another data set. Zhang extended the alignment algorithm

to handle general cases by introducing statistical measures

(Zhang 1994). Chen and Medioni proposed to use the dis-

tance between a point and plane instead of a point to point

pair (Chen and Medion 1992). Wheeler and Ikeuchi em-

ployed the Lorentzian distance instead of SSD to avoid the
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effect of outliers (Wheeler and Ikeuchi 1995). A recent sur-

vey of alignment algorithms can be found in Rusinkiewicz

and Levoy (2001).

The original algorithm aligns the closest points of two

data sets so as to minimize the distance summation of point-

to-point distance (Besl and McKay 1992). The minimization

of the error function is represented as follows (Wheeler and

Ikeuchi 1995):

E(p) =
1

N

N
∑

i

ρ(zi(p)), (1)

where

p = (T,q), (2)

zi(p) = ‖R(q)xi + T − yi‖
2, (3)

ρ(zi(p)) = log

(

1 +
1

2
zi(p)

)

, (4)

T: translation vector (sensor position),

R(q): rotation matrix corresponding to quaternionq,

xi : ith point in the data set of interest,

yi : the corresponding point of xi in the measured data,

N : the number of data points.

The range images are aligned iteratively by moving (trans-

lating/rotating) the measured data according to the estimated

parameters. The movement is determined such that the to-

tal distance sum between the corresponding points is min-

imized. As for the rotation matrix, we use the quaternion

representation of 3 degrees of freedom. In the direct square

summation of error function (3), considerable noise leads

to imprecise alignment. In this algorithm, M-estimation

(Lorentz function) is used for noise elimination by consid-

ering the probability distribution of the error (Wheeler and

Ikeuchi 1995). Using this error metric E(p), we compute the

parameters p that fulfill the following equation:

popt = arg min
p

E(p). (5)

For the gradient-based solution of non-linear optimiza-

tion (Press et al. 1988), the descent gradient is computed as

follows:

∂E

∂p
=

1

N

N
∑

i

∂ρ(zi)

∂zi

·
∂zi

∂p

=
1

N

N
∑

i

w(zi)zi

∂zi

∂p
, (6)

where

w(zi) =
1

zi

·
∂ρ(zi)

∂zi

.

If we evaluate ∂zi/∂p by identifying quaternion qI , we can

represent ∂zi/∂p as

∂zi(p)

∂p
= 2(R(q)xi + T − yi)

∂(R(q)xi + T − yi)

∂p

∣

∣

∣

∣

qI

=

[

2(xi + T − yi)

−4xi × (T − yi)

]

. (7)

The detailed explanation of the derivation with respect to the

quaternion is shown in Wheeler (1996).

Our goal is to simultaneously determine deformation,

translation, and rotation parameters by comparing the target

data to its corresponding data. The translation and rotation

parameters are determined in a minimization paradigm. If

we fix these parameters, the determination of the deforma-

tion parameter becomes an iterative shape-matching prob-

lem.

3.2 Simultaneous Determination of Deformation

Parameters for FLRS

We extend the parameter estimation of the alignment formu-

lation for the distorted range data obtained by the moving

range sensor. While translation and rotation registration is

due to the sensor movement among multiple views, shape

deformation registration is due to the sensor movement dur-

ing one scan. We refer to them as inter-scanning registra-

tion and intra-scanning registration respectively. In addition

to the registration of inter-scanning transformation parame-

ters, we must also determine the intra-scanning movement

parameters.

In the case of a short-term measurement, we can suppose

that pose and motion change of the FLRS is generated by

• Initial velocity

• Initial angular velocity

• Acceleration generated by external force

• Angular acceleration generated by external moment

We can ignore the influence of translation and angular ac-

celeration because the FLRS needs only one second to scan,

and insignificant rotation can be approximated to transla-

tion movement. Hence we consider only constant velocity

movement. We set up the deformation equation under this

assumption.

In this case, the displacement of xi by deformation is rep-

resented only by using constant velocity vector v of FLRS

movement. To estimate v as a deformation parameter in

the same way as the determination of rigid-body transfor-

mation (translation and rotation) parameters, we have only

to replace xi in (3) with (xi − τiv). Here, τi is the time

passed since the start of the scanning to the capture time

of point i.
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Let (xi − τiv) be g(xi,v), and the descent gradient in (6)

can be written, evaluating ∂zi/∂p by identifying quaternion

qI , as follows:

∂zi(p)

∂p
= 2(R(q)g(xi,v) + T − yi)

×
∂(R(q)g(xi,v) + T − yi)

∂p

∣

∣

∣

∣

qI

=

⎡

⎣

2(g(xi,v) + T − yi)

−4g(xi,v) × (T − yi)

2(g(xi,v) + T − yi)
∂(g(xi ,v))

∂v

⎤

⎦ (8)

where

p = (T,q,v),

∂g(xi,v)

∂v
= −

⎡

⎣

τi 0 0

0 τi 0

0 0 τi

⎤

⎦ .
(9)

This straightforward extension causes unstable conver-

gence of the deformation registration because the obtained

translation, rotation, and deformation parameters overreach

their optimum if every parameter is applied simultaneously

to the deformation: every parameter interferes with the oth-

ers.

In order to prevent this interference, we redesign our ex-

tended formulation to remove the translation and rotation

effect caused only by deformation. The basic idea is to re-

cover the position and posture that change due to defor-

mation. This is implemented by the preliminary rigid-body

transformation that determines only the deformation para-

meter. First, all parameters T, q and v are acquired by (6)

and (8). Then the preliminary rigid-body transformation is

determined only by the deformation parameter Ro and To

as follows:

g′(xi,v) = Rog(xi,v) + To, (10)

where

(Ro,To) = (R(qo),To),

such that

(qo,To) = arg min
q,T

N
∑

i

‖R(q)g(xi,v) + T − xi‖
2. (11)

qo, To can be derived from the following equation:

∂
∑N

i ǫ2
i

∂Po

=

N
∑

i

2ǫi ·
∂ǫi

∂Po

= 0, (12)

where

ǫi = g′(xi,v) − xi = R(qo)g(xi,v) + To − xi,

Po = (qo,To).

This is a conventional registration problem, but it is unnec-

essary to strictly solve the above equation. In fact, Ro does

not affect the stable convergence so much as To. If Ro is

ignored, To in (12) is concretely derived as follows:

N
∑

i

(g(xi,v) + To − xi) = 0

∴ To = −

∑N
i (g(xi,v) − xi)

N
=

∑N
i τi

N
v. (13)

Equation (3) is replaced with:

zi(p) = ‖R(q)g′(xi,v) + T − yi‖
2. (14)

Equations (10) and (9) are modified into:

g′(xi,v) = xi −

(

τi −

∑N
i τi

N

)

v, (15)

∂g′(xi,v)

∂v

= −

⎡

⎢

⎢

⎣

τi −
∑N

i τi

N
0 0

0 τi −
∑N

i τi

N
0

0 0 τi −
∑N

i τi

N

⎤

⎥

⎥

⎦

. (16)

In this method, the acquisition of a good initial parame-

ter is significant for the optimal registration result. In our

implementation, the initial transformation parameter is set

manually by GUI with enough accuracy to reach the opti-

mum.

4 Rectification by Combining Image Sequence and

Range Data

The second method, the SFM-based method, utilizes range

data and an image sequence obtained by a video camera

mounted on the FLRS as follows: First, the motion of the

FLRS is roughly estimated only by the obtained images;

we use a full-perspective factorization (Christy and Horaud

1996; Han and Kanade 1999). These approximate motion

parameters are utilized as an initial solution. Then the mo-

tion parameters for rectification are estimated based on an

optimization imposing some constraints, which include in-

formation derived from the image sequence and the distorted

range data. For the sake of an accurate estimation of motion

parameters, the optimization consists of three constraints:
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range data, balloon motion smoothness, and tracking of in-

terest points. The camera motion parameters can be found

through the minimization of a global functional. Finally, by

using the camera motion parameters, the distorted range data

are rectified.

4.1 Problem Setting

We assume that F images are given by the video camera

while obtaining a single range image; the period is defined

as Ts . Then P interest points are tracked over all the frames;

each 3D interest point p is expressed as Sp in the world co-

ordinate system; the world coordinate system is defined by

the full-perspective factorization.

The 3D point p is projected on the image plane at

(up(t), vp(t))t at time t . We can obtain these projected

points at the discrete time tf (1 ≤ f ≤ F) by using an in-

terest point detector. The relation between the discrete time

tf and the frame number f is described as t = f/30 because

we use a video camera of 30 fps. The positions of these pro-

jected points as a continuous time are determined using an

interpolation technique.

By using the intrinsic camera parameter matrix A, the

image projection is described as follows:

⎛

⎝

up(t)

vp(t)

1

⎞

⎠ ∝ A

⎛

⎝

i(t)t

j(t)t

k(t)t

⎞

⎠ (Sp − T(t)), (17)

t : scanning time 0 ≤ t ≤ Ts ,

f : frame number 1 ≤ f ≤ F ,

p: the number of the interest points

1 ≤ p ≤ P,

T(t): camera position at t ,

Sp: the 3D position of p-th interest point,

i(t), j(t),k(t): the x, y and z axis of the camera coordi-

nate system at t .

The range sensor outputs a cloud of 3D points; each point

is converted into the camera coordinate description x(t) =

(x(t), y(t), z(t))t because the range sensor and the camera

are calibrated.

4.2 Motion Estimation by Combining Range Data and

Image Sequence

We adopt an optimization strategy to estimate motion para-

meters for the correct rectification. With respect to set the

cost function to minimize, we impose three constraints that

combine the image sequence and the range data. The first is

a range data constraint, which utilizes temporally geometric

relations between 3D points and the camera. The second is

a smoothness constraint, which guarantees a smooth motion

of the balloon. The third is a tracking constraint, which is

known as the bundle adjustment.

4.2.1 Range Data Constraint

The range sensor outputs a 3D point x(t) at t . Since the

range sensor and the video camera are calibrated, we can

determine the position of the projected point of x(t) on the

image plane. Let us define the 2D projected point as u(t).

If the point u(t) matches any interest point (up(t), vp(t))t

on the image at time tp , we can judge that the range sensor

scans the 3D interest point p at time tp . There are few points

that are scanned by the range sensor but invisible from the

video camera because the video camera is located near the

laser radar (about 10 cm) and these points are more than

5 meters away from the sensor in actual case.

Therefore, we can derive the first constraint as follows:

FA =

P
∑

p=1

αp‖x(tp) − Rt (tp)(Sp − T(tp))‖2 (18)

where

αp =
{

1 if point p is scanned by the range sensor,

0 otherwise.

R(t) = (i(t)j(t)k(t)) means the rotation matrix of the cam-

era pose at t . As described above, tp is the scan time when

the 3D interest point p is scanned by the range sensor. Each

tp is estimated as follows:

tp = arg min
t

∥

∥

∥

∥

u(t) −

(

up(t)

vp(t)

)
∥

∥

∥

∥

. (19)

It is not always possible to use all interest points in im-

ages for this constraint. Several interest points in images are

on 3D corners and 3D edges, which cause mismatches in the

range image. In order to exclude these interest points on 3D

corners, we set αp = 0 in (18) for the points whose neigh-

boring points in the range image have a variance larger than

a threshold. The interest points, which are located out of the

laser’s range, are also excluded.

4.2.2 Smoothness Constraint

One of the most significant reasons for adopting a balloon

platform is to be free from the high frequency that occurs

with a helicopter platform. A balloon platform is only under

the influence of low frequency: the balloon of our FLRS is

held with some wires swayed only by wind. This means that

the movement of the balloon is expected to be smooth. Cer-

tainly, the movement of the balloon is free from rapid accel-

eration, rapid deceleration, or acute change of course. Tak-

ing this fact into account, we consider the following func-

tion:

FB =

∫ Ts

0

(

w1

∥

∥

∥

∥

∂2T(t)

∂t2

∥

∥

∥

∥

2

+ w2

∥

∥

∥

∥

∂2q(t)

∂t2

∥

∥

∥

∥

2)

dt. (20)
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Here, T(t) denotes the position of the camera; w1,w2

are weighted coefficients; and q(t) is a unit quaternion that

represents the camera pose. The first term of the above in-

tegrand represents smoothness with respect to the camera’s

translation while the second one represents smoothness with

respect to the camera’s rotation. When the motion of the

camera is smooth, the function FB has a small value.

4.2.3 Tracking Constraint

Any interest point Sp must be projected near the observed

interest points (up(tf ), vp(tf )) on each frame f . This con-

straint is well known as Bundle Adjustment (Brown 1976).

When the structure, motion, and shape have been roughly

obtained, this technique is utilized to refine them through an

image sequence.

From (17), the following relationship is conducted:

A−1

⎛

⎝

up(tf )

vp(tf )

1

⎞

⎠ ∝

⎛

⎝

i(tf )t · (Sp − T(tt ))

j(tf )t · (Sp − T(tt ))

k(tf )t · (Sp − T(tt ))

⎞

⎠ . (21)

Supposing (ûp(tf ), v̂p(tf ),1)t = A−1(up(tf ), vp(tf ),

1)t , we set the third constraint:

FC =

F
∑

f =1

P
∑

p=1

((

ûp(tf ) −
i(tf )t · (Sp − T(tf ))

k(tf )t · (Sp − T(tf ))

)2

+

(

v̂p(tf ) −
j(tf )t · (Sp − T(tf ))

k(tf )t · (Sp − T(tf ))

)2)

. (22)

The minimization of FC leads to the correct tracking of

the interest points by a moving camera.

4.2.4 The Global Cost Function

Based on the above considerations, it will be found that the

next cost function should be minimized. Consequently, the

weighted sum

F = wAFA + wBFB + wCFC (23)

leads to the global cost function. The coefficients wA, wB

and wC are determined experimentally so that three terms

take almost the same magnitude. Measuring x(t), Sp and

T(t) in the metric system and (up(t), vp(t)) in pixel, we

set three coefficients as (wA,wB ,wC) = (102,105,100) and

two coefficients in (20) as (w1,w2) = (100,101) in this

study.

To minimize this function, we employ a conjugate gra-

dient method (Polak 1971; Jacobs 1977; Stoer and Bulirsh

1980; Press et al. 1988) to find the search directions. Then,

we use the golden section search to determine the mini-

mum along the directions. For optimization, the Levenberg-

Marquardt method (Marquardt 1963) is generally employed

to minimize a functional value. The Levenberg-Marquardt

method is very effective in estimating a function’s parame-

ters, especially to fit a certain function. However, in our

function, it is not a parameter fitting problem to minimize

the value of FB , but a simple decreasing of FB . Therefore

we adopt the conjugate gradient method.

4.3 Initial Estimation

To minimize the value of (23), we need a proper initial

guess. With an improper initial value, the minimization will

be trapped into local minimums. In this study, we utilize the

solution by full-perspective factorization (Christy and Ho-

raud 1996; Han and Kanade 1999) as the initial value to min-

imize the global cost function. Using the weak-perspective

projection model, the full perspective factorization itera-

tively estimates the shape and the camera motion under the

perspective model.

For the factorization, we need P interest points tracked

from F frames. There are several methods to derive inter-

est points of images (Moravec 1977; Smith and Brady 1997;

Lowe 2004). Among them, we adopt Harris operator (Harris

and Stephens 1988) for derivation of interest points. Over

300 interest points are derived from each frame; identified

points are connected by using window matching. In order to

reject outliers, we impose the Epipolar constraint for all ad-

jacent frame pairs. Moreover, we adopt RANSAC (Fischler

and Bolles 1981) to estimate all F-Matrices.

5 Experimental Results

We show the experimental results of two data sets; these data

sets were obtained in the case of a balloon with a moderate

motion and a wide motion. We compared the rectified shapes

resulting from our two proposed methods and a IS-based

method. Our FLRS system is equipped with a regular and an

angular accelerometer. To demonstrate the advantage of our

methods, we utilized the rectified shape produced by these

physical devices.

In all the experiments, it took one second to scan a range

image of 900 × 160 pixels; the horizontal view angle is 45◦

and the vertical angle is 30◦. The video camera stocks 70

images with 30 fps including the one second of the scanning

period. For calibration of the range sensor and the video

camera, we utilized the range data obtained by the FLRS

fixed on the ground.

Case 1

The data set of Case 1 was obtained when the balloon mo-

tion was moderate. Figure 7a shows a photograph of the
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Fig. 7 Case 1: a The object for

the experiment. b The 3D model

by the ground-base sensor

Fig. 8 Case 1: a The original

distorted range data by FLRS.

b The range data rectified by the

IS-based method. c The range

data rectified by the 3DA-based

method. d The range data

rectified by the SFM-based

method

scanned area. The dense model of Fig. 7b is obtained by

the Cyrax2500 (http://www.leica-geosystems.com/) fixed

on the ground. We treat this model as the correct data here-

after.

The original distorted range data and some rectified

shapes are shown in Fig. 8. Figure 8a shows the original

distorted range data obtained by the FLRS. The shape of

Fig. 8b is the rectified shape based on the measurements of

the acceleration meter and the angular accelerometer. Fig-

ure 8c is the shape rectified by the 3DA-based method. To

produce the rectified shape of Fig. 8c, we utilized the shape

of Fig. 7b. Figure 8d is the shape rectified by the SFM-

based method of combining the range data and the image

sequences of the FLRS.

These shapes in Fig. 8 do not clearly demonstrate the

effectiveness of the rectifications due to a moderate bal-

loon motion. To determine these, we evaluated the valid-

ity of the rectified shapes numerically, using geometric

similarities between the correct shape and each rectified

shape.

The results are shown in Table 2. After aligning each rec-

tified model to the correct one, the distances between the

corresponding pairs are calculated. The values in Table 2

show the percentages of the pairs with closer distances than

the thresholds among all pairs. We set up three thresholds as

1.0 cm, 5.0 cm and 10.0 cm. When we scanned objects using

the FLRS fixed on the ground, the accuracy was estimated

at about 1.0 cm. We think that a 3D model with accuracy of
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Fig. 9 Case 1: Comparisons

with the range data obtained by

the ground-based sensor. The

white regions indicate where the

distances of the corresponding

pairs are less than 1.0 cm. a The

original distorted range data by

FLRS. b The range data

rectified by the IS-based

method. c The range rectified by

the 3DA-based method. d The

range data rectified by the

SFM-based method

Table 2 The evaluation of the rectified models (Case 1). The percent-

ages of the pairs with closer than the thresholds

Original IS-based 3DA-based SFM-based

≤1.0 cm (%) 58.08 67.23 60.20 80.42

≤5.0 cm (%) 76.45 93.16 89.93 96.18

≤10.0 cm (%) 79.28 97.74 97.13 98.49

less than 5.0 cm would be sufficient for modeling cultural

assets.

More than half of the points in the original distorted range

data have a 1.0 cm accuracy since this data set was ob-

tained under moderate balloon motion. Using three rectifica-

tion methods, the areas with 1.0 cm accuracy are increased.

The IS-based method can rectify the distorted range data; the

advantage of this method is its rapidity because it does not

need any iterative calculations. In this data set, the IS-based

method shows high performance. The 3DA-based method

does not increase the points with 1.0 cm accuracy; neverthe-

less, this method increases the points with 5.0 cm accuracy

almost ninety percent of the time. The SFM-based method

demonstrates even greater effectiveness than the IS-based

method: more than eighty percent of points have 1.0 cm ac-

curacy.

The appearances of the regions with 1.0 cm accuracy are

shown in Fig. 9. The white regions indicate the areas of high

accuracy of 1.0 cm.

Figure 10 shows two cross-sections of four models: the

correct model by Cyrax2500, the one rectified by the IS-

based method, the one rectified by the 3DA-based method,

and the one rectified by the SFM-method.

Table 3 The evaluation of the rectified models (Case 2)

Original IS-based 3DA-based SFM-based

≤1.0 cm (%) 26.30 22.55 35.33 54.30

≤5.0 cm (%) 55.97 45.47 65.18 86.54

≤10.0 cm (%) 70.19 58.13 77.10 93.58

Case 2

The data set of Case 2 was, on the other hand, obtained when

the balloon moved widely. Figure 11a shows a photo picture

of the scanned area. The dense model of Fig. 7b is the correct

data by the Cyrax2500.

Figure 12a is the original distorted shape obtained by

the FLRS. It is found that the shape is widely deformed.

In Fig. 12b, the shape rectified by the IS-based method is

shown. Unlike the previous case, this rectification method

leads to a noticeable deformation. There is almost no varia-

tion in appearance of Fig. 12c. On the other hand, a glance at

Fig. 12d shows that the SFM-based method seems to rectify

the shape properly.

Table 3 shows the numerical evaluations in this data set.

The wide balloon motion caused a quarter of the area of

1.0 cm accuracy in the original range data. This value clar-

ifies numerically that the IS-based method makes rectifica-

tion less efficient. In the case of a wide and rapid balloon

motion, it is found that the IS-based method is improper to

rectify the distorted FLRS data. The 3DA-based method in-

creases the area of 1.0 cm accuracy, but it could not reach the

level attained by the SFM-based method. Using the SFM-

based method, more than half the area has a 1.0 cm accuracy,



218 Int J Comput Vis (2008) 78: 207–222

Fig. 10 Case 1: Cross sections

of four models; “CORRECT”:

the correct model by

Cyrax2500. “IS”: the range data

rectified by the IS-based

method. “3DA”: the range data

rectified by the 3DA-based

method. “SFM”: the range data

rectified by SFM-based method

Fig. 11 Case 2: a The object

for the experiment. b The 3D

model by the ground-base

sensor

while more than eighty percent of points have a 5.0 cm accu-

racy. We think the reason why the 3DA-based method could

not achieve the performance by the SFM-based method is

as follows: the assumption of the constant velocity move-

ment of the balloon does not hold true in this case. On the

other hand, the 3DA-based method works out in the case of

moderate balloon motion.

The appearances of the regions of the 1.0 cm accuracy in

Case 2 are shown in Fig. 13.

Figure 14 shows two cross sections of four models in

Case 2.

Additional Case (Case 3)

We demonstrate an additional data set, in which it takes five

seconds to scan a range image of 900×800 pixels; similarly

the horizontal view angle is 45◦ and the vertical angle is 30◦.

Since it was impossible to rectify the distorted data by the

IS-based and 3DA-based methods, we show the range data

rectified only by the SFM-based method.

Figure 15 shows the scene of Case 3 and the correct range

data by the ground-base sensor. Although the original data
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Fig. 12 Case 2: a The original

distorted range data by FLRS.

b The range data rectified by the

IS-based method. c The range

data rectified by the 3DA-based

method. d The range data

rectified by the SFM-based

method

Fig. 13 Case 2: Comparisons

with the range data obtained by

the ground-based sensor. The

white regions indicate where the

distances of the corresponding

pairs are less than 1.0 cm. a The

original distorted range data by

FLRS. b The range data rectified

by the IS-based method. c The

range data rectified by the

3DA-based method. d The range

data rectified by the SFM-based

method

are widely deformed due to the five-seconds scanning, it is

found that the SFM-based method rectifies the data properly.

The original distorted range data and the shape rectified

by the SFM-based method are shown in Fig. 16.

The appearances of the regions of 1.0 cm accuracy in

Case 3 are shown in Fig. 17, which indicates the high per-

formance of the SFM-based method.

6 Conclusions

We have described our novel sensor, FLRS, for measuring

large-scale objects. The FLRS is a new-sprung system in our

ongoing project to digitize the Bayon temple at the Angkor

ruin, in Cambodia. The FLRS can digitize objects from the

air while suspended from the underside of the balloon plat-

form. The advantage of the FLRS over conventional sen-

sors is that the FLRS can easily measure the regions invis-

ible from the ground. We have also described two kinds of

rectification methods to solve the unique problem for the

FLRS: the distorted range data due to the balloonfs motion.

One is the 3DA-based method, which rectifies the distorted

range data by using another range data set obtained from

the ground-based sensor; another is the SFM-based method,

which estimates the sensor motion combining the range data

and the image sequences. We have confirmed the effective-
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Fig. 14 Case 2: Cross sections

of four models; “CORRECT”:

the correct model by

Cyrax2500. “IS”: the range data

rectified by the IS-based

method. “3DA”: the range data

rectified by the 3DA-based

method. “SFM”: the range data

rectified by the SFM-base

method

Fig. 15 Case 3: a The object

for the experiment. b The 3D

model by the ground-base

sensor

Fig. 16 Case 3: a The original

distorted range data by FLRS.

b The range data rectified by the

SFM-based method

Fig. 17 Case 3: Comparisons

with the range data obtained by

the ground-based sensor. The

white regions indicate where the

distances of the corresponding

pairs are less than 1.0 cm. a The

original distorted range data by

FLRS. b The range data rectified

by the SFM-based method
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Fig. 18 The overview of the

“Digital Bayon”

ness of these methods by comparing the IS-based rectifica-

tion method. Among them, the SFM-based method achieved

higher accuracy for the rectified range data.

Finally, Fig. 18 shows the measurement result recon-

structed using all range data obtained by all sensors, FLRSs,

Cyrax, Z + F Imager and Climbing Sensor (Matsui et al.

2005). This 3D model consists of 20,000 range images ob-

tained in all missions and the total size is about 200 GByte.1
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