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Abstract: We propose a frequency-modulated continuous wave (FMCW) radar estimation algorithm
with high resolution and low complexity. The fast Fourier transform (FFT)-based algorithms and
multiple signal classification (MUSIC) algorithms are used as algorithms for estimating target param-
eters in the FMCW radar systems. FFT-based and MUSIC algorithms have tradeoff characteristics
between resolution performance and complexity. While FFT-based algorithms have the advantage of
very low complexity, they have the disadvantage of a low-resolution performance; that is, estimating
multiple targets with similar parameters as a single target. On the other hand, subspace-based
algorithms have the advantage of a high-resolution performance, but have a problem of very high
complexity. In this paper, we propose an algorithm with reduced complexity, while achieving the
high-resolution performance of the subspace-based algorithm by utilizing the advantages of the two
algorithms; namely, the low-complexity advantage of FFT-based algorithms and the high-resolution
performance of the MUSIC algorithms. The proposed algorithm first reduces the amount of data used
as input to the subspace-based algorithm by using the estimation results obtained by FFT. Secondly,
it significantly reduces the range of search regions considered for pseudo-spectrum calculations
in the subspace-based algorithm. The simulation and experiment results show that the proposed
algorithm achieves a similar performance compared with the conventional and low complexity
MUSIC algorithms, despite its considerably lower complexity.

Keywords: FMCW radar; estimation; super resolution; low complexity; search area

1. Introduction

Recently, there has been growing interest in radar sensors in various fields, such as
vehicles, surveillance, defense, etc. This is because radar sensors are robust under several
conditions such as humidity, strong light, and bad weather [1–6]. In particular, among
several kinds of radar sensors, frequency-modulated continuous wave (FMCW) radar
systems are widely employed due to their low costs and low power consumption, even
with a small size [7–16]. The FMCW radar have many merits compared with the ultra-wide
band pulse radar, such as the low transmitted power and performance to simultaneously
estimate the range and velocity of targets. In addition, due to the significantly lowered
frequency band after mixing, the circuit complexity of the hardware is simplified [17,18].

In the FMCW radar systems, fast Fourier transform (FFT) is employed as a represen-
tative technique for estimating the distance, the velocity, and the angle of targets [9–14].
This is because the frequency of the sine wave, the so-called beat-frequency, is used for
distance estimation in the FMCW radar systems. As is well known, FFT-based algorithms
provide the same output as discrete Fourier transform, and have significantly lower com-
plexity. For instance, in [14], FFT was employed in order to estimate the range of targets for
surveillance applications. In [14], in order to solve the blind speed problem, an FFT was
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performed on the difference between two ramp signals randomly selected. In [15], in order
to reduce the complexity while improving the angular resolution, the FFT was utilized
after extrapolation. For extrapolation, the authors used the multiplications among multiple
received signals. In [10–13], multidimensional, i.e., 2D and 3D FFT-based algorithms, were
used for the estimation of target information. To further reduce computational complexity,
in [11], they reversed the order of the FFT for distance estimation and FFT for velocity
estimation. In [16], in order to further reduce the redundant complexity, they selected
one method between the FFT and the partial discrete Fourier transform (DFT) for velocity
estimation, based on the number estimated targets by FFT for range estimation. However,
due to the limitations on available bandwidth, FFT-based algorithms might not achieve
the fine resolution of estimation results. This means that, in a case where the distances or
velocities of the multiple targets are similar, it might be estimated as if they were a single
target, despite being multiple targets.

In FMCW radar systems, to solve this problem of estimators based on FFT, subspace-
based algorithms have been studied [19–32]. In [19,20], Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT)-based algorithms are employed to accurately
estimate the direction of arrival (DOA) of targets. In [19], they estimated the DOA of
targets by employing the ESPRIT algorithm. In particular, they constructed a covariance
matrix into a Toeplitz matrix and symmetrical structure. Thus, they achieved higher angle
resolution compared to the conventional ESPRIT algorithm. In [20], the authors tried to
improve the angle resolution by employing the ESPRIT algorithm in FMCW radar systems.
They proposed an ESPRIT processor with a scalable number of antennas, and designed the
FPGA-based systems to verify the performance.

In [23–36], multiple signal classification (MUSIC) algorithms, which are representative
subspace-based algorithms, have been proposed. In [25], authors have proposed the
distributed 2D MUSIC algorithm with coordinated transformation in a distributed way. In
this paper, each radar performed 2D MUSIC with its own received signal in the transformed
coordinates. In [26,27], they have extended the antenna array structure from 1D to 2D
to perform the joint 3D estimation of range, azimuth, and elevation angles. In [26], for
3D MUSIC spectrum calculation, they employed the augmented 2D steering vector and
connected two 2D steering vectors in a specific way. In [27], they have proposed the
3D MUSIC algorithm with auto-pairing by employing 3D shift-invariant stacked Hankel
matrix, which consists of 1D Hankel matrices. In [29,32,34], authors employed the FFT-
estimation to reduce the computational complexity of MUSIC algorithm for FMCW radar
systems. In [34], first, range estimation based on FFT is performed, and thus range bins
are obtained. Then, a 1D MUSIC algorithm is performed to estimate Doppler frequency
with high resolution; only for the obtained range bins where the targets exist. By doing so,
computational complexity is reduced compared to the 2D MUSIC algorithm. However, it is
possible to estimate a plurality of adjacent targets as a single target, which may degrade the
performance of 1D MUSIC performed for Doppler estimation, because the range estimation
is based on FFT with low resolution. In [29,32], authors tried to reduce the redundant
complexity of the MUSIC algorithm by decreasing the number of input samples based on
FFT estimation results. The conditions in which the resolution performance of the range
and DOA is not degraded are presented, and thus, the overall complexity is reduced by
decreasing the number of inputs of the MUSIC algorithm based on the FFT estimation.
However, there are still drawbacks. In the step of pseudo-spectrum calculations to scan
in MUSIC algorithms, they considered all the regions regardless of the information of the
targets. Hence, there were a lot of unnecessary operations included, because the targets
are mostly limited to specific regions. If the number of types of parameters considered
increases, that is, if the number of dimensions increases, the resulting complexity increase
becomes more critical.

In this paper, the proposed algorithm further reduces the redundant complexity by
reducing the number of redundant samples in the input step of the MUSIC algorithm, and
by limiting the region considered in the process of the pseudo spectrum calculation, where
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targets are located. In order to search the location of targets, we utilized the results of the
FFT-based estimation with low complexity. Moreover, by considering two kinds of parame-
ters, i.e., the range and DOA, 2D data are considered in this paper. By complexity analysis,
we illustrated how much computation was saved by the proposed algorithm for various
parameters. Moreover, the simulation and experiment results show that the proposed
algorithm achieves a similar performance compared to, not only the conventional MUSIC
algorithm, but also the low complexity MUSIC algorithm [29], despite its considerably
lower complexity. Furthermore, we derive the optimal number of samples in the antenna
domain according to the FFT-estimation result. Thus, the expression that is complicated
in [32] is expressed as a simple form.

The remainder of this paper is organized as follows. Section 2 describes the system
model of the FMCW radar system and data structure. In Section 3, 2D FFT and 2D MUSIC
algorithms are addressed. Then, in Section 4, the proposed algorithms are illustrated. In
Section 5, the performance and complexity of the proposed algorithm are analyzed and
verified through simulations and experiments using 24 GHz FMCW radar systems. Finally,
Section 6 concludes this paper and Section 7 deals with discussion and further studies.

2. System Model and Data Structure

In this section, we address the system model and data structure considered in this
paper. We consider the FMCW radar system, which has one transmitted (TX) antenna and
K received (RX) antennas, as shown in Figure 1.
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Figure 1. System model of the considered FMCW radar (1 TX and K RX antennas).

The TX FMCW radar signal sTX(t) is radiated from TX antenna, i.e., sTX(t) is repre-
sented by:

sTX(t) = exp
(

j2π

(
fct +

∫ t

0
µτ dτ

))
, for 0 ≤ t ≤ T (1)

where fc is the central frequency of FMCW radar system, µ is a slope that linearly increases
with a slope according to time τ during one sweep duration T, i.e., µ = B/Twhere B
is the analog bandwidth of FMCW radar system as shown in Figure 2a. The TX signal
sTX(t) is total L times transmitted and thus the lth TX signal is denoted by sTX

l (t) =
sTX(t− (l − 1)T) for 1 ≤ l ≤ L. We consider that the TX signal is reflected by M targets
and is received K RX antennas as shown in Figure 2b. In Figures 1 and 2, for simplicity,
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where fc is the central frequency of FMCW radar system, µ is a slope that linearly increases
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the two targets are considered. The reflected signal by the mth target sm,l(t) is expressed
as follows:

sm,l(t) = α̃msTX
l (t− td,m) exp(j2π fD,m((l − 1)T)) (2)

where α̃m is the complex amplitude of the reflected signal by the mth target, td,m is the delay
time due to the range between radar and the mth target, and fD,m is the Doppler frequency,
due to the moving velocity of the mth target. The reflected signal sm,l(t) is received at the

kth RX antenna, and the RX signal s(k)l (t) is expressed as:

s(k)l (t) =
M

∑
m=1

α̃msm,l(t) exp
(

j2πds(k− 1) sin θm

λ

)
+ z̃(k)l (t) (3)

where ds is the distance (space) between adjacent RX antennas, θm is DOA of the mth target
as in Figure 1, λ is the wavelength, and z̃(k)l (t) is the additive white Gaussian noise (AWGN)
component at the kth RX antenna. As shown in the left side in Figure 1, the RX signals are
mixed by the conjugate of TX signal, and thus the mixed signal, so-called ‘beat signal’, is
denoted by y(k)l (t), i.e., y(k)l (t) = s(k)l (t)s∗TX(t) for 1 ≤ k ≤ K and is expressed as:

y(k)l (t) = s(k)l (t)× s∗TX(t)

=
M
∑

m=1
α̃m,l exp(−j(2π fctd,m − µt2

d,m/2))
︸ ︷︷ ︸

,α̇m,l

exp(−j2πµtd,mt)

× exp(j2π fD,m((l − 1)T))exp
(

j2πd(k−1) sin θm
λ

)
+ z̃(k)l (t)× s∗TX

l (t)
︸ ︷︷ ︸

,z(k)l (t)

.

(4)

Assuming ds = λ/2, (4) is simply rewritten in terms of range, Doppler, DOA, and
noise as follows:

y(k)l (t) =
M
∑

m=1
α̇m,l exp(−j2πµtd,mt)︸ ︷︷ ︸

range

exp(j2π fD,m((l − 1)T))︸ ︷︷ ︸
Doppler

× exp(jπ(k− 1) sin θm)︸ ︷︷ ︸
DOA

+ z(k)l (t)
︸ ︷︷ ︸
AWGN

.
(5)

As shown in Figure 1, the analog beat signal y(k)l (t) is converted to the digital signal.

The analog to digital convert (ADC) beat signal y(k)l [n] is expressed as follows:

y(k)l [n] =
M

∑
m=1

α̇m,l exp(−j2πµtd,mnts)︸ ︷︷ ︸
,xm [n]

exp(j2π fD,m((l − 1)T))︸ ︷︷ ︸
,v(l)m

× exp(jπ(k− 1) sin θm)︸ ︷︷ ︸
,ψk

m

+ z(k)[nts]︸ ︷︷ ︸
,z(k)l [n]

for 1 ≤ n ≤ Ns (6)

where ts(= 1/ fs) is sampling time interval, fs is the sampling frequency, and Ns is the
number of total samples, i.e., bNs = T/tscwhere b·c is the floor operator to the nearest
integer number. Figure 2c shows an example of the two beat signals at the kth RX antenna
after mixing. The mth beat frequency f b

m increases as the delay increases, and, thus, the mth
beat frequency that arrives earlier is lower compared with the m + 1th beat frequency that
arrives later. In the FMCW radar system, the delay time is estimated by estimating this beat
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frequency, and the range of the mth target d̂m is estimated based on the estimated delay
time as follows:

d̂m =
td,m × c

2
=

fb,m × c
2µ

. (7)

Figure 3 illustrates the process structure to obtain the 3D data matrices with respect to
time, antenna, and the chirp domains. The total K beat signals of length Ns are concatenated
to form a matrix of Ns × K. Let us denote Yl by the 2D data matrix at the lth chirp. Then,
the 3D data matrix is finally generated by concatenating Yl for 1 ≤ l ≤ L. Figure 4 shows
the structure of the 3D data matrix obtained. The range, angle, and velocity are estimated
through frequency estimations of these data matrices in the time domain, antenna domain,
and chirp domain, respectively [16]. If the estimators based on 3D FFT are used, while
range, speed, and DOA can be estimated with low complexity, there is a problem, in
that adjacent parameters cannot be distinguished, due to the characteristics of the low
resolution of FFT. On the other hand, by employing the subspace-based algorithms instead
of FFT, the problem of the degradation of resolution can be solved, but the computational
complexity significantly increases. In other words, there is a tradeoff between resolution
and complexity between the two kinds of algorithms. In the next section, we address these
algorithms, and then we propose a suboptimal solution to the problems of two kinds of
algorithms. However, for convenience and efficient explanation, this paper focuses only on
the estimation of range and DOA.
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Figure 4. Structure of data matrix with respect to time, antenna, and chirp domains.

3. 2D FFT and 2D MUSIC Algorithms for FMCW Radar
3.1. 2D FFT Algorithm

This section describes the 2D FFT algorithm for FMCW radar. The FFT algorithm is the
most widely used frequency estimation algorithm. The FFT significantly reduces complexity
while providing the same output as the DFT by avoiding the redundant computation
complexity in the DFT operation. Therefore, the FFT algorithm is considered one of
the representative estimation algorithms in the FMCW radar systems. First, for range
estimation, the NR × K range bins are obtained by performing NR point FFT operation for
1 ≤ k ≤ K where NR is the size of FFT for range estimation. The pth FFT output on yk

l [n],

i.e., the uth range bins, is denoted by Y(k)
l [p], and it is calculated as follows:

Y(k)
l [p] =





Ns
∑

n=1
y(k)l [n] exp

(−j2π(n−1)(p−1)
NR

)
, for 1 ≤ p ≤ Ns

0, for Ns + 1 ≤ p ≤ NR.
(8)

Secondly, for DOA estimation, NA point FFT operation on NR × K range bins is
performed in the antenna domain. That is, the qth FFT output on Y(k)

l [p] is denoted by

Y(q)
l [p], and it is calculated as follows:
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Y(q)
l [u] =





K
∑

k=1
Y(k)

l [p] exp
(−j2π(k−1)(q−1)

NA

)
, for 1 ≤ q ≤ K

0, for K + 1 ≤ q ≤ NA.
(9)

Then, the peak detection on the magnitude of Y(q)
l [p], i.e., |Y(q)

l [p]| is performed, and
thus the M peak pairs are obtained, i.e., (pm, qm) for 1 ≤ m ≤ M. From these peak pairs,
the range and DOA are estimated.

As shown in Figure 5, however, it might be incorrectly estimated as a single target,
even though there are multiple adjacent targets, since the resolution of the FFT operation is
low. The circles in Figure 5 are the actual range and DOA of targets. In this case, super-
resolution algorithms with a higher resolution than the FFT are required. In Section 3.2,
the 2D MUSIC algorithm is introduced as a representative algorithm of super-resolution
algorithms.
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Figure 5. Example of correct and incorrect cases of FFT estimation.

3.2. 2D MUSIC Algorithm

This section describes the 2D MUSIC algorithms for the FMCW radar. Figure 6
illustrates the structure of the 2D MUSIC algorithm. First, the smoothing operation is
performed on the data matrix Y, in order to increase the rank of the matrix. A detailed
description of the smoothing operation is shown in Figure 7. Figure 7a shows an example
of the window selection for smoothing operation, where wt and wa are the window lengths
into the time sample and antenna domains, respectively. The selected window matrix is
transformed into a column vector of length wtwa, as shown in Figure 7b. This process is
repeated a total of nant times, that is, shifting the window position na times in the direction
of the antenna domain and nt times in the direction of the time sample domain. Then,
the smoothing operation for one chirp signal is finished, and it proceeds to all L chirp
signals, i.e., 1 ≤ l ≤ L. After the smoothing operation is completed, a 3D data matrix of
size wtwa × ntna × L, which is denoted by Ỹ is obtained. Then, from the 3D matrix Ỹ, the
2D covariance matrix R of size wtwa × wtwa is calculated as follows [35]:

R =
1

2ntna

L

∑
l=1

[
ỸlỸ

H
l + J(ỸlỸ

H
l )J
]

(10)

where Ỹl is the lth matrix of Ỹ, and J is the wtwl × wtwl exchange matrix. The element of
the ith row and the jth column of J is denoted by J(i, j) and is expressed as:

J(i, j) =
{

1, if j = n− i + 1
0, if j 6= n− i + 1

. (11)
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The singular value decomposition (SVD) operation is performed on the covariance
matrix R. The covariance matrix R is divided into subspaces of the signal and noise, i.e.,
Usignal and Unoise, as follows:

R = UsignalDUH
signal + σ2

noiseUnoise, (12)

where D is the diagonal matrix of eigenvalues, (·)H is the Hermitian operator, and σ2
noise

means the noise power. The M signal subspaces are Usignal = [u1, u2, . . . , uM] where ui
is the ith eigenvector and Unoise = [uM+1, uM+2, . . . , uwtwl ]. From Unoise, the range-angle
pseudo noise spectrum PMUSIC(R, θ) is calculated as follows:

PMUSIC(R, θ) =
1

v(R, θ)HUnoiseUH
noisev(R, θ)

(13)

where v(R, θ) is the steering vector of length wtwa × 1 corresponding to range and DOA.
The steering vector v(R, θ) is calculated as v(R, θ) = [v(R)

⊗
v(θ)] where

⊗
is the Kro-

necker product operator, v(R) and v(θ) are the range and DOA steering vectors, respec-
tively, and they are expressed as:

v(R) = [1, exp(j4πBR/(cT fs)), exp(j8πB/(cT fs)), . . . , exp(j(wt − 1)4πB/(cT fs))], (14)

v(θ) = [1, exp(j(2πdsin(θ))/λ), . . . , exp(j(2π(wa − 1)dsin(θ))/λ)]. (15)
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Figure 7. Example of smoothing algorithm to increase rank of correlation matrix for 2D MUSIC
algorithm.

Figure 8 shows the comparison of the resolution between the 2D MUSIC and 2D FFT
algorithms. The resolution of the 2D MUSIC algorithm shown in Figure 8a is higher than
that of the FFT algorithm shown in Figure 8b. However, the computation complexity of 2D
MUSIC algorithm is significantly higher compared with the FFT algorithm. Therefore, in
Sections 3.3 and 4, a low complexity MUSIC algorithm that overcomes the shortcomings of
this 2D MUSIC algorithm is introduced.
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Figure 8. Comparison of resolution between 2D MUSIC and 2D FFT algorithms.

3.3. Low Complexity MUSIC Algorithm Using FFT Estimation

This section introduces a low complexity MUSIC algorithm using FFT estimation [29].
In general, in FMCW radar systems, the sample rate is determined based on the maximum
detection range, i.e., the number of sample Ns is as follows:

Ns =

⌊
4Bd̂max

c

⌋
(16)

where c is the speed of the electromagnetic wave.
However, the target is usually closer than the maximum detection range. Therefore,

this algorithm first estimates the approximate range of the target using FFT, selects only
the samples necessary for the estimated range, and uses them instead of Ns as an input
to the MUSIC algorithm. Figure 9 illustrates the structure of the low complexity MUSIC
algorithm. The resized number of samples N′s is calculated as follows [29]:

N′s =

⌊
4Bd̂FFT

m
c

⌋
(17)

where d̂FFT
m is the estimated range by FFT. In most cases, since d̂FFT

m is smaller than dmax, the
redundant computational complexity is reduced.
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Figure 9. Structure of the low complexity MUSIC algorithm.

However, there is still redundant computational complexity in this algorithm. The
case for all regions are considered when calculating the pseudo spectrum. Moreover, the
DOA estimation is not considered in this paper. In the next section, in order to overcome
this disadvantages of this algorithm, we propose a super resolution algorithm that further
reduces the complexity by limiting the region of area in which the pseudo-spectrum is
obtained in the area where the targets exist.
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4. Proposed Subspace-Based Estimation Algorithm for FMCW Radar

In this section, we illustrate the low complexity subspace-based estimation algorithm.
The proposed algorithm overcomes the disadvantages of the low complexity algorithm
in [29] by limiting the region of the pseudo-spectrum to the area where the targets exist.

Figure 10 shows the structure of the proposed algorithm. The proposed algorithm first
estimates range and DOA by 2D FFT. To this end, a 2D data matrix composed of the time
sample and antenna domains is generated by merging the 3D data matrix onto the Doppler
domain. This 2D data matrix is converted into the range-DOA domain by performing 2D
FFT and thus, the estimated range d̂FFT

m and the estimated DOA θ̂FFT
m are obtained. These

two estimation results d̂FFT
m and θ̂FFT

m are used first as a criterion for resizing the data matrix
to be input to the MUSIC algorithm and, secondly, employed as a criterion for reducing the
search area in the process of the pseudo-spectrum in the MUSIC algorithm.
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Figure 10. Structure of the proposed algorithm.

The resizing criteria for the range, i.e., N′s is based on (17). Meanwhile, in the case of
K′, it is determined by the relation between θ̂FFT

m and field of view (FOV) θFOV. The FOV
according to the distance between adjacent RX antennas ds is expressed as [32]:

θFOV = sin−1
(

λ

2d

)
. (18)

From (18), the distance between adjacent RX antennas ds is rewritten as:

ds =
λ

2 sin(θFOV)
. (19)

Figure 11 illustrates the relationship between adjacent RX antennas ds under the
condition with the same DOA resolution. As the distance ds between the antennas increases,
the DOA resolution is maintained even with a small number of antennas, but the FOV is
narrowed, and thus, ambiguity occurs. By employing the relation FOV and ds and (20),
the ds is obtained as follows: From (18), the distance between adjacent RX antennas ds is
rewritten as:

ds =
d0λ

2
(20)

where d0 is the integer number indicating the distance between RX antennas, i.e., d0 ∈
[1, 2, 3, 4]. Therefore, d0 is calculated by FFT DOA estimation θ̂FFT

m as:

d0 =

⌈
1

sin
(
θ̂FFT

m
)
⌉

(21)

where d·e is the ceil operator. From these results, it is found that there is no degradation
of DOA resolution performance, even if a portion of the data matrix is used as in [32]. By
doing so, it is expected that the number of data in antenna domain can be reduced.

Figure 12 shows an example of the process of reducing the size of the data matrix to be
input into the MUSIC algorithm. The size of data matrix Ns × K becomes N′s × K′, where
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the reduced number of data in antenna domain is K′. The resizing criteria in the antenna
domain of the data matrix are as follows:

K′ =
K
d0

. (22)

In Figure 12, YNs and YA mean the selected data matrices by (17) and (22), respectively.
Finally, the reduced data matrix YRD is generated from corresponding to the intersection
YNs and YA. As mentioned above, based on the range-DOA results by 2D FFT estimation,
the optimal condition in which the performance degradation of the range-DOA resolution
does not occur is obtained.
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Figure 11. Relation between FOV and the distance between adjacent RX antennas d under the
condition with the same DOA resolution.
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Figure 12. Example of the process of reducing the size of the data matrix of the proposed algorithm.

Then, the reduced data matrix YRD is subjected to smoothing, covariance matrix, and
SVD operations, as in the conventional MUSIC algorithm in Figure 6. In these processes,
the size of the data matrix is significantly reduced, and thus, the computational complexity
required for smoothing, covariance matrix generation, and SVD operation is also signifi-
cantly reduced compared to the conventional MUSIC algorithm. After that, a process of
calculating a pseudo-spectrum based on the noise eigenvector obtained through SVD is
performed. In this process, the correlations between the candidate values of range and
DOA with the eigenvector of noise are calculated. Since the estimated values are orthogonal
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to the noise eigenvector, the result of the correlation becomes 0. Therefore, these correlation
values appear as peaks because they are located in the denominator. In this process, the
proposed algorithm drastically reduces the range of candidate values for calculating the
correlation with the noise eigenvector, compared to not only the conventional MUSIC
algorithm, but also the reduced MUSIC algorithm [29]. Figure 13 illustrates an example of
the comparison of the search region for calculation of the pseudo-spectrum between the
reduced MUSIC algorithm [29] and the proposed algorithm. In the conventional and the
reduced MUSIC algorithms, all regions are considered as candidate values, as shown in
the black line in Figure 13. In other words, a region of 0 ≤ d ≤ dmax for range and a region
of −90◦ ≤ θ ≤ 90◦ for DOA is considered. On the other hand, in the proposed algorithm,
the regions of candidate values are limited around the range-DOA values estimated by 2D
FFT rather than all regions as shown in the white squares in Figure 13. By doing so, the
proposed algorithm significantly reduces the complexity compared to the conventional and
the reduced MUSIC algorithms.
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Figure 13. Example of the comparison of the search region between the reduced [29] and proposed
algorithms.

5. Performance Evaluation
5.1. Simulation Results

This section confirms that the complexity of the proposed algorithm is reduced without
degrading the performance of the proposed algorithm compared to the conventional and
the reduced 2D MUSIC algorithm through the simulation results. The distance between
adjacent RX antennas is set to half wavelength, i.e., ds = λ/2, and the center frequency fc
is set to 24 GHz. The complex amplitude ȧm,l was independently and randomly generated
from uniform distribution and its magnitude, and the phase terms are 0 ≤ |ȧm,l | ≤ 1 and
0 ≤ ∠ȧm,l ≤ 2π, respectively. The results of Monte Carlo simulation are averaged over
105 estimates. For convenience, the conventional, the low complexity algorithm [29], and the
proposed MUSIC algorithms are called ‘conventional algorithm’, ‘reduced algorithm’, and
‘proposed algorithm’, respectively, from now on. The parameter values for the simulation
are shown in Table 1.
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Table 1. Parameter values for simulations.

Parameter Value

Center frequency, f0 24 GHz

Bandwidth, B 100 MHz

Chirp duration, T 100 µs

SNR 10 dB

Number of samples, Ns 66

Sampling frequency, fs 0.67 MHz

Figure 14 shows the root mean square errors (RMSE) of the conventional, the reduced,
and the proposed algorithms. Figure 14a,b show the RMSEs of the range and DOA estima-
tions, respectively. From the results, it is shown that the RMSEs of the conventional, the
reduced and the proposed MUSIC algorithms are almost the same. This implies that the
proposed algorithm has almost no performance degradation compared to the conventional
and reduced algorithms, despite the reduced complexity.
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Figure 14. RMSE according to SNR.

5.2. Complexity Analysis

In this section, the computational complexity of conventional, reduced, and proposed
algorithms is analyzed. In order to analyze the burden of complexity of these algorithms,
the required number of multiplications of the main operations is compared [37]. As the main
operations to be reflected in the complexity analysis, the generation of the correlation matrix,
SVD operation, and pseudo-spectrum operations are employed. For convenience, the
variables representing the complexity of the conventional, the reduced, and the proposed
algorithms are denoted by Cconventional, Creduced, and Cproposed, respectively.

The conventional MUSIC algorithm requires that L covariance matrices, SVD, noise
subspace, and pseudo-spectrum. Hence, Cconventional is calculated as:

Cconventional =
LKNs(KNs + 1)

2︸ ︷︷ ︸
L covariance matrices

+
16
5

K3N3
s

︸ ︷︷ ︸
SVD

+
(KNs −M)(KNs + 1)

2︸ ︷︷ ︸
Noise subspace

+KNs(KNs + 1)(2N∆θ N∆R)︸ ︷︷ ︸
Pseudo−spectrum

(23)

where N∆R and N∆θ are the number of candidate samples of the range region and the DOA
region to scan, respectively.
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In the case of the reduced MUSIC algorithm, 2D FFT are employed in order to estimate
of targets. In addition, the complexity is adaptively changed according to the estimated
range and estimated DOA. Therefore, the estimated ranges and the estimated DOAs of the
targets are set as average values, assuming that they were uniformly distributed, i.e., it was
assumed that K′ = K/2 and N′s = Ns/2. Hence, the Creduced is calculated as:

Creduced =
NR

2
(K log2 NR + NA log2 NA)

︸ ︷︷ ︸
2D FFT

+
LKNS(KNS + 4)

32︸ ︷︷ ︸
Lcovariancematrices

+
1
20

K3N3
S

︸ ︷︷ ︸
SVD

+
(Ns − 4M)(Ns + 4)

32︸ ︷︷ ︸
Noisesubspace

+
KNs

16
(KNs + 4)(2N∆θ N∆R)

︸ ︷︷ ︸
Pseudo-spectrum

. (24)

In the proposed algorithm, the resizing of data matrix is the same as in the reduced
MUSIC algorithm. In order to reflect the reduction of search region for range and DOA
regions to scan, let us denote N′∆R and N′∆θ by the reduced N∆R and the reduced N∆R by
the proposed algorithm. The averages of N′∆R and N′∆θ calculated as E[N′∆R × N′∆θ ] �
N∆R × N∆R. Therefore, Cproposed is as follows:

Cproposed =
NR

2
(Klog2NR + NAlog2NA)

︸ ︷︷ ︸
2D FFT

+
LKNs(KNs + 4)

32︸ ︷︷ ︸
L covariance matrices

+
1

20
K3N3

s
︸ ︷︷ ︸

SVD

+
(Ns − 4M)(Ns + 4)

32︸ ︷︷ ︸
Noise subspace

+
M′KNs(KNs + 4)

(
N′∆θ + N′∆R

)

8︸ ︷︷ ︸
Pseudo spectrum

(25)

where M′ is the number of peaks of 2D FFT estimation. According to the simulation results,
it was confirmed that the average region of the proposed algorithm was only about 0.2% of
the case of reduced algorithm when M ∈ [2, 4].

Figure 15a shows the required number of multiplications according to the num-
ber of samples Ns for several numbers of antennas K. The number of targets M was
set to 4, and the number of chirp signals L was set to 128. In the case of K = 4 and
Ns = 512, In the case of Ns = 512 and K = 4, the proposed algorithm achieves about 91
and 136 times lower complexity compared to the reduced and the conventional MUSIC al-
gorithms, respectively. As the number of samples Ns decreases, the reduction by proposed
algorithm also decreases. However, even in the case of Ns = 8192 and K = 4, the proposed
algorithm achieves about 8.8 and 70 times lower complexity compared to the reduced and
the conventional MUSIC algorithms, respectively. In the case of K = 16 and Ns = 512, the
proposed algorithm achieves about 194 and 217 times lower complexity compared to the
reduced and the conventional MUSIC algorithms, respectively. For convenience, Figure 15b
shows the ratio of complexities of the proposed and the reduced MUSIC algorithms, i.e.,
Ratio = Creduced/Cproposed. From Figure 15b, the complexity of the proposed algorithm is
lower than the reduced MUSIC algorithm for 512 ≤ Ns ≤ 8, 192 and 4 ≤ K ≤ 16.
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Figure 15. Comparison of the required number of multiplications according to the number of samples Ns.

5.3. Experiments

In this section, the experimental results are analyzed to check that the proposed
algorithm works well under practical conditions. As shown in Figure 16a, the considered
radar system consists of the front end module (FEM) part and the back end module (BEM)
part, as in [15]. The FEM part consists of the TX and RX parts, as shown in Figure 17. The
number of TX antennas is two, and that of RX antennas is eight. The TX part contains the
voltage controlled oscillator (VCO), the micro controller unit (MCU), frequency synthesizer,
and power amplifiers (PA). The MCU controls the frequency synthesizer with phase-locked
loop. The VCO outputs are amplified by PA and then are connected to the two TX antennas.
One TX antenna in two TX antennas is selected because they can not work simultaneously.
The azimuth angles of two TX antennas cover 26◦ and 12◦, respectively. Meanwhile, the RX
part includes the low-noise amplifiers, and the high-pass and low-pass filters. The azimuth
and elevation of RX antennas cover 99.6◦ and 9.9◦. The RX signals are received to the eight
RX antennas and The RX signals pass the low noise amplifiers (LNAs) and thus their SNRs
are improved. The output of LNAs are multiplied to TX signals and then the outputs of
high pass filters are amplified by PA with 6 dB gain and variable gain amplifiers (VGAs)
with −2.5 dB to 42.5 dB gain. Then, the outputs pass the low pass filters with 1.7 MHz and
finally, the beat signals of the eight channels of FMCW radar are obtained. Meanwhile, the
BEM part includes a field programmable gate array and digital signal processing (DSP).
The eight beat signals from FEM are converted from analog to digital signals with 20 MHz
sampling rate through analog to digital converter. After the external memory is filled,
through Ethernet cable, the ADC data is moved to the computer to observe the experiment
results. Figure 16b shows the photo of experiment environment. As shown in Figure 16,
two persons are employed as targets. The ranges and angles of the two targets were set
close enough to be indistinguishable by the FFT estimator.
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Figure 16. Images of front-end module and back-end module for the experiment.
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Figure 17. Block diagram of the front end module of 24 GHz FMCW radar for experiment.

The experiment results of the reduced algorithm and the proposed algorithm are
shown in Figure 18. Since the reduced algorithm considers all regions in the process of
obtaining a pseudo-spectrum, the range-DOA map covers the entire region, as shown in
Figure 18a. On the other hand, in Figure 18b, in the results of the proposed algorithm, only
the region where the target exists was considered. From these results, it is confirmed that
the range-DOA estimation results of the two algorithms are the same. This implies that the
proposed algorithm reduces the complexity, while achieving a similar performance to the
conventional algorithm.
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Figure 18. Experimental results of the reduced and proposed MUSIC algorithms (3.03 m and 3.17 m).

6. Conclusions

This paper proposed a low-complexity 2D MUSIC algorithm by reducing the region
of the pseudo-spectrum and the input of the MUSIC algorithm. It was shown that the
computational complexity can be reduced by limiting the search area to scan based on the
FFT estimator, which is a representative low-complexity algorithm. The simulation results
showed that the complexity reduction of more than 100 times was achieved by the proposed
algorithm. The effectiveness of the proposed algorithm was verified by simulations and
experiments using 24 GHz FMCW radar systems. Therefore, the proposed algorithm is one
of solutions to solve the high complexity of the subspace-based algorithms.

7. Discussion

This section covers the limitations and further work on the proposed algorithm. In
the proposed algorithm, when the number of peaks of 2D FFT is very large, the search
regions to be partially calculated also increase. As a future study, we plan to analyze how
many peaks achieve lower complexity compared to previous algorithms. Furthermore, the
implementation and pipeline structure of the proposed algorithm, as an FPGA will be dealt
with later.
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