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Abstract—Sparsity-driven synthetic aperture radar (SAR) imag-
ing technique for frequency modulation continuous wave (FMCW)
has already shown the superiority in terms of performance im-
provement in imaging and recovery from down-sampled data.
However, restricted by the computational cost, conventional
FMCW SAR sparse imaging method based on observation matrix
is not able to achieve the large-scale scene reconstruction, not to
mention real-time processing. To solve this problem, the FMCW
SAR sparse imaging theory based on approximated observation is
proposed by using an echo simulation operator to replace typical
observation matrix, and recovering the scene via 2-D regularization
operation. This new technology can achieve high-resolution sparse
imaging of the scene with a computational cost close to that of
traditional matched filtering algorithms, which makes several ap-
plications, such as early-warning and battlefield monitoring, possi-
ble by using FMCW SAR sparse imaging system. In this article, we
present the recent research progress on approximated observation-
based FMCW SAR sparse imaging to deal with a few key issues for
practical radar systems. In particular, we describe: first, Lq-norm
(0 < q ≤ 1) regularization-based imaging technique that makes
sparse reconstruction of large-scale scene possible; second, L2,q-
norm regularization-based imaging technique that minimizes the
azimuth ambiguities in high-resolution sparse imaging; and third,
a sparse imaging technique that supports real-time applications of
FMCW SAR imaging.

Index Terms—Approximated observation, frequency
modulation continuous wave (FMCW), Lq-norm regularization,
L2,q-norm regularization, real-time imaging, sparse imaging,
synthetic aperture radar (SAR).
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I. INTRODUCTION

M
ODERN synthetic aperture radar (SAR) is an active

microwave imaging system usually mounted on a flying

platform to acquire high-resolution images of the ground by

transmitting and receiving electromagnetic waves. Compared

with optical imaging, SAR has an all-time and all-weather

surveillance capability that has been widely used in military

and civilian applications [1]–[3]. Compared with typical pulse

mode, frequency modulation continuous-wave (FMCW) SAR

has shown good potential in transmitted power and system

cost reduction, and hence has been widely used for short-range

imaging applications [4]–[6]. Up to now, several matched fil-

tering (MF)-based algorithms, such as range-Doppler algorithm

(RDA) [7], nonlinear frequency scaling algorithm (FSA) [8],

wavenumber domain algorithm (WDA) [9], back-projection

algorithm (BPA) [10], and chirp-Z algorithm [11] have been

applied in FMCW SAR imaging to successfully obtain the well

focused images of surveillance regions.

To satisfy the condition of Nyquist–Shannon sampling the-

ory [12], [13], the amount of used data has to be increased

for improving the imaging performance of SAR system [14].

Therefore, reducing the complexity of radar system becomes

a critical issue of the system design and implementation for

large-scale scene imaging. It is difficult, if not impossible, to

use these MF-based methods to minimize the cost of radar sys-

tem that produces high-resolution images from down-sampled

data. In addition, high-resolution, wide-swath, and real-time

processing have been currently the main requirements of modern

SAR systems. This will significantly increase the amount of

SAR data especially for the large-scale scene recovery. It is

also become important to reduce system complexity and data

volume [15]. To cope with these critical issues, sparse signal

processing including compressive sensing (CS) technique [16]–

[18] was introduced to SAR imaging to achieve high-resolution

reconstruction of sparse scene [19]–[21]. In 2010, Patel et al.

[22] developed an exact observation-based CS-SAR imaging

model by discretizing the imaging geometry and transmitted sig-

nal exactly into an observation matrix, and used regularization

technique to achieve the sparse recovery of considered scene. In

2012, Zhang et al. [23] demonstrated the concept and method of

sparse SAR imaging. Then, Çetin et al. [24] summarized the typ-

ical observation matrix-based sparse SAR imaging theory and

pointed out its application prospects in several fields. In 2013,

Ender reported a brief review about CS-based radar imaging

to express concerns that huge computational cost is required for
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nonsparse scenes. Therefore, CS-SAR imaging may be problem-

atic for practical SAR data processing [25]. According to these

works of literature, conventional sparse SAR imaging method,

i.e., observation matrix-based method [22]–[25], may need to

address the following unsolved issues that are critical for any

practical FMCW SAR radar systems.

1) Large-scale scene sparse reconstruction: Because 2-D

raw data matrix has to be arranged into a vector to construct

the observation matrix for every image point, the con-

ventional FMCW SAR sparse imaging method generally

requires inhibitive memory space for recovering large

scale scenes. For a scene with 1024× 8192 points, this

method needs a memory space of 64 TB and more than

100 days of processing to achieve a focused image, which

is nearly impossible and unacceptable to be supported by

current computing facilities.

2) Azimuth ambiguity suppression: An important advantage

of sparse SAR imaging is sparse scene recovery from

down-sampled data achieved by reducing the system pulse

repetition frequency (PRF) during data collection. This

process will decrease the system complexity and improve

the swath width simultaneously. It is known that the az-

imuth ambiguity, caused by the down-sampling operation,

decreases the recovered image quality and increases the

false alarming rate. Therefore, the issue of minimizing

azimuth ambiguity should be studied for high-resolution

FMCW SAR sparse imaging.

3) Real-time imaging: In military applications, such as battle-

field warning and monitoring, real-time imaging is the key

requirement of FMCW SAR system. However, since the

computational complexity of observation matrix-based

method is proportional to the square of scene size, the com-

putation time is unbearable for large-scene recovery, not to

mention real-time processing. This seriously restricts the

application prospects of sparse imaging. Therefore, novel

real-time FMCW SAR sparse imaging method has to be

investigated to meet the real-time processing requirement.

In 2012, the approximated observation-based sparse imag-

ing theory [23], [26], [27] was proposed, which uses an

echo simulation operator to replace observation matrix, and

recovers the scene of interest by 2-D regularization opera-

tion. In pulse-mode-based SAR imaging, this approximated

observation-based method has been applied in Stripmap, Spot-

light, Scan, TOPS SAR applications [26], [28]–[30], and suc-

cessfully used in the airborne [31] and spaceborne [32] SAR data

processing, which makes wide-swath high-resolution sparse

imaging possible. To adequately deal with the above issues,

in 2019, the idea of approximated observation was first in-

troduced to FMCW SAR for practical sparse imaging [33].

Compared with MF-based methods, it improves the recovered

image quality effectively in terms of suppressing sidelobes,

noise, and clutter, and even obtains the high-resolution image

from down-sampled echo data. Motivated by the concept of

approximated observation, this article will present an overview

on the theory of FMCW SAR sparse imaging to solve the above-

mentioned problems. The main contributions are summarized as

follows.

1) Approximated observation-based FMCW SAR sparse

imaging method is demonstrated with 2-D imaging model

establishment, operator construction, azimuth-range de-

couple, andLq-norm (0 < q ≤ 1) regularization recovery,

which make sparse recovery of large-scale scene possible

in FMCW SAR [23], [32], [33].

2) To suppress azimuth ambiguities, we construct a novel

unambiguous FMCW SAR sparse imaging model, and

propose an approximated observation-based L2,q-norm

regularization method to process the collected FMCW

SAR data. By considering the ambiguity suppression in

the model construction and algorithm implementation,

this method can obtain the image with less ambiguities

compared to Lq-norm-based method [41].

3) To further speed up the FMCW SAR sparse imaging

process, a real-time method based on approximated ob-

servation will be reported to make sparse imaging method

become an easily used technique for practical FMCW

SAR applications [32], [42].

4) In addition, the implementation algorithm of these FMCW

SAR sparse imaging methods are unified in this article and

their computational complexity will be comprehensively

analyzed and compared with MF and conventional obser-

vation matrix-based imaging methods, respectively [33].

The rest of this article is organized as follows. In Section II, we

will briefly introduce the principle of conventional observation

matrix-based FMCW SAR sparse imaging method, highlight the

main challenges of this conventional method, and demonstrate

the necessity of the research to be reported. Then, Section III

will discuss the approximated observation-based imaging tech-

nique via Lq-norm regularization recovery. In Section IV, to

minimize the azimuth ambiguity, the proposed approximated

observation-based L2,q-norm regularization method is intro-

duced from 2-D unambiguous imaging model establishment to

mixed norm-based regularization recovery scheme. Motivated

by the concept of approximated observation, an improved real-

time sparse imaging method is demonstrated in Section V. Then,

the comprehensive analysis and comparison of these approx-

imated observation sparse imaging methods will be shown in

Section VI. Finally, in Section VII, conclusions are drawn to

summarize our current work in this direction.

II. OBSERVATION MATRIX-BASED FMCW SAR

SPARSE IMAGING

In the process of FMCW SAR data collection, we assume the

surveillance region is rectangular, withNU pixels in azimuth and

NW pixels in range, and characterize a point by its 2-D index

(u,w). Let X denote a NU ×NW matrix whose (u,w) entry

is scattering amplitude x(u,w), and x = vec(X) ∈ C
N×1 with

N = NU ×NW , where the operation vec(·) stacks the matrix

columns one after the other. Let ⌊a⌋ represent the floor of a

nonnegative real number a. For 1 ≤ n ≤ N , we define un =
⌊(n− 1)/NU⌋+ 1 and wn = n− (un − 1)NU . Then, the nth

entry of x is x(un, wn). Let s(tr) = exp{j2πf0tr + jπKrt
2
r}

represent the transmitted signal, where f0 is the carrier fre-

quency, Kr is the chirp rate, and tr is the range time. The
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dechirp-on-receive signal at time (ta, tr) can be expressed as [5]

y (ta, tr) =

N
∑

n=1

x(un, wn) · exp {−j2πf0τd(n)}

·exp {−j2πKrτd(n)tr} · exp{jπKrτd(n)
2} (1)

where ta is the azimuth time, and τd(n) is the wave propagation

round-trip delay time of the nth entry, which is given by

τd(n) =
2c2

c2 − v2

[

R (ta, tr; pn, qn)

c
+

v2

c2
(ta + tr − τn)

]

(2)

where c is the speed of light, v is the velocity of platform, τn is

the zero-Doppler time of point x(un, wn), andR(ta, tr;un, wn)
is the instantaneous slant range at time (ta, tr) of the nth point.

Let Yf
∼= {y(ta, tr)} ∈ C

Na×Nr represent the fully sampled

2-D raw data. Then, the typical MF imaging procedure, R(·),
can be expressed as [33]

XMF = R (Yf ) . (3)

Several MF-based algorithms, such as RDA [7], FSA [8],

WDA [9], and BPA [10], can achieve accurate reconstruction

of the surveillance regions via the imaging process in (3), and

obtain high-resolution SAR images. However, it is difficult to use

these methods to further improve the recovered image quality in

terms of sidelobes and noise suppression, as well as recover the

sparse scene from down-sampled data.

To solve the above-mentioned problems of MF-based meth-

ods, sparse signal processing technique was introduced to

FMCW SAR. Let yf = vec(Yf ) ∈ C
L×1 with L = Na ×Nr.

By denoting the sampling matrix asΨ ∼= {ψm} ∈ R
M×L,M ≤

L, we can express the 1-D down-sampled raw data y ∈ C
M×1

as

y = Ψyf = ΨAx+ n0 = Φx+ n0 (4)

where A ∼= {A(l, n)}L×N is the system observation matrix,

Φ ∼= {φ(m,n)}M×N is the system measurement matrix, and

n0 is the noise vector. If raw data y is band limited, i.e.,

down-sampled data, the model in (4) leads to an ill-conditioned

inverse problem, which has either no solution or infinitely many

solutions. Therefore, some assumptions are needed to obtain

the unique solution of (4). As discussed in [16]–[18], if x is

sparse enough, i.e., ‖x‖0 ≪ L, and Φ satisfies the condition of

restricted isometry property, we can recover x by solving the

Lq-norm regularization problem

x̂ = min
x

{

‖y −Φx‖2
2
+ λ ‖x‖qq

}

(5)

where λ is the regularization parameter. Several algorithms can

be used to solve the above optimization problem. When q = 0,

the iterative hard thresholding algorithm [34] and greedy algo-

rithm [35] can be utilized for the scene recovery. Furthermore,

when x is sparse enough, an L1-norm can be used to replace the

L0-norm to achieve the regularization reconstruction, known

as basis pursuit [36] or least absolute shrinkage and selection

operator (Lasso) solution [37]. For example, iterative soft thresh-

olding (IST) algorithm [38] and complex approximated message

passing (CAMP) algorithm [39] have been reported in the works

of literature to solve theL1-norm optimization problem. In 2012,

the idea of Lq(0 < q < 1)-norm regularization was proposed to

obtain more sparse solution than L1-norm [40]. Without loss of

generality, we select IST as an example in this article for solving

different kinds of Lq-norm regularization problems.

Conventional observation matrix-based sparse imaging

method has shown desirable merits in several aspects, such as

imaging performance improvement, super-resolving focusing,

and sparse scene recovery from down-sampled data. However,

it needs too much computational complexity to transfer the 2-D

raw data into a vector to achieve the azimuth-range decoupling

in sparse reconstruction, which becomes a major obstacle to be

applied for practical large-scale scene recovery [23]–[25].

III. APPROXIMATED OBSERVATION-BASED FMCW SAR

SPARSE IMAGING FOR LARGE-SCALE SCENE RECOVERY

Similar to 1-D imaging, we can write the 2-D FMCW SAR

imaging model as

Y = Ξa ◦Yf ◦Ξr = Ξa ◦ (HX) ◦Ξr +N0 (6)

where the symbols are defined as follows.

Due to the existence of azimuth-range coupling in the 2-D

echo data domain, H could not be constructed directly as A in

(4). Thus it is impossible to achieve sparse reconstruction via the

model in (6). An alternative method, introduced in Section II,

requires too much computational cost especially for the large-

scale scene recovery. To solve this problem, an approximated

observation-based method was proposed for focusing FMCW-

mode SAR image [23], [26], [32], [33]. With the help of (6), the

MF imaging procedure in (3) can be rewritten as

XMF = R (Yf ) = R (HX) . (7)

Due to the existence of sidelobes, noise, and clutter, XMF is

always the approximation of X. Therefore, if RH = I, then

we can use M = R−1, the inverse of MF imaging procedure, to

approximateH, whereM is known as echo simulation operator.

Thus, the basic idea of the approximated observation can be

generalized as

M (X) = R−1 (X) = HX. (8)

With the above replacement, the 2-D FMCW SAR imaging

model can be written as [33]

Y = Ξa ◦Yf ◦Ξr = Ξa ◦M (X) ◦Ξr +N0. (9)

For the model in (9), we can recover the scene of interest by

solving a 2-D Lq-norm regularization problem

X̂ = min
X

{

‖Y −Ξa ◦M (X) ◦Ξr‖
2

F + λ ‖X‖qq

}

. (10)

For clarity, this approximated observation-based sparse imaging

method is known asLq-De. The key ofLq-De is the construction

of M, which can be implemented based on existing MF-based

imaging algorithms. Fig. 1 shows the three typical MF-based

FMCW SAR imaging procedures. The abbreviations in Fig. 1

are defined as follows.
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Fig. 1. Flow diagrams of different MF-based methods for FMCW SAR imaging.

It is seen that nearly all steps in these methods, i.e.,D1 andD3

in RDA [7],H1 −H5 in FSA [8], andW1,W2 in WDA [9], are

achieved by Hadamard product indicated by symbol◦. Thus their

conjugate matrices, denoted by (·)∗, can be used for describing

the echo simulation procedure. Only two operations, RCMCD2

in RDA, and Stolt interpolation processingW3 in WDA, cannot

be achieved by simple phase multiplication. Thus, the required

inverse steps, D
†
2 and W

†
3 in M, are achieved by interpolation

operation. According to the above analysis and the imaging

procedures in Fig. 1, we can write the detailed expressions as

follows.

Constructed M based on RDA

M (·) = F−1
a [D∗

1 ◦ (D
†
2 (D

∗
3 ◦ (Fa(·)))Fr)]F

−1
r . (11a)

Constructed M based on FSA

M (·) =

F−1
a

[

H∗
1 ◦ (H

∗
2 ◦ (H

∗
3 ◦H

∗
4 ◦H

∗
5 ◦ (Fa(·)))Fr)F

−1
r

]

.(11b)

Constructed M based on WDA

M (·) = F−1
a [W∗

1 ◦W
∗
2 ◦W

†
3 (Fa(·)Fr)]F

−1
r . (11c)

With help of constructed M in (11), several algorithms have

been proposed to solve the Lq-norm regularization problem

in (10), such as IST-based method [26] and CAMP-based

method [28]. In Lq-norm regularization-based sparse imaging,

theoretically, the smaller the value of q, the more sparse solution

will be obtained. In real data processing, however, it is found

that there is almost no difference in the reconstructed images for

Fig. 2. Flow diagram of iterative recovery algorithm for the model in (10).

different values of q. Therefore, we usually take q = 1 as an ex-

ample for the real data processing. The flow diagram of iterative

recovery algorithm for the model in (10) is shown in Fig. 2. It

should be noted that for the model in (10), three different kinds

of M in (11) have a similar effect in algorithm implementation

when performing the echo data collection process. Therefore,
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for spare imaging based on model in (10), we need to select one

of MF-based imaging algorithms to construct operators R and

M, and guarantee the consistency of R and M in the process

of iterative recovery.

In [32], the analysis of computational cost shows that com-

pared to observation matrix-based sparse imaging method,

named as Lq-Ob, Lq-De method reduces the computational

complexity by one to two orders of that needed by MF, which

makes sparse imaging of large-scale scene in FMCW SAR possi-

ble. The detailed analysis and comparison on the computational

complexities needed by the different kinds of sparse imaging

methods will be performed in Section VI.

IV. APPROXIMATED OBSERVATION-BASED FMCW SAR

SPARSE IMAGING FOR AMBIGUITY SUPPRESSION

In SAR imaging, due to the finite azimuth sampling frequency,

i.e., PRF, frequencies outside [fdc − PRF/2, fdc + PRF/2]will

be folded into the main Doppler spectrum band, which causes

the azimuth ambiguity [3], where fdc is the Doppler center

frequency. The center frequency of the ith azimuth ambiguity in

the Doppler spectrum domain is

fc = fdc + i · PRF, i ∈ Z and i �= 0 (12)

where i ∈ Z
− and i ∈ Z

+ are the shifting indexes of ambiguity

Doppler spectrum in the left and right sides of the main spec-

trum (i = 0), respectively. The above-mentioned relationship

between original target and its azimuth ambiguities can be

regarded as a group-sparsity property, which can be solved by

using the regularization-based method [23].

LetRi andMi denote the MF and inverse imaging procedures

of ith azimuth ambiguity, i ∈ Z and R0 = R, M0 = M. It is

easy to know that Ri has the same expression as R, only with

different azimuth frequency fa used in the imaging process. Mi

can be also obtained in the same way. Then, we can rewrite the

2-D sparse SAR imaging model in (9) as

Y = Ξa ◦Yf ◦Ξr = Ξa ◦
∑

i

Mi (Xi) ◦Ξr +N0 (13)

and obtain the unambiguous sparse image as

X̂ = min
X

⎧

⎨

⎩

∥

∥

∥

∥

∥

Y −Ξa ◦
∑

i

Mi (Xi) ◦Ξr

∥

∥

∥

∥

∥

2

F

+ λ1

∥

∥

∥

∥

∥

∑

i

Xi

∥

∥

∥

∥

∥

q

2,q

+ λ2 ‖X‖qq

⎫

⎬

⎭

, q ∈ (0, 1] (14)

with

∥

∥

∥

∥

∥

∑

i

Xi

∥

∥

∥

∥

∥

q

2,q

=

⎡

⎢

⎣

∑

u

⎛

⎝

∑

w

∣

∣

∣

∣

∣

∑

i

Xi(u,w)

∣

∣

∣

∣

∣

2
⎞

⎠

q/2
⎤

⎥

⎦

1/q

(15)

where X0 = X, and Xi ∈ C
NU×NW is the backscattering co-

efficient of the ith azimuth ambiguity. In (14), the L2,q-norm

term represents the group sparsity penalty of Xi with regu-

larization parameter λ1, and the Lq-norm term restricts the

Fig. 3. Flow diagram of iterative recovery algorithm for the model in (14).

scene sparsity penalty with λ2. The flow diagram of iterative

recovery algorithm for the model in (14) is shown in Fig. 3. For

clarity, this ambiguity suppression method is named as Lp,q-De.

When q = 1, the detailed iterative recovery procedures are listed

in [41].

Let us explain howL2,q-De achieves the effective suppression

of azimuth ambiguity in FMCW SAR sparse imaging. We first

consider the azimuth ambiguity terms in the constructed model

in (13). After exploiting the group sparsity of ambiguity and

original imaging targets, the proposed method shown in Fig. 3

can effectively suppress the ambiguity through L2,q-norm reg-

ularization operation in iterative recovery, and hence obtain the

high-resolution unambiguous image.

V. COMPLEX IMAGE-BASED FMCW SAR REAL-TIME

SPARSE IMAGING

In order to further reduce the computational complexity of

sparse imaging for real-time data processing, a complex image-

based FMCW SAR sparse imaging method was proposed and

successfully used in imaging performance improvement [42].

For the collected full-sampling echo data Yf , similar to (9), we

can express the relationship between Yf and X as

Yf = M (X) +N0. (16)

Then, performing the MF operation R(·) on both sides of (16),

we have

R (Yf ) = R (M (X) ) +R (N0)

⇔ XMF = X+N (17)
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Fig. 4. Flow diagram of iterative recovery algorithm for the model in (18).

where N = R(N0) ∈ C
NU×NW is a matrix that denotes the

difference between XMF and X to include all kinds of artifacts

such as noise and sidelobes. Then, the scene X can be recovered

by solving the 2-D Lq-norm regularization problem

X̂ = min
X

{

‖XMF −X‖2F + λ ‖X‖qq

}

. (18)

The flow diagram of the iterative recovery algorithm for the

model in (18) can be summarized in Fig. 4. As discussed in [42],

when the data are fully sampled, the method in Fig. 4, named

as Lq-Re, can achieve identical sparse imaging result to that

of Lq-De in Section III. It is important to be aware that this

method effectively reduces the computational complexity of

sparse imaging to be infinitely close to that needed by MF-

based method, which enables the real-time data processing. In

addition, in the absence of original echo data, Lq-Re can still

be processed-based on the MF recovered complex image to

improve the image quality. Of course, it also has an undesirable

limitation of processing the down-sampled echo data that may

be required by some applications.

VI. COMPARISON OF APPROXIMATED OBSERVATION-BASED

FMCW SAR SPARSE IMAGING METHODS

A. Computational Complexity and Memory Requirement

Compared to observation matrix-based sparse imaging

method, the main superiority of approximated observation-

based methods is the reduced requirements of computation and

data memory, which allows it to process the large-scale scenes.

Let M = Na ×Nr and N = NU ×NW represent the number

of points in the echo data Y and considered scene X, I1 denotes

the required steps of the iterative recovery algorithms for Lq-Ob

described in (5) [23], Lq-De in (10) [26], L2,q-De in (14) [41],

and Lq-Re in (18) [42]. Because these algorithms [23], [26],

[41], [42] use the similar iterative recovery principle, they need

similar steps for the algorithm convergence. In practical SAR

data, because only the first left and right ambiguity areas can be

seen in the focused image, we normally set I = 3 in L2,q-De to

include the main imaging area, the first left and the first right

ambiguity areas.

In Table I, we have listed the computational complexities

needed by MF, conventional observation-based, and approxi-

mated observation-based FMCW SAR sparse imaging methods,

respectively. It is found that influenced by the vectorization

operation of echo data and considered scene, the computational

complexity of Lq-Ob has reached a squared order of scene

size, i.e., O(I1MN), which is unacceptable for the large-scale

scene recovery. In contrast, the approximated observation-based

sparse imaging methods have reduced the complexity close to

that of MF with O(M log(M)). In addition, it can be seen that

compared with MF-based method, the complexity of Lq-Re is

increased only by the thresholding process O(I1 N), which

is the main reason of Lq-Re can be used for real-time sparse

imaging. Table I also lists the memory requirement of discussed

methods. It is seen that all approximated observation-based

methods reduce the memory size to the same order as that of

MF, which is far below the requirement of Lq-Ob. This means

that the memory capacity of the computing platform is no longer

the obstacle of sparse imaging.

B. Sparse Imaging From Fully Sampled Data

When the data are fully sampled, as listed in Table I, it is seen

that all the sparse imaging methods can be applied for the sparse

and nonsparse scene recovery. In this case, these sparse imaging

methods can be simply regarded as the regularization-based SAR

imaging approach, because the requirements of the sampling

theorem are met. Figs. 5 and 6 show the recovered images of

sparse and nonsparse scenes by MF,Lq-De,L2,q-De, andLq-Re

from full-sampled echo data. Experimental parameters of all

simulated and real data-based experiments are shown in Table II.

Consistent with the theoretical analysis in Table I, it is seen that

all sparse imaging methods can well reconstruct the considered

scene, regardless of whether the scene is sparse or not. Compared

with the typical MF-based result, it is found that the focused

image of the sparse imaging methods have better performance,

such as less noise, clutter and sidelobes, especially in the area

with weak backscattering amplitude. It should be noted that in all

experiments reported in this article, we use FSA as the example

to construct operators R and M to validate the approximated

observation-based sparse imaging methods.

C. Sparse Imaging From Down-Sampled Data

When the collected data no longer satisfy the requirement

of sampling theorem, as shown in Figs. 7(e) and (i) and 8(b),

MF method could not recover the simulated scene any more.
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Fig. 5. (a) Optical image of ship target. Recovered images of sparse scene by (b) MF, (c) Lq-De, (d) L2,q-De, and (e) Lq-Re, respectively. The input data are
fully sampled. Horizontal axis is the azimuth direction.

Fig. 6. (a) Optical image of surveillance region (Google Earth). Recovered images of nonsparse scene by (b) MF, (c) Lq-De, (d) L2,q-De, and (e) Lq-Re,
respectively. The input data are fully sampled. Horizontal axis is the azimuth direction.

Fig. 7. Recovered images of sparse simulated scene from down-sampled data by (from left to right column) MF, Lq-De, L2,q-De, and Lq-Re, respectively. The
sampling ratios are 100%, 20%, and 10% from upper to lower row, respectively.
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TABLE I
COMPARISON OF DIFFERENT FMCW SAR SPARSE IMAGING METHODS

Fig. 8. (a) Optical image of surveillance region (Google Earth). Recovered images of nonsparse scene from 80% down-sampled data by (b) MF, (c) Lq-De, (d)
L2,q-De, and (e) Lq-Re, respectively. Horizontal axis is the azimuth direction.

TABLE II
EXPERIMENTAL PARAMETERS

Its reconstructed images have obvious energy dispersion along

the azimuth direction, especially for the targets with strong

backscattering. Since Lq-Re is the regularization operation on

the basis of MF recovered images, it cannot remedy the de-

focused image due to the lack of data. Thus,Lq-Re either cannot

obtain the well focused image from down-sampled data [42] [see

Figs. 7(h) and (l) and 8(e)].

For the sparse scene, Lq-De and L2,q-De can achieve high-

resolution sparse images from down-sampled data even with a

sampling ratio of 10%. This is in accordance with the theoretical

analysis, that is, the approximated observation-based FMCW

SAR sparse imaging methods have the down-sampling imaging

capability that is similar to the observation matrix-based imaging

method. However, the main advantage is to efficiently process

the data for large-scale images. In addition, Fig. 7 also shows that

compared with MF, the sparse imaging methods can suppress

sidelobes to make imaging performance improvement. However,

when the scene of interest is nonsparse, as shown in Fig. 8,

Lq-De and L2,q-De are also powerless especially for the strong

targets.

D. Azimuth Ambiguity Suppression

To validate the effectiveness of L2,q-De in azimuth ambiguity

suppression, five point targets with amplitude values of 0.3, 0.5,

1.0, 0.8, 0.3 (from top to bottom) are placed in the surveillance

region to simulate the sparse scene. The reason for setting the

amplitude values in this way is to ensure that the azimuth

ambiguity’s amplitude of the strongest target is greater than

that of the weakest one. Fig. 9 depicts the recovered images
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Fig. 9. Recovered images of sparse scene by (a) MF, (b) Lq-De, (c) L2,q-De, and (d) Lq-Re, respectively. The input data are 50% uniform down-sampled.

Fig. 10. Recovered images of (a) sparse scene by Lq-De from 30% random down-sampled data and (b) nonsparse scene by Lq-De from fully sampled data.

by MF, Lq-De, L2,q-De, and Lq-Re, respectively, from 50%

uniform down-sampled data. It can be seen that due to the lack

of data, the image recovered by the MF method shows obvious

ambiguity in the azimuth direction, and hence results in the

failed reconstruction. Lq-De can suppress ambiguity of weak

targets based on the regularization constraints and cannot do

much reduction of strong ambiguity. The main reason is that

the ambiguities’ amplitude of the targets with strong backscat-

tering are stronger than the weak targets, which makes these

ambiguities being recovered as the targets. After constructing

the ambiguity term into the imaging model and suppressing

it during the iterative process, L2,q-De effectively solves the

problem of azimuth ambiguity suppression, and achieves the

accurate recovery of considered scene.

E. Sparse Imaging for Large-Scale Scene

In terms of computational cost reduction, the proposed sparse

imaging method based on approximated observation is used for

the practical large-scene FMCW SAR data. Using Lq-De as

example, we reconstruct the sparse ocean surface with a size of

80000× 3000 (Azimuth × Range) and nonsparse city area with

a size of 20000× 1500 (Azimuth × Range) from 30% random

down-sampled and fully sampled data, respectively. Similar to
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the above experimental results, Fig. 10 shows that Lq-De can

recover the large-scale sparse scene from down-sampled data

and nonsparse area from fully sampled data with reduced noise

and clutter.

VII. CONCLUSION

In this article, we have presented an overview of our recent

research on FMCW SAR sparse imaging algorithms based

on approximated observation. Facing the challenges of high-

resolution, wide-swath, and real-time processing in modern SAR

system, we have illustrated a solution based on the sparse signal

processing technology. For the sparse scene observation, we

can decrease the PRF in data collection, equivalent to azimuth

down-sampling, to reduce the system complexity and improve

the swath width. The sparse imaging method for large-scale

scene discussed in this article is particularly suitable to obtain

high-resolution FMCW SAR image from the down-sampled

data. For both sparse and nonsparse surveillance regions, we can

use the existing FMCW SAR radar system for the data collection

without any changes, exploit the approximated observation-

based method for image focusing, and utilize the discussed

sparse imaging method for high-resolution large-scale scene

reconstruction in real-time. In addition, to suppress azimuth am-

biguities, a novel approximated observation-based L2,q-norm

regularization method is proposed to obtain the image with

less ambiguities compared to Lq-norm-based method. Because

sparse signal processing techniques have shown to achieve ex-

cellent performance and promising potentials in FMCW SAR

imaging, we have already used it frequently to process practical

data to achieve large-scale high-resolution images.
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