
Flywheel: Google’s Data Compression Proxy for the Mobile Web

Victor Agababov∗ Michael Buettner Victor Chudnovsky Mark Cogan Ben Greenstein
Shane McDaniel Michael Piatek Colin Scott† Matt Welsh Bolian Yin

Google, Inc. †UC Berkeley

Abstract
Mobile devices are increasingly the dominant Internet
access technology. Nevertheless, high costs, data caps,
and throttling are a source of widespread frustration, and
a significant barrier to adoption in emerging markets.
This paper presents Flywheel, an HTTP proxy service
that extends the life of mobile data plans by compress-
ing responses in-flight between origin servers and client
browsers. Flywheel is integrated with the Chrome web
browser and reduces the size of proxied web pages by
50% for a median user. We report measurement results
from millions of users as well as experience gained dur-
ing three years of operating and evolving the production
service at Google.

1 Introduction
This paper describes our experience building and running
a mobile web proxy for millions of users supporting bil-
lions of requests per day. In the process of developing
and deploying this system, we gained a deep understand-
ing of modern mobile web traffic, the challenges of de-
livering good performance, and a range of policy issues
that informed our design.

We focus on mobile devices because they are fast be-
coming the dominant mode of Internet access. Trends are
clear: in many markets around the world, mobile traffic
volume already exceeds desktop [23], and double-digit
growth rates are typical [32].

Despite these trends, web content is still predomi-
nantly designed for desktop browsers, and as such is in-
efficient for mobile users. This situation is made worse
by the high cost of mobile data. In developed markets,
data usage caps are a persistent nuisance, requiring users
to track and manage consumption to avoid throttling or
overage fees. In emerging markets, data access is of-
ten priced per-byte at prohibitive cost, consuming up to
25% of a user’s total income [18]. In the face of these
costs, supporting the continued growth of the mobile In-
ternet and mobile web browsing in particular is our pri-
mary motivation.

∗Authors are listed in alphabetical order.

Although the number of sites that are tuned for mo-
bile devices is growing, there is still a huge opportunity
to save users money by compressing web content via a
proxy. This paper describes Flywheel, a proxy service
integrated into Chrome for Android and iOS that com-
presses proxied web content by 58% on average (50%
median across users). While proxy optimization is an
old idea [15, 22, 29, 39, 41] and the optimizations we ap-
ply are known, we have gained insights by studying a
modern workload for a service deployed at scale. We
describe Flywheel from an operational and design per-
spective, backed by usage data gained from several years
of deployment and millions of active users.

Flywheel’s data reduction benefits rely on coopera-
tion between the browser and server infrastructure at
Google. For example, Chrome has built-in support for
the SPDY [11] protocol and the WebP [12] image com-
pression format. Both improve efficiency, yet are rarely
used by website operators because they require cumber-
some, browser-specific configuration. Rather than wait-
ing for all sites to adopt best practices, Flywheel applies
optimizations automatically and universally, transcoding
content on-the-fly at Google servers as it is served.

This paper makes two key contributions. First, our ex-
perience with Flywheel has given us a deep understand-
ing of the performance issues with proxying the mod-
ern mobile web. Although proxy optimization delivers
clear-cut benefits for data reduction, its impact on la-
tency is mixed. Measurements of Flywheel’s overall per-
formance demonstrate the expected result: compression
improves latency. In practice however we find that Fly-
wheel’s impact on latency varies significantly depending
on the user population and metric of interest. For exam-
ple, we find that Flywheel decreases load time of large
pages but increases load time for small pages.

Our second contribution is a detailed account of the
many design tradeoffs and measurement findings that we
encountered in the process of developing and deploy-
ing Flywheel. While the idea of an optimizing proxy
is conceptually simple, our design has evolved contin-
uously in response to deployment experience. For ex-
ample, we find that middleboxes within mobile carri-

ers are widespread, and often modify HTTP headers in
ways that break naı̈ve proxied connections. While use of
HTTPS and SPDY would prevent tampering, always en-
crypting traffic to the proxy is at odds with features such
as parental controls enforced by mobile carriers. Perhaps
unsurprisingly, addressing these tussles consumes signif-
icant engineering effort. We report on the incidence and
variety of these tussles, and map them to a clearer picture
of mobile web operation with the hope that future sys-
tem designs will be informed by the practical concerns
we have encountered. As far as we know, we are the first
to publish a discussion of these tradeoffs.

2 Background
We built Flywheel in response to the practical stumbling
blocks of today’s mobile web. Ideally, Flywheel would
be unnecessary. Mobile data would be cheap, and con-
tent providers would be quick to adopt new technologies.
Neither is true today.
Mobile Internet usage is large and growing rapidly.
The massive growth of mobile Internet traffic has cre-
ated a tremendous opportunity for automatic optimiza-
tion. In Asia and Africa, 38% of web page views are
performed on mobile devices as of May 2014, a year-
over-year increase exceeding 10% [36]. In North Amer-
ica, mobile page loads are 19% of total traffic volume
with 8% growth yearly. In February 2014, research firm
comScore reported that time spent using the Internet on
mobile devices exceeded desktop PCs for the first time
in the United States [23]. These trends match our expe-
rience at Google. Mobile is increasingly dominant.
Growth in emerging markets is hampered by cost.
Emerging markets are growing faster than developed
markets. Year-over-year growth in mobile subscriptions
is 26% in developing countries compared to 11.5% in
developed countries. In Africa, growth exceeds 40% an-
nually [32]. Despite surging popularity, the high cost of
mobile access encumbers usage. One survey of 17 coun-
tries in sub-Saharan Africa reports that mobile phone
spending was 10-26% of individual income in the lower-
75% income bracket [18].
Site operators are slow to adopt new technologies.
Adapting websites for mobile involves manual and of-
ten complex optimizations, and most sites are poorly
equipped to make even simple changes. For example,
measurements of Flywheel’s workload show that 42% of
HTML bytes on the web that would benefit from com-
pression are uncompressed, despite GZip being univer-
sally supported in modern web browsers [13]. This is in
part because GZip is not enabled by default on most web
servers, yet only a single-line change to the server con-
figuration is needed. While hosting-providers and CDNs
deal with such configuration issues on the behalf of con-
tent providers, the pervasive lack of GZip usage indicates

Google Datacenter HTTP Site

Figure 1: Flywheel sits between devices and origins, au-
tomatically optimizing HTTP page loads.

that most content providers still do not employ these ser-
vices.

More recent optimizations such as WebP [12] and
SPDY [11] have been available for years yet have very
low adoption rates. We find that 0.8% of images on the
web are encoded in the WebP format, and only 0.9% of
sites support SPDY [49].

Users should not have to wait for sites to catch up to
best practices. Modern browsers such as Chrome are up-
dated as often as every six weeks, providing a constant
stream of new opportunities for optimization that are dif-
ficult for web developers to track. Moreover, as mobile
devices proliferate, the complexity of optimizing sites
to conform to the latest platforms (e.g. high-resolution
tablets requiring higher image quality) is a daunting task
for all but the most committed site owners.

In sum, it is not surprising that most site owners do
not take advantage of all browser- and device-specific
optimizations. Just as we do not expect programmers to
manually unroll loops, we should not expect site owners
to remember to apply an ever-expanding set of optimiza-
tions to their sites. We need an optimizing compiler for
the web—a service that automatically applies optimiza-
tions appropriate for a given platform.

3 Design & Implementation
This section describes Flywheel’s design and implemen-
tation. The high-level design (depicted in Figure 1) is
conceptually simple: Flywheel is an optimizing proxy
service. Chrome sends HTTP requests to Flywheel
servers running in Google datacenters. These proxy
servers fetch, optimize, and serve origin responses. An
example optimization is transcoding a large, lossless
PNG image into a small, lossy WebP. The remainder of
this section describes our goals, the flow of requests and
responses, and the optimizations applied in transit. We
conclude the section with a discussion of fault tolerance.

3.1 Goals & Constraints
Flywheel’s primary goal is to reduce mobile data usage
for web traffic. To achieve this goal we must address the
practical requirements of integrating with the Chrome
browser, used by hundreds of millions of people.
Opt-in. Recognizing that many users are sensitive to the
privacy issues of proxying web content through Google’s
servers, we choose to keep the Flywheel proxy off by de-
fault. Users must explicitly enable the service.

Proxy HTTP URLs only. Flywheel applies only to
HTTP URLs. HTTPS URLs and page loads from incog-
nito tabs1 do not use the proxy. While it is technically
feasible to proxy through Flywheel in these cases, we
are deliberately conservative when given an explicit sig-
nal that a request is privacy sensitive.
Maintain transparency for users, network operators,
and site owners. Flywheel does not depend on mo-
bile carriers to change their networks or site operators to
change their content. Once enabled, Flywheel is trans-
parent to users: websites should look and behave exactly
as they would without the proxy in use. This require-
ment means we must be fairly conservative in terms of
the types of optimizations we perform—for example, we
cannot modify the DOM of a given page without risking
adverse interactions with JavaScript on that page. Fur-
ther, unavailability of Flywheel service should not pre-
vent users from loading pages.
Comply with standards. All of the optimizations per-
formed by Flywheel must be compliant with modern web
standards, including the practical reality of middleboxes
that may cache or transform the optimized content. Fur-
ther, we use standard protocols (SPDY and HTTP) for
transferring content in order to ensure that Flywheel can
be widely deployed without compatibility issues.

While improving web page load times through Fly-
wheel is desirable, it is not always possible, as we de-
scribe later. There is a latency cost to proxying web
content through third-party proxies, and although com-
pressing responses tends to reduce load times, this ben-
efit does not always outweigh the increased latency of
fetching content through Flywheel servers.

3.2 Client Support: Chrome
Flywheel compression is a feature of the Chrome
browser on Android and iOS. Users enable Flywheel in
Chrome’s settings, which shows a graph of compression
over time once enabled.
SPDY (HTTP/2). By default, client connections to Fly-
wheel use the SPDY2 [11] transport protocol, which mul-
tiplexes the transfer of HTTP content over a single TLS
connection. SPDY is intended to improve performance
as well as security by avoiding the overhead of multi-
ple TCP connections and prioritizing data transfer. For
example, HTML and JavaScript are often on the critical
path for rendering a page and hence have higher transfer
priorities.

For users of Flywheel, SPDY support is universal.
Each client application maintains a single SPDY connec-
tion to the Flywheel proxy over which multiple HTTP re-

1Incognito mode is a Chrome feature that discards cookies, history,
and other persistent state for sites visited while it is enabled.

2As the HTTP/2 protocol based on SPDY moves to the final stages
of standardization, we are migrating from SPDY to HTTP/2.

quests are multiplexed. Flywheel in turn translates these
to ordinary HTTP transactions with origin servers.
Proxy bypass. A practical reality is that Flywheel can-
not proxy all pages on the web. Some sites are simply
inaccessible to the Flywheel proxy, such as those behind
a corporate intranet or private network. Other sites ac-
tively block traffic from Flywheel, for example, due to
automated DoS prevention that interprets the volume of
traffic from Flywheel IP addresses as an attack.

To avoid unavailability, Flywheel is automatically dis-
abled in these circumstances using a mechanism we call
proxy bypass. Proxy bypass is implemented using a spe-
cial HTTP control header that informs the browser to dis-
able the proxy and reload the affected content directly
from the origin site. Proxy bypasses are configurable,
giving us the ability to disable Flywheel for a set time
(e.g., to cover an entire page load) or for just a single
URL. This signal also provides us with a convenient load
shedding mechanism: we can remotely disable Flywheel
for specific clients as needed. We describe the uses of
proxy bypass in greater detail in §3.3.5.
HTTP fallback. SPDY is desirable for Flywheel proxy
connections due to its performance advantages (§4) and
insulation from middlebox interference. However, be-
cause SPDY traffic is encrypted, its use can interfere
with adult content filtering deployed by mobile carriers,
schools, etc. Many mobile carriers also perform selec-
tive modification of HTTP request headers from clients
in their network, for example to support automatic login
to a billing portal site. Although web content filtering
can be used as a means of censorship, our goal is not to
circumvent such filtering with Flywheel; we wish to be
“filter neutral.”

We therefore provide a mechanism whereby the con-
nection to the Flywheel proxy can fall back to unen-
crypted HTTP. This is typically triggered using the proxy
bypass mechanism described earlier, although the effect
is to switch the proxy connection from SPDY to HTTP,
rather than disabling Flywheel entirely.

We also provide a mechanism whereby network oper-
ators can disable the use of SPDY Flywheel connections
for specific clients in their network [3]. While establish-
ing a SPDY connection, the client makes an unencrypted
HTTP request to a well-known URL hosted by Google.
If the response contains anything other than an expected
string, the client assumes that the URL was blocked by
an intermediary and disables use of SPDY for the Fly-
wheel connection. This mechanism is straightforward
for carriers to use and allows them to achieve their goals.
More complicated approaches that we considered would
have required significant integration work between carri-
ers and Google.

In some cases, SPDY must be disabled to avoid trig-
gering bugs in sites. One example we encountered is a

Technique Section
HTTP caching §3.3.4
Multiplexed fetching §3.3.1
Image transcoding §3.3.2
GZip compression §3.3.2
Minification §3.3.2
Lightweight 404s §3.3.2
TCP preconnect §3.3.3
Subresource prefetching §3.3.3
Header integrity check §3.3.5
Anomaly detection §3.3.5 Google datacenter

Logs

Cache

Optimization
services

Optimization
services
Optimization

services

URL info

Fetch
bots

b.com
SPDY

Proxy

Fetch router

a.com

HTTPS
origin

Figure 2: The Flywheel server architecture within a datacenter. Lines indicate bidirectional communication via RPC
or HTTP. Each logical component is comprised of replicated, load-balanced tasks for scalability and fault tolerance.
The majority of Flywheel code is written in Go, a fact we mention only to dispel any remaining notion that Go is not
a robust, production-ready language and runtime environment.

site that uses JavaScript to inspect the response headers
of an AJAX request. To improve compression, SPDY
sends all headers as lowercase strings, as permitted by
the HTTP standard. However, the site’s JavaScript code
uses a case-sensitive comparison of header names in its
logic, leading to an unexpected execution path that ulti-
mately breaks page rendering if SPDY is enabled.
Safe Browsing. Safe Browsing is a feature of Chrome
that displays a warning message if a user is about to
visit a known phishing or malware site [2]. Because of
the overhead of synchronizing Safe Browsing data struc-
tures, this feature was disabled for mobile clients and, as
of February 2015, is only now being gradually enabled.
The main obstacle to its deployment is the tradeoff be-
tween bandwidth consumption, power usage, coverage,
and timeliness of updates. Ideally, all clients would learn
of new bad URLs instantly, but synchronization overhead
can be significant, requiring care in managing the trade-
offs. At the Flywheel server, however, many of these
tradeoffs do not apply. Flywheel checks all incoming re-
quests against malware and phishing lists, providing an
additional layer of protection that is always up-to-date.
For requests that match bad URLs, the server signals the
client to display a warning.3

3.3 Server
The Flywheel server runs in multiple Google datacenters
spread across the world. Client connections are directed
to a nearby datacenter using DNS-based load balancing;
e.g., a client resolving the Flywheel server hostname in
Europe is likely to be directed to a datacenter in Europe.

The remainder of this section describes the data reduc-
tion and performance optimizations applied at the Fly-
wheel server. Figure 2 provides an overview of our tech-
niques and architecture.

3Of course, client checks are still beneficial since Flywheel is not
enabled for all users and does not proxy HTTPS and incognito requests.

3.3.1 Multiplexed Fetching

The proxy coordinates all aspects of handling a request.
The first step is to match incoming requests against URL
patterns that should induce a Safe Browsing warning or
a proxy bypass. For requests that match, a control re-
sponse is immediately sent to the client. Otherwise, the
request is forwarded via RPC to a separate fetch service
that retrieves the resource from the origin.

The fetch service is distinct from the proxy for two
reasons. First, a distinct fetch service simplifies man-
agement. Many teams at Google need to fetch external
websites, and a shared service avoids duplicating subtle
logic like rate-limiting and handling untrusted external
input. The second benefit to a separate fetch service is
improved performance. As shown in Figure 2, the fetch
service uses two-level request routing. Request RPCs are
load balanced among a pool of fetch routers, which send
requests for the same destination to the same fetching
bot. Bots are responsible for the actual HTTP transac-
tion with the remote site. Request affinity facilitates TCP
connection reuse—requests from multiple users destined
for the same origin can be multiplexed over a pool of hot
connections rather than having to perform a TCP hand-
shake for each request. Similarly, the fetch service main-
tains a shared DNS cache, reducing the chance that DNS
resolution will delay a request.

3.3.2 Data Reduction

After receiving the HTTP response headers from the
fetch service, the proxy makes a decision about how to
compress the response based on its content type.4 These
optimizations are straightforward and we describe them
briefly. A theme of our experience is that data reduction
is the easy part. The bulk of our exposition and engineer-
ing effort is dedicated to robustness and performance.

4The proxy respects Cache-Control: No-Transform headers used by
origins to inhibit optimization.

Some optimizations are performed by the proxy itself;
others are performed by separate pools of processes coor-
dinated via RPC (see Figure 2). Separating optimization
from the serving path allows us to load balance and scale
services with different workloads independently. For ex-
ample, an image conversion consumes orders of magni-
tude more resources than a cache hit, so it makes sense
to consolidate image transcoding in a separate service.

Distinct optimization services also improve isolation.
For example, because of the subtle bugs often encoun-
tered when decoding arbitrary images from the web, we
wrap image conversions in a syscall sandbox to guard
against vulnerabilities in image decoding libraries. If any
optimization fails or a bug causes a crash, the proxy re-
covers by serving the unmodified response.
Image transcoding. Flywheel transcodes image re-
sponses to the WebP format, which provides roughly
30% better compression than JPEG for equivalent visual
quality [12]. To further save bytes, we also adjust the
WebP quality level according to the device screen size
and resolution; e.g. tablets use a higher quality setting
than phones. Animated GIF images are transcoded to
the animated WebP format. Very rarely, the transcoded
WebP image is larger than the original, in which case we
serve the original image instead.
Minification. For JavaScript and CSS markup, Flywheel
minifies responses by removing unnecessary whitespace
and comments. For example, the JavaScript fragment

// Issue a warning if the browser
// doesn’t support geolocation.
if (!navigator.geolocation) {

window.alert(
"Geolocation is not supported.");

}

is rewritten (without line breaks) as:

if(!navigator.geolocation){window.alert
("Geolocation is not supported.");}

GZip. Flywheel compresses all text responses using
GZip [26]. This includes CSS, HTML, JavaScript, plain
text replies, and HTML. Unlike image optimization,
which requires buffering and transcoding the complete
response, GZipped responses are streamed to clients.
Streaming improves latency, as the browser can begin is-
suing subresource requests before the HTML download
completes.
Lightweight error pages. Many requests from clients
result in a 404 error response from the origin, for exam-
ple, due to a broken link. However, in many cases the
404 error page is not shown to the user. For example,
Chrome automatically requests a small preview image
called a favicon when navigating to a new site, which
often results in a 404. Analyzing Flywheel’s workload

shows that 88% of page loads result in a 404 error being
returned for the favicon request. These error pages can be
quite large, averaging 3.2KB—a fair number of “invisi-
ble” bytes for each page load lacking a favicon. Flywheel
returns a small (68 byte) response body for favicon and
apple-touch-icon requests that return a 404 error since the
error page is not typically seen by the user.

3.3.3 Preconnect and Prefetch

Preconnect and prefetch are performance optimizations
that reduce round trips between the client and origin
server. The key observation is that while streaming a
response back to the client, the proxy can often predict
additional requests that the client will soon make. For
example, image, JavaScript and CSS links embedded in
HTML will likely be requested after the HTML is deliv-
ered. Flywheel parses HTML and CSS responses as they
are served in order to discover subresource requests.

Another source of likely subresource requests comes
from the URL info service (see Figure 2), which is a
database populated by an analysis pipeline that period-
ically inspects Flywheel traffic logs to determine sub-
resource associations, e.g. requests for a.com/js are
followed by requests for b.com/. This offline analysis
complements online parsing of HTML and CSS since it
allows Flywheel to learn associations for resources re-
quested by JavaScript executed at the client. We eschew
server-side execution of JavaScript because of the com-
paratively high resource requirements and operational
complexity of sandboxing untrusted JavaScript.

Given subresource associations, Flywheel either
prefetches the entire object or opens a TCP preconnect to
the origin. Which of these is used is determined by a pol-
icy intended to balance performance against server over-
head. Server overhead comes from wasted preconnects
or prefetches that are not used by a subsequent client re-
quest. These can arise in case of a client cache hit, a
CSS resource for a non-matching media query, or an ori-
gin response that is uncacheable. Avoiding these cases
would require Flywheel to maintain complete informa-
tion about the state of the client’s cache and cookies. Be-
cause of privacy concerns, however, Flywheel does not
track or maintain state for individual users, so we have
no basis for storing cache entries and cookies.

Flywheel balances the latency benefits of prefetch
and preconnect against overhead by issuing a bounded
number of prefetches per request for only the CSS,
JavaScript, and image references in HTML and only im-
age references in CSS. Preconnects are similarly limited.
We track cache utilization and fraction of warm TCP
connections to tune these thresholds, a topic we revisit
in §4.

3.3.4 HTTP Caching

Flywheel acts as a customized HTTP proxy cache.
Customized entry lookup. Flywheel may store mul-
tiple optimized responses for a single URL, for exam-
ple a transcoded WebP image with two different quality
levels—one for phones and another for tablets. Similarly,
only some versions of Chrome support WebP animation,
so we also need to distinguish cache entries on the ba-
sis of supported features. Dispatching logic is shared
by both the cache and optimization path in the proxy,
so that a cache hit for a particular request corresponds to
the appropriate optimized result. The client information
is included in each request, e.g., the User-Agent header
identifies the Chrome version and device type.
Private external responses. When serving responses
over HTTP rather than SPDY, Flywheel must prevent
downstream caches from storing optimized results since
those caches will not share our custom logic.5 Down-
stream proxy caching can break pages, e.g., by serving a
transcoded WebP image to a client that does not support
the format. To prevent this, we mark all responses trans-
formed by Flywheel as Cache-Control: private, which in-
dicates that the response should not be cached by any
downstream proxy but may be cached by the client.

3.3.5 Anomaly Detection

Flywheel employs several mechanisms for improving ro-
bustness and availability.
Proxy bypass. Transient unavailability (e.g. network
connection errors, software bugs, high server load) may
occur along the path between the client, proxy, and ori-
gin. In these cases, Flywheel uses the proxy bypass
mechanism described earlier to hide such failures from
users. Recall that proxy bypass disables the proxy for a
short time and causes the affected resources to be loaded
directly from the origin site. Proxy bypass is triggered
either when an explicit control message is received from
the proxy, or when the client detects abnormal condi-
tions. These include:

• HTTP request loop: A loop suggests a misconfigured
origin or proxy bug. If the loop continues without
Flywheel enabled, client-side detection is triggered.

• Unreachable origin: DNS or TCP failures at the
proxy suggest network-level unavailability, an at-
tempt to access an intranet site, or Google IP ranges
being blocked by the origin.

• Server overload: The proxy sheds load if needed by
issuing bypasses that disable Flywheel at a particular
client for several minutes (§4.4).

• Blacklisted site or resource: Sites that are known

5Responses delivered via SPDY cannot be cached by intermediate
proxy caches because of TLS encryption.

to have correctness problems when fetched via Fly-
wheel are always bypassed, e.g. carrier portals that
depend on IP addresses to identify subscribers.

• Missing control header: Middleboxes may strip
HTTP control headers used by Flywheel if SPDY
is disabled. If the proxy observes that such headers
are missing from the client request, it sends a bypass
to avoid corner cases wherein non-compliant HTTP
caches may break page loads.

• Unproxyable request: We bypass requests for loop-
back, .local, or non-fully qualified domains.

Fetch failures. Some fetch errors can be recovered at the
server without bypassing, e.g. DNS resolution or TCP
connection failures. Simply retrying a fetch often works,
recovering what would otherwise have been a bypass.

While retrying a failed fetch often succeeds, it can in-
crease tail latency in the case that an origin is persis-
tently flaky or truly unavailable. To detect these cases,
we use an anomaly detection pipeline to automatically
detect flaky URLs; i.e., those that have high fetch fail-
ure rates. There are thousands of such URLs, making
manual blacklisting impractical.

The analysis pipeline runs periodically, inspects traffic
logs, and determines URLs that have high fetch failure
rates. These URLs are stored in the URL info service,
which Flywheel consults upon receiving each request.
Flaky URLs are bypassed immediately without waiting
for multiple failed retries. To avoid blacklisting a URL
forever, Flywheel allows a small fraction of matching re-
quests to proceed to the origin to test if the URL has be-
come available. The analysis pipeline removes an entry
from the blacklist provided the failure rate for the URL
has dropped sufficiently.
Tamper detection. As described in Section 3.2, Chrome
will occasionally fall back to using an HTTP connection
to the Flywheel proxy. The need for unencrypted trans-
port is not uncommon; 12% of page loads through Fly-
wheel use HTTP.

Unencrypted transport means that both the Flywheel
client and server need to be robust to modifications by
third-party middleboxes. For example, we have found
that middleboxes may strip our control headers on either
the request or response path. Or, they may ignore direc-
tives in the Cache-Control header and serve cached Fly-
wheel responses to other users. They may also optimize
and cache responses independently of Flywheel. Our ex-
perience echoes other studies: transparent middleboxes
are common [45, 56, 57].

To provide robustness to middleboxes, Flywheel is
defensive at both the client and server, bypassing the
proxy upon observing behavior indicating middlebox
tampering. Examples include TLS certification vali-
dation failures (typical of captive portals) or missing

Flywheel headers (typical of transparent caches). In
practice, checking for these cases has been sufficient
to avoid bugs. An overly conservative policy, how-
ever, risks eroding data savings, since we need not dis-
able Flywheel in all circumstances. For example, while
non-standard middlebox caching risks breaking pages
(e.g. serving Flywheel responses to non-Flywheel users),
HTTP-compliant caching is mostly benign (e.g. at worst
serving images optimized for tablets to non-tablets).
Similarly, Flywheel should be disabled in the presence
of a captive portal, but only until the user completes the
sign-in process. We continue to refine our bypass poli-
cies, and this refinement will continue as the behavior of
middleboxes evolves.

4 Evaluation
Our evaluation of Flywheel is grounded in measurements
and analysis of our production workload comprising mil-
lions of users and billions of queries per day. We focus
on data reduction, performance, and fault tolerance.

Data in this section is drawn from two sources:
(1) Flywheel server traffic logs, which provide fine-
grained records of each request, and (2) Chrome user
metrics reports, which are aggregated distributions of
metrics from Chrome users who opt to anonymously
share such data with Google.6

4.1 Workload
Since Flywheel is an optional feature of Chrome, only
a fraction of users have it enabled. Adoption tends to
be higher (14-19%, versus 9% worldwide) in emerging
countries such as Brazil where mobile data is costly. Al-
though we do not know whether Flywheel has changed
user behavior as we hoped in emerging countries, higher
adoption rates indicate a perceived benefit.
Access network. Segmented by access network, we find
that 78% of page loads are transferred via WiFi, 11% via
3G, 9% via 4G/LTE, and 1% via 2G. Unsurprisingly, the
majority of browsing using Flywheel is via WiFi, since
the proxy is enabled regardless of the network type the
device is using. While the browser could disable Fly-
wheel on WiFi networks, this would eliminate other ben-
efits of Flywheel such as safe browsing. WiFi is preva-
lent in terms of traffic volume for several reasons: first,
it tends to be faster, so users on WiFi generate more page
views in less time. A second reason is that tablets are
more likely to use WiFi than cellular data.
Traffic mix. Recall that Flywheel does not receive all
traffic from the client; HTTPS and incognito page loads
are not proxied. For the 28 day period from August 11
through September 8, 2014, we see that 37% of the total

6Chrome users can see a complete list by navigating to
about:histograms.

��
����
����
����
����
����
����
����
����
����
��

�� ���� ����� ����� ����� ����� ����� ����� �����

�
�
�
�
��
���
�
��
��
�
���
�
��
��
�
���
�

�����������������

Figure 3: The cumulative distribution of web page size
(summation of object sizes) in bytes.

bytes downloaded by users (after optimization) with Fly-
wheel enabled are received from the proxy. In compar-
ison, 50% of total received bytes are over HTTPS,7 and
the remainder are incognito requests, bypassed URLs
and protocols other than HTTP/HTTPS (e.g. FTP). A no-
table consequence of this traffic mix is that because our
servers only observe a fraction of web traffic, the data
reduction observed at Flywheel servers translates into a
smaller overall reduction observed at clients.
Page footprints. Figure 3 shows the distribution of web

page sizes observed in our workload, calculated as the
sum of the origin response body bytes for all resources
on the page. This distribution is dominated by a small
number of larger sites. The median value of 63 KB is
dwarfed by the 95th percentile exceeding 1 MB. The ten-
dency for total data volume to be dominated by a small
number of page loads but the typical page load time to be
dominated by a large number of very small pages has im-
plications for the latency impact of proxy optimization, a
topic we discuss in §4.3.
Video. Flywheel does not currently compress video con-
tent, for two reasons. First, most mobile video content
is downloaded by native apps rather than the browser.
Second, video content embedded in web pages is loaded
not by Chrome but by a separate Android process in
most cases; hence, video does not pass through the
Chrome network stack and cannot be proxied by Fly-
wheel. However, preliminary work on video transcoding
using the WebM format suggests that we can expect to
achieve 40% data reduction without changing the frame
rate or resolution.

4.2 Data reduction
Overall. Excluding request and response headers, Fly-
wheel reduces the size of proxied content by 58% on av-
erage. Reduction is computed as the difference between

7Just 33% of total bytes were received over HTTPS 9 months
prior—aggregated between March 11th and April 8th—representing a
noteworthy 17 percentage point increase in HTTPS adoption over 9
months.

Type % of Bytes Savings Share of Benefit
Images 74.12% 66.40% 85%
HTML 9.64% 38.43% 6%

JavaScript 9.10% 41.09% 6%
CSS 1.81% 52.10% 2%

Plain text 0.64% 20.49% .2%
Fonts 0.37% 9.33% .1%
Other 4.32% 7.76% 1%

Table 1: Resource types and data reduction.

��
����
����
����
����
����
����
����
����
����

��

�� ��� ��� ��� ��� ����

�
�
�
�
��
���
�
��
��
�
���
�
��
��
�
�
�
��

���

�������������������
�����������������������

Figure 4: Distribution of overall data reduction across
users. The overall reduction is lower than that through
Flywheel because we do not proxy HTTPS or incognito
traffic.

total incoming and total outgoing bytes at the proxy (ex-
cluding bytes served out of cache) divided by total in-
coming bytes. Table 1 segments traffic and data reduc-
tion by content type for a day-long period in August
2014. The ‘Other’ category includes all other content
types, missing content types, and non-200 responses.
Note that ‘Other’ does not include large file transfers:
because these are typically binary files that compress
poorly, Flywheel sends a proxy bypass upon receiving
a request for a large response.

The majority of data reduction benefit comes from
transcoding images to WebP, which reduces the size
of images by 66% on average. Much of the remain-
ing data reduction benefits come from GZipping un-
compressed responses, with larger benefits for CSS and
JavaScript due to syntactic minification.
Overall reduction. The data reduction at the server is
an upper bound for reduction observed by clients. Re-
call that HTTPS and incognito page loads, as well as by-
passed traffic, are not compressed by Flywheel. Figure 4
quantifies the difference. Across users, the median data
reduction for all traffic is 27%, compared to 50% for traf-
fic proxied through Flywheel.
WebP quality. Because images dominate our workload,
the aggressiveness of our WebP encoding has a signif-
icant influence on our overall data reduction. Our goal
is to achieve as much reduction as possible without af-
fecting the perceived quality of the image. To tune the

quality, we used the structural similarity index metric
(SSIM) [53] to compare the visual similarity of 1500
original vs. compressed images (drawn from a set of 100
popular curated URLs) for different WebP encoder qual-
ity values. We picked initial quality values by choosing
the knee of the SSIM vs. quality curve.

Of course, the ideal visual quality metric is actual
user perception, and there is no substitute for experience.
Our experimentation with internal Google users before
launch lead us to transcode images at quality 50 for
phones and 70 for tablets, which roughly corresponds to
an SSIM threshold of ∼0.85 and ∼0.9, respectively. Prior
to tuning, we had received several complaints from inter-
nal testers regarding visual artifacts; we have no known
reports of users complaining about the current settings.
Lightweight error responses. Flywheel sends a small
(68 byte) response body for 404 errors returned for favi-
con and apple-touch-icon requests. Despite the fact that
404 responses for these images constitute only 0.07% of
requests, the full error pages would account for 2% of
the total data consumed by Flywheel users. The average
404 page for an apple-touch-icon is 3.3KB, and two such
requests are made for every page load. Our lightweight
404 responses eliminate nearly all of this overhead.
Redundancy elimination. Our workload provides a
scaffold for evaluating potential data reduction optimiza-
tions. Sometimes, this yields a negative result. We con-
clude our evaluation of data reduction with two such ex-
amples.

Many websites do a poor job of setting caching pa-
rameters, e.g. using time-based expiration rather than
content-based ETags. Others mark resources that do not
change for months as uncacheable. The result is that
clients unnecessarily download resources that would oth-
erwise be in their cache.

Flywheel could improve data reduction by fixing these
configuration errors. For example, we could add a
content-based ETag to all responses lacking one, and ver-
ify that the origin content is unchanged upon each reval-
idation request sent by the client.

We evaluate the potential benefits of redundancy elim-
ination using trace replay: we measure the possible in-
crease in data reduction from eliminating all redundant
transfers across all client sessions, where a session is de-
fined as the duration between browser restart events.8 We
define a redundant transfer as two response bodies with
exactly matching contents (we discuss partial matches
next).

The result of redundancy elimination is a modest im-
provement in data reduction. Overall, 11.5% of the bytes
served are redundant after data reduction. Restricting

8This typically extends beyond a single foreground session, since
Android does not prune tasks except under memory pressure.

consideration to only JavaScript, CSS, and images re-
duces the benefit to 7.8%. Given this data, we concluded
that this opportunity was not worth prioritizing. The
assumption of complete redundancy elimination is opti-
mistic, and impact of data reduction by the server would
be reduced by the limited fraction of traffic handled by
Flywheel at the client. We may return to this technique,
but not before pursuing simpler and more fruitful opti-
mizations such as video compression.
Delta Encoding. Most compression techniques focus on
reducing data usage for a single response object. If an
object is requested multiple times however, the origin
may have only made small modifications to the object
between the first and subsequent request.

Chrome supports a delta encoding technique known as
Shared Dictionary Compression over HTTP (SDCH) de-
signed to leverage such cross-payload redundancy [17]
by only sending the deltas between modified objects
rather than the whole object. We modified Flywheel to
support server-side SDCH functionality (e.g. dictionary
construction) on behalf of origin servers. We then du-
plicated a fraction of user traffic, applied SDCH to the
duplicated traffic, and measured what the data reduction
would have been if we had served the SDCH responses
to users. We found that SDCH only improved data re-
duction for HTML and plain text objects from ∼35% to
∼41%, equivalent to less than 1% improvement in overall
data savings. We therefore opted to not deploy SDCH.

4.3 Performance
We next examine Flywheel’s impact on latency. Com-
pared to data reduction, evaluating performance is sig-
nificantly more complex. The results are mixed: Fly-
wheel improves some performance metrics and degrades
others. These results reflect a tradeoff between compres-
sion, performance, and operating environment. Table 2
summarizes the performance data underlying these re-
sults, which we describe in detail below.
Methodology. Our evaluation answers two main ques-
tions: (1) Does Flywheel improve latency compared to
loading pages directly? And, (2) how effective are the
server-side mechanisms used to improve latency?

We use Chrome user metrics reports (described ear-
lier) to gather client-reported data on page load time
(PLT), time to first paint, time to first byte (TTFB), and
so on. These anonymous reports are aggregated and can
be sliced by a variety of properties, e.g. the client version,
device type, country, and network connection. We use
server-side logs to measure the effectiveness of perfor-
mance optimizations such as multiplexed fetching, pre-
connect, and prefetch. Clients are unaware as to whether
or not these optimizations are applied, so their use is not
reflected in user reports. Instead, we evaluate these using
server traffic logs.

For both client-side and server-side measurements, all
comparisons are made relative to a holdback experiment,
a random sampling of 1% of users for which the proxy
is silently disabled, despite the feature being turned on
by the user. A holdback group is essential for eliminat-
ing sampling bias. For example, comparing the latency
observed by users with Flywheel on and off suggests a
significant increase in page load time due to Flywheel.
However, the holdback experiment shows that the typ-
ical page load time of a user who enables Flywheel is
higher than the overall population of Chrome users. In
retrospect, this is unsurprising—users are more likely to
enable Flywheel if they are bandwidth-limited, and Fly-
wheel adoption rates are highest in countries with com-
paratively high page load times.
Flywheel reduces page load time when pages are
large. For most users and most page loads, Flywheel
increases page load time. This is reflected in Table 2; cf.
rows for ‘Holdback’ and ‘Flywheel’. For the majority of
page loads, the increase is modest: the median value in-
creases by 6%. The benefits of compression appear in the
tail of the distribution, with the PLT reduction at the 95th
percentile being 5%. We attribute this to our production
workload: data reduction improves latency when pages
are large, and as shown in Figure 3, the distribution of
page load sizes is heavily skewed.

Flywheel’s performance benefit arises from a combi-
nation of individual mechanisms. For example, we find
that SPDY provides a median 4% reduction in page load
time relative to proxying via HTTPS. Data reduction im-
proves latency, but only for the minority of large pages;
e.g. disabling all data reduction optimizations increases
median page load time through the proxy by just 2%, but
the 95th percentile PLT increases by 7%. On the whole,
the contribution of individual mechanisms varies signifi-
cantly based on characteristics of clients and sites.
Flywheel increases time to first paint. Page load time
is an upper bound on latency. But, long before a page is
loaded fully, it may display useful content and become
interactive. Moreover, displaying a partially rendered
page increases perceived responsiveness even if the over-
all load time is unchanged. To capture a lower bound on
page load performance, we consider time to first paint;
i.e., the time after loading begins when the browser has
enough information to begin painting pixels.

As shown in Table 2, Flywheel increases median time
to first paint by 10%. This increase is modest, and drops
off in the tail of the distribution. A probable cause of
this increase is a corresponding inflation of time to first
byte; i.e., the delay between sending the first request in
a page load and receiving the first byte of the response.
Flywheel increases median TTFB by 40%. Unlike time
to first paint, we observe inflated TTFB at all quantiles

Flywheel configuration Median 70th 80th 90th 95th 99th
Page load time quantiles (milliseconds)

Holdback 2075 3682 5377 9222 14606 39380
Flywheel 2207 6.4% 3776 2.6% 5374 -0.1% 8951 -2.9% 13889 -4.9% 36130 -8.3%
Holdback (Beta) 2123 3650 5151 8550 13192 32650
Images only (Beta) 2047 -3.6% 3447 -5.6% 4944 -4.0% 8214 -3.9% 12476 -5.4% 31650 -3.1%

Japan, page load time quantiles (milliseconds)
Holdback 1355 2289 3133 4939 7211 14926
Flywheel 1674 23.5% 2715 18.6% 3647 16.4% 5502 11.4% 7797 8.1% 15927 6.7%

Time to first byte quantiles per pageload (milliseconds)
Holdback 185 360 547 999 1688 5064
Flywheel 259 40.0% 485 34.7% 687 25.6% 1164 16.5% 1903 12.7% 5808 14.7%

Time to first paint quantiles per pageload (milliseconds)
Holdback 803 1429 2084 3493 5650 19233
Flywheel 888 10.6% 1547 8.3% 2194 5.3% 3581 2.5% 5723 1.3% 20374 5.9%

Table 2: Page load time for various Flywheel configurations. Flywheel improves page load time only when pages
are large and users are close to a Google data center. All percentages are given relative to the baseline holdback
measurement. ‘Holdback’ refers to a random sampling of 1% of users with Flywheel enabled for whom we disable
Flywheel for the browsing session. ‘Images only’ refers to an experimental configuration wherein only images are
proxied through Flywheel. This experiment applies only to Android Chrome Beta users.

Flywheel’s latency improvement is not universal. We
attribute TTFB inflation primarily to the geographic dis-
tribution of Flywheel users. Many users are further from
a Google data center than typical web servers, resulting
in longer round trips. The extent of TTFB inflation and
its relationship to overall latency depends on many fac-
tors: latency to Google, from Google to the site, from the
user to the site, and the overall benefits of data reduction.
Our overall performance data shows that more often than
not, the balance of these tradeoffs increases latency.

Usage in Japan provides a concrete example. Fly-
wheel increases median page load time by 23.5% rel-
ative to holdback users in Japan, with smaller but still
significant increases in the tail. How does this relate
to the tradeoffs described above? First, page loads in
Japan tend to be fast—34% lower than the overall hold-
back median. The TTFB inflation is similarly high, but
the faster page load time means that the overhead of in-
direction through Google is proportionally larger. Typ-
ical network capacity is also higher in Japan, reducing
the benefits of data reduction as round trips represent a
larger fraction of overall page load time. While Japan is
an extreme case, the overall theme remains: Flywheel’s
performance benefits are not universal and depend on the
interaction of many factors.

At the server, we can further refine the breakdown of
TTFB inflation. For Flywheel page loads in the United
States over WiFi, for example, median TTFB inflation is
90 milliseconds, of which 60 ms is RTT to Google, 20 ms
is RTT from Google to the origin site, and 10 ms is in-
ternal routing within Google’s network and processing
overhead. The precise breakdown of overheads varies
by client population, but the dominant factor is typically
overhead to reach the nearest Google data center.
Proxying only images improves latency for small

pages at the expense of large pages. Given widespread
TTFB inflation, the tradeoff between latency and com-
pression is straightforward: Flywheel improves perfor-
mance when the latency benefit of data reduction out-
weighs the latency cost of indirect fetching through
Google. Trading off data reduction for performance thus
requires some notion of selective proxying; i.e., sending
only some resource loads through Flywheel.

Recall that the majority of Flywheel’s data reduction
comes from transcoding images to WebP. 74% of bytes
passing through Flywheel are images, and 85% of our
overall data reduction benefit over a typical day comes
from image transcoding (Table 1). This data suggests
that proxying requests for images only is likely to elim-
inate most of Flywheel’s latency overhead while retain-
ing most of its data reduction benefit. Implementing this
on the client is straightforward: based on surrounding
markup, Chrome typically has an expectation of content
type; e.g., requests originating from an HTML
tag are likely to return an image.

The ‘Images only’ rows in Table 2 show the results of
applying this policy as an experiment for Chrome beta
users. The results match our intuition. Median page load
time is reduced relative to proxying all content. Data
reduction is diminished only slightly. On the flip side,
the reductions in page load time for the majority of small
page loads come at the expense of larger pages. The 99th
percentile reduction in PLT from proxying only images
is 3% compared with 8% when proxying all content.
Preconnect and prefetch provide modest benefits. We
find that although preconnect and prefetch have non-
negligible effects on first order metrics (connection reuse
and cache hit ratio), they only provide modest 1-2% re-
ductions in median page load time overall. Like other
performance metrics, the benefits vary depending on how

the data is sliced. The benefits tend to be greater for
users with relatively high TTFB inflation. For example,
prefetch and preconnect each provide a 2% reduction in
PLT for page loads from Japan.

The benefits of preconnect and prefetch are limited
by the natural tendency for connection reuse and object
caching in our workload. Even without TCP preconnect,
for example, 73% of requests from Flywheel are issued
over an existing TCP connection. Enabling preconnect
increases this fraction to 80%. Similarly, subresource
prefetching increases Flywheel’s HTTP cache hit rate by
10 percentage points, from 22% to 32%.

Because of their overhead and limited benefits, we
have not deployed preconnect or prefetch beyond small
experiments because of concerns about the overhead they
would impose on origin sites. For example, redundant
prefetches increase the number of fetches to origins by
18%. Redundant fetches are caused by two main fac-
tors: (1) the prefetched response is already cached at the
client, so it will not be requested; or (2) the prefetched
response is not cacheable, so we cannot safely use it
to satisfy a subsequent client request. We continue to
refine our logic for issuing speculative connections and
prefetches in an attempt to reduce overhead.

4.4 Fault Tolerance
Our goal is for all Flywheel failures to be transparent to
users. If the client cannot contact the Flywheel proxy, or
if the proxy cannot fetch and optimize a given URL, our
proxy bypass mechanism recovers by transparently re-
questing resources from the origin server directly (§3.2).
Below, we report on the prevalence of bypassed requests,
their causes, and mechanisms for improving the preci-
sion of proxy bypass.
Bypass causes. A request may be bypassed before it is
sent to Flywheel, by Flywheel before it is sent to the ori-
gin, or by Flywheel after observing the origin response.
We consider each of these cases in turn.

Client-side bypasses are rare, but typically occur due
to failure to connect to the proxy. Server-side, 0.89% of
requests received by Flywheel result in a bypass being
sent to the client. The largest fraction of bypasses (38%)
are caused by origin response codes, e.g. 429 indicat-
ing a rejected request. Another large fraction are due to
fetch errors (28%), e.g. when Flywheel cannot establish
a connection to the origin. This could be because the site
is down, blocking traffic from the proxy, or because the
site is on an intranet or local network not reachable by
the proxy. We bypass audio and video files (19% of by-
passes) as Flywheel does not currently transcode these
response types, as well as large file downloads (0.3%)
where we are not able to achieve sufficient data reduc-
tion to merit the processing overhead. Requests automat-
ically flagged as problematic by our anomaly detection

��

����

����

����

����

����

����

�� ��� ��� ��� ��� ����
�
�
�
��
�
�
�
�
��
�
��
�
�
�
��
��
�
��
�
�
�
�
�
�

�����������

Figure 5: A month-long trace of load shedding events.
Transient unavailability is common and is typically re-
solved without manual intervention.

pipeline constitute 8% of bypasses. We also issue by-
passes for blacklisted URLs (5%) for sites with compati-
bility issues, carrier dependencies, or legal constraints.
The remaining 0.25% of bypasses are caused by load
shedding; i.e., if an individual Flywheel server becomes
unusually slow and accumulates too many in-flight re-
quests, it sends a bypass response.

Load shedding acts as a form of back pressure that pro-
vides recovery for many causes of unavailability: con-
gestion, origin slowness, attack traffic, configuration er-
rors, and so on. These events occur frequently, and a
stop-gap is essential for smooth operation. A simple
load shedding policy of bounding in-flight requests has
worked well for us so far. Figure 5 shows a trace of
load shedding events collected over one month. Events
are typically bursty and short-lived. Crucially, automatic
load shedding means that most transient production is-
sues do not require manual intervention for recovery.
Mitigating fetch errors. More than half of bypassed re-
quests are due to fetch errors. Two mechanisms reduce
the impact of these errors. First, Flywheel retries failed
fetches. Nearly a third of failed fetches succeed after a
single retry, and roughly half succeed within 5 retries.

Retrying fetches can impose significant delay if the
site is still unreachable after multiple tries. The median
latency for fetch errors is ∼1 second, with the 90th per-
centile exceeding 200 seconds. Most fetches that fail af-
ter 5 retries are due to DNS lookup or fetch timeouts.

To deal with this, the second mitigation mechanism
involves analyzing the server traffic logs periodically to
identify URLs that exhibit a high failure rate. If the ma-
jority of fetches to a given URL fail, we flag that URL
as flaky and push a blacklisting rule into the URL info
service to send bypasses for requests to that URL.

Results show that this technique eliminates ∼1/3 of all
fetch errors. The pipeline achieves a low false positive
rate; for 90% of the URLs classified as flaky, at least
70% of the fetches would have failed if they had not
been bypassed preemptively. Moreover, a third of by-

passed requests would have resulted in a timeout exceed-
ing one second if not bypassed preemptively. Because
flaky URLs constitute a small fraction of overall traffic,
correcting these errors has limited impact on aggregate
page load time. However, exceptionally slow page loads
tend to be particularly unpleasant for users, leading us to
focus on reducing their impact.
Tamper detection. Our tamper detection mechanisms
track cases of middleboxes modifying our HTTP traffic.
While we do observe cases of benign tampering, we find
that obstructive tampering is rare. For example, over the
period of a week, 45 mobile carriers modified our content
length header at least once, and 115 carriers appended an
extra Via header (indicating the presence of an additional
proxy). However, these cases do not significantly hin-
der user experience; we have only dealt with obstructive
tampering on a handful of occasions.

5 Related Work
Optimizing proxy services have received significant at-
tention in the literature, and this work informs our de-
sign. This paper differs in two main ways. First, our en-
vironment is unique; we focus on the co-design of a mod-
ern mobile browser, operating system, and proxy infras-
tructure. The second difference is scale; we report op-
erational and performance results from millions of users
spread across the globe. As far as we know we are the
first to report on the incidence and variety of issues en-
countered by a proxy of this kind.
Web proxies. In the late 90’s researchers investigated
proxies for improving HTTP performance [22, 39, 41]
and accommodating mobile devices [19, 29–31, 40]. We
revisit these ideas in the context of modern optimiza-
tions, client platforms, and workloads.
User studies. Others studied the effects of data pric-
ing [21, 46], performance [43], and page layout [58] on
user behavior. This work reinforces our motivation.
Performance optimizations. At the proxy, we em-
ploy known proxy optimizations such as prefetch [16,
35, 41]. By virtue of building on Google infrastruc-
ture, we also benefit from transport-level performance
optimizations [28, 44]. We do not apply more aggres-
sive optimizations such as ‘whole-page’ content rewrit-
ing [20, 34, 38] or client offload [48, 52], since in our ex-
perience even simple changes like CSS import flatten-
ing [5] can break some web pages, and our goal is full
compatibility with existing pages.

Other work has focused on evaluating existing perfor-
mance optimizations [16, 24, 27, 47, 50, 51]. Our mea-
surements are derived from a large scale production en-
vironment with real user traffic.
Data reduction optimizations. Data reduction tech-
niques beyond those we employ include WiFi of-

fload [14] and differential caching [17,33,37,42,54,59].
Since differential caching only applies to text resources
its effect on overall data reduction are limited compared
to optimization of images and video, as we quantified in
our evaluation of SDCH [17].
Alternate designs. VPN-based compression [4, 6, 7] of-
fers an alternative to HTTP interposition. The main ad-
vantage of VPN-interposition is ubiquity: all traffic can
be optimized without modifying applications. But, in-
terposition at the level of raw packets does not lend it-
self to transport optimizations like SPDY or application-
specific mechanisms like proxy bypass, which depends
on the client reissuing requests. Flywheel instead inte-
grates with Chrome, which allows us to retain the proto-
col information required for flexible failure recovery.

Transparent web proxies, which are deployed by many
carriers today [25,55–57], present another design option.
The main benefit of in-network optimization is that it re-
quires no client modifications whatsoever. But, as with
VPNs, interposing at the network level limits options for
optimization and failure recovery, and transparent prox-
ies are applicable only within a particular network.

The proxy service with the closest design to ours is
Opera Turbo [9]. Although Opera has not published the
details of their optimizations or operation, we performed
a point comparison of Flywheel and Turbo’s data reduc-
tion gains, and found that Flywheel provides comparable
data reduction.

Other mobile browsers [1, 8, 10] feature more aggres-
sive optimization based on server-side transcoding of en-
tire pages; e.g. Opera Mini rewrites pages into a pro-
prietary format optimized for mobile called OBML [8],
and offloads some JavaScript execution to servers rather
than clients. While whole-page transcoding can signif-
icantly improve data reduction, pages that rely heavily
on JavaScript or modern web platform features are often
broken by the translation; e.g. touch events are unsup-
ported by Opera Mini [8]. Maintaining an alternative ex-
ecution environment to support whole-page transcoding
is not feasible for Flywheel given our design goal of re-
maining fully compatible with the modern mobile web.

6 Summary
We have presented Flywheel, a data reduction proxy ser-
vice that provides an average 58% byte size reduction of
HTTP content for millions of users worldwide. Flywheel
has been in production use for several years, providing
experience regarding the complexity and tradeoffs of op-
erating a data reduction proxy at Internet scale. We find
that data reduction is the easy part. The practical realities
of operating with geodiverse users, transient failures, and
unpredictable middleboxes consume most of our effort,
and we report these tradeoffs in the hope of informing
future designs.

References
[1] Amazon Silk. http://s3.amazonaws.com/

awsdocs/AmazonSilk/latest/silk-dg.pdf.

[2] Chrome SafeBrowse. http://www.google.com/
transparencyreport/safebrowsing/.

[3] Data Compresion Proxy Canary URL.
https://support.google.com/chrome/answer/
3517349?hl=en.

[4] Microsoft Data Sense. http:
//www.windowsphone.com/
en-us/how-to/wp8/connectivity/
use-data-sense-to-manage-data-usage.

[5] mod pagespeed. https://developers.google.com/
speed/pagespeed/module.

[6] Onavo. http://www.onavo.com/.

[7] Opera Max. http://www.operasoftware.com/
products/opera-max.

[8] Opera Mini and Javascript. https://dev.opera.
com/articles/opera-mini-and-javascript/.

[9] Opera Turbo. http://www.opera.com/turbo.

[10] Skyfire - A Cloud Based Mobile Optimiza-
tion Browser. http://www.skyfire.com/
operator-solutions/whitepapers.

[11] SPDY Whitepaper. http://www.chromium.org/
spdy/spdy-whitepaper.

[12] WebP: A New Image Format For The Web. http:
//developers.google.com/speed/webp/.

[13] Which Browsers Handle ‘Content-Encoding:
gzip‘? http://webmasters.stackexchange.com/
questions/22217/.

[14] A. Balasubramanian, R. Mahajan, and
A. Venkataramani. Augmenting Mobile 3G
with WiFi. MobiSys ’10.

[15] H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul.
An Active Transcoding Proxy to Support Mobile
Web Access. Reliable Distributed Systems ’98.

[16] C. Bouras, A. Konidaris, and D. Kostoulas. Predic-
tive Prefetching on the Web and its Potential Impact
in the Wide Area. WWW ’04.

[17] J. Butler, W.-H. Lee, B. McQuade, and K. Mixter.
A Proposal for Shared Dictionary Compres-
sion over HTTP. http://lists.w3.org/Archives/
Public/ietf-http-wg/2008JulSep/att-0441/
Shared Dictionary Compression over HTTP.
pdf.

[18] A. Chabossou, C. Stork, M. Stork, and P. Za-
honogo. Mobile Telephony Access and Usage in
Africa. African Journal of Information and Com-
munication ’08.

[19] S. Chandra, C. S. Ellis, and A. Vahdat. Application-
Level Differentiated Multimedia Web Services us-
ing Quality Aware Transcoding. IEEE Selected Ar-
eas in Communications ’00.

[20] S. Chava, R. Ennaji, J. Chen, and L. Subramanian.
Cost-Aware Mobile Web Browsing. IEEE Perva-
sive Computing ’12.

[21] M. Chetty, R. Banks, A. Brush, J. Donner, and
R. Grinter. You’re Capped: Understanding the Ef-
fects of Bandwidth Caps on Broadband Use in the
Home. CHI ’12.

[22] C.-H. Chi, J. Deng, and Y.-H. Lim. Compression
Proxy Server: Design and Implementation. USITS
’99.

[23] CNN. Mobile Apps Overtake PC Internet Us-
age in U.S. http://money.cnn.com/2014/02/28/
technology/mobile/mobile-apps-internet/.

[24] B. de la Ossa, J. A. Gil, J. Sahuquillo, and A. Pont.
Web Prefetch Performance Evaluation in a Real En-
vironment. IFIP ’07.

[25] G. Detal, B. Hesmans, O. Bonaventure,
Y. Vanaubel, and B. Donnet. Revealing Mid-
dlebox Interference with Tracebox. IMC ’13.

[26] P. Deutsch. GZIP File Format Specification, May
’96. RFC 1952.

[27] J. Erman, V. Gopalakrishnan, R. Jana, and K. Ra-
makrishnan. Towards a SPDY’ier Mobile Web?
CoNEXT ’13.

[28] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-
Bassett, and R. Govindan. Reducing Web Latency:
The Virtue of Gentle Aggression. SIGCOMM ’13.

[29] A. Fox, S. D. Gribble, Y. Chawathe, and E. A.
Brewer. Adapting to Network and Client Vari-
ation Using Infrastructural Proxies: Lessons and
Perspectives. IEEE Personal Communications ’98.

[30] R. Han, P. Bhagwat, R. LaMaire, T. Mummert,
V. Perret, and J. Rubas. Dynamic Adaptation in an
Image Transcoding Proxy for Mobile Web Brows-
ing. IEEE Personal Communications ’98.

http://s3.amazonaws.com/awsdocs/AmazonSilk/latest/silk-dg.pdf
http://s3.amazonaws.com/awsdocs/AmazonSilk/latest/silk-dg.pdf
http://www.google.com/transparencyreport/safebrowsing/
http://www.google.com/transparencyreport/safebrowsing/
https://support.google.com/chrome/answer/3517349?hl=en
https://support.google.com/chrome/answer/3517349?hl=en
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/use-data-sense-to-manage-data-usage
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/use-data-sense-to-manage-data-usage
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/use-data-sense-to-manage-data-usage
http://www.windowsphone.com/en-us/how-to/wp8/connectivity/use-data-sense-to-manage-data-usage
https://developers.google.com/speed/pagespeed/module
https://developers.google.com/speed/pagespeed/module
http://www.onavo.com/
http://www.operasoftware.com/products/opera-max
http://www.operasoftware.com/products/opera-max
https://dev.opera.com/articles/opera-mini-and-javascript/
https://dev.opera.com/articles/opera-mini-and-javascript/
http://www.opera.com/turbo
http://www.skyfire.com/operator-solutions/whitepapers
http://www.skyfire.com/operator-solutions/whitepapers
http://www.chromium.org/spdy/spdy-whitepaper
http://www.chromium.org/spdy/spdy-whitepaper
http://developers.google.com/speed/webp/
http://developers.google.com/speed/webp/
http://webmasters.stackexchange.com/questions/22217/
http://webmasters.stackexchange.com/questions/22217/
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://lists.w3.org/Archives/Public/ietf-http-wg/2008JulSep/att-0441/Shared_Dictionary_Compression_over_HTTP.pdf
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/
http://money.cnn.com/2014/02/28/technology/mobile/mobile-apps-internet/

[31] B. C. Housel and D. B. Lindquist. WebExpress: A
System for Optimizing Web Browsing in a Wireless
Environment. MobiCom ’96.

[32] International Telecommunications Union.
The World in 2014: ICT Facts and Fig-
ures. http://www.itu.int/en/ITU-D/Statistics/
Documents/facts/ICTFactsFigures2014-e.pdf.

[33] U. Irmak and T. Suel. Hierarchical Substring
Caching for Efficient Content Distribution to Low-
Bandwidth Clients. WWW ’05.

[34] B. Livshits and E. Kiciman. Doloto: Code Splitting
for Network-Bound Web 2.0 Applications. SIG-
SOFT/FSE ’08.

[35] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal,
and A. Ntoulas. PocketWeb: Instant Web Browsing
for Mobile Devices. SIGARCH ’12.

[36] M. Meeker. Internet Trends
2014. http://pathwaypr.com/
must-read-mark-meekers-2014-internet-trends.

[37] L. A. Meyerovich and R. Bodik. Fast and Parallel
Webpage Layout. WWW ’10.

[38] J. Mickens. Silo: Exploiting JavaScript and DOM
Storage for Faster Page Loads. WebApps ’10.

[39] J. C. Mogul, F. Douglis, A. Feldmann, and B. Kr-
ishnamurthy. Potential Benefits of Delta Encoding
and Data Compression for HTTP. SIGCOMM ’97.

[40] B. D. Noble and M. Satyanarayanan. Experience
with Adaptive Mobile Applications in Odyssey.
Mobile Networks and Applications ’99.

[41] V. N. Padmanabhan and J. C. Mogul. Using Predic-
tive Prefetching to Improve World Wide Web La-
tency. SIGCOMM ’96.

[42] K. Park, S. Ihm, M. Bowman, and V. S. Pai.
Supporting Practical Content-Addressable Caching
with CZIP Compression. ATC ’07.

[43] A. Patro, S. Rayanchu, M. Griepentrog, Y. Ma, and
S. Banerjee. Capturing Mobile Experience in the
Wild: a Tale of Two Apps. ENET ’13.

[44] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. CoNEXT ’11.

[45] C. Reis, S. D. Gribble, T. Kohno, and N. C. Weaver.
Detecting In-Flight Page Changes with Web Trip-
wires. NSDI ’08.

[46] N. Sambasivan, P. Lee, G. Hecht, P. M. Aoki, M.-I.
Carrera, J. Chen, D. P. Cohn, P. Kruskall, E. Wetch-
ler, M. Youssefmir, et al. Chale, How Much It
Cost to Browse?: Results From a Mobile Data Price
Transparency Trial in Ghana. ICTD ’13.

[47] S. Savage, T. Anderson, A. Aggarwal, D. Becker,
N. Cardwell, A. Collins, E. Hoffman, J. Snell,
A. Vahdat, G. Voelker, et al. Detour: Informed In-
ternet Routing and Transport. IEEE Micro ’99.

[48] A. Sivakumar, V. Gopalakrishnan, S. Lee, and
S. Rao. Cloud is Not a Silver Bullet: A Case Study
of Cloud-based Mobile Browsing. HotMobile ’14.

[49] W3Techs. Usage of SPDY for Websites.
http://w3techs.com/technologies/details/
ce-spdy/all/all.

[50] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystify Page Load
Performance with WProf. NSDI ’13.

[51] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. How speedy is SPDY?
NSDI ’14.

[52] X. S. Wang, H. Shen, and D. Wetherall. Accel-
erating the Mobile Web with Selective Offloading.
MCC ’13.

[53] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Si-
moncelli. Image Quality Assessment: From Error
Visibility to Structural Similarity. IEEE Image Pro-
cessing ’04.

[54] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie.
How far can client-only solutions go for mobile
browser speed? WWW ’12.

[55] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang.
An untold story of middleboxes in cellular net-
works. SIGCOMM ’11.

[56] N. Weaver, C. Kreibich, M. Dam, and V. Paxson.
Here Be Web Proxies. PAM ’14.

[57] X. Xu, Y. Jiang, E. Katz-Bassett, D. Choffnes, and
R. Govindan. Investigating Transparent Web Prox-
ies in Cellular Networks. Technical Report 007-
90818, University of Southern California.

[58] D. Zhang. Web Content Adaptation for Mobile
Handheld Devices. CACM ’07.

[59] K. Zhang, L. Wang, A. Pan, and B. B. Zhu. Smart
Caching for Web Browsers. WWW ’10.

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://pathwaypr.com/must-read-mark-meekers-2014-internet-trends
http://pathwaypr.com/must-read-mark-meekers-2014-internet-trends
http://w3techs.com/technologies/details/ce-spdy/all/all
http://w3techs.com/technologies/details/ce-spdy/all/all

	Introduction
	Background
	Design & Implementation
	Goals & Constraints
	Client Support: Chrome
	Server
	Multiplexed Fetching
	Data Reduction
	Preconnect and Prefetch
	HTTP Caching
	Anomaly Detection

	Evaluation
	Workload
	Data reduction
	Performance
	Fault Tolerance

	Related Work
	Summary

