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ABSTRACT

MPE (Minimum Phone Error) is a previously introduced
technique for discriminative training of HMM parameters.
fMPE applies the same objective function to the features,
transforming the data with a kernel-like method and training
millions of parameters, comparable to the size of the acous-
tic model. Despite the large number of parameters, fMPE is
robust to over-training. The method is to train a matrix pro-
jecting from posteriors of Gaussians to a normal size feature
space, and then to add the projected features to normal fea-
tures such as PLP. The matrix is trained from a zero start
using a linear method. Sparsity of posteriors ensures speed
in both training and test time. The technique gives simi-
lar improvements to MPE (around 10% relative). MPE on
top of fMPE results in error rates up to 6.5% relative better
than MPE alone, or more if multiple layers of transform are
trained.

1. INTRODUCTION

This article introduces fMPE, a method of discriminatively
training features. The MPE objective function is reviewed
in Section 2; Sections 3 and 4 describe fMPE; Section 5
discusses some issues relating to its use; experiments are
presented in Sections 7 and 6, and conclusions are presented
in Section 8.

2. MINIMUM PHONE ERROR (MPE)

The Minimum Phone Error (MPE) objective function for
discriminative training of acoustic models was previously
described in [1, 2]. The basic notion is the same as other
discriminative objective functions such as MMI, i.e. train-
ing the acoustic parameters by forcing the acoustic model to
recognize the training data correctly.

The MPE criterion is an average of the transcription ac-
curacies of all possible sentences s, weighted by the proba-
bility of s given the model:

FMPE(λ) =
∑R

r=1

∑
s P κ

λ (s|Or)A(s, sr) (1)

where P κ
λ (s|Or) is defined as the scaled posterior sentence

probability pλ(Or|s)
κP (s)κ

P
u

pλ(Or|u)κP (u)κ of the hypothesized sentence
s, where λ is the model parameters and Or the r’th file of
acoustic data.

The function A(s, sr) is a “raw phone accuracy” of s
given sr, which equals the number of phones in the refer-
ence transcription sr for file r, minus the number of phone
errors.

3. FMPE

3.1. High-dimensional feature generation
The first stage of fMPE is to transform the features into a
very high dimensional space. A set of Gaussians is cre-
ated by likelihood-based clustering of the Gaussians in the
acoustic model to an appropriate size (up to 100,000 in ex-
periments reported here). On each frame, the Gaussian like-
lihoods are evaluated with no priors, and a vector of posteri-
ors is formed. This can be done very quickly (e.g. less than
0.1xRT) by further clustering the Gaussians to, say, 2000
cluster centers and only evaluating the 100 most likely clus-
ters based on the cluster-center’s likelihood [3].

3.2. Acoustic context expansion
The vector is further expanded with left and right acoustic
context. The following is a typical configuration used: If the
central (current) frame is at position 0, vectors are appended
which are the average of the posterior vector at positions 1
and 2, at positions 3, 4 and 5, and at positions 6, 7, 8 and
9. The same is done to the left (positions -1 and -2, etc) so
that the final vector is of size 700,000 if there were 100,000
Gaussians. Sparse vector routines are used for speed.

3.3. Feature projection
The high dimensional features are projected down to the di-
mension of the original features xt and added to them, so

yt = xt + Mht (2)

i.e. the new feature yt equals the old features plus the high-
dimensional feature ht obtained as described above, times a
matrix M. Initializing M to zero gives a reasonable starting
point for training, i.e. the original features.

3.4. Training the matrix
The matrix is trained by linear methods, because in such
high dimensions accumulating squared statistics would be
impractical. The update on each iteration is:

Mij := Mij + νij

∂F

∂Mij

, (3)
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i.e. gradient descent where the parameter-specific learning
rates are:

νij =
σi

E(pij + nij)
, (4)

where pij and nij (see below) are the sum over time of
the positive and negative contributions towards ∂F

∂Mij

, E is
a constant that controls the overall learning rate and σi is
the average standard deviation of Gaussians in the current
HMM set in that dimension. Since ∂F

∂Mij

= pij − nij , the
most each Mij can change is 1/E standard deviations, and
the most any given feature element yti can change is n/E
standard deviations, where n is the number of acoustic con-
texts by which the vector Ht has been expanded (e.g. n =7).

It follows from Equation 2 that

∂F

∂Mij

=

T∑
t=1

∂F

∂yti

htj , (5)

where htj is the j’th dimension of ht and yti is the i’th di-
mension of the transformed feature vector yt. The differ-
ential ∂F

∂Mij

is broken into the positive and negative parts
needed to set the learning rate in Equation 4:

pij =
∑T

t=1 max( ∂F
∂yti

htj , 0) (6)

nij =
∑T

t=1 max(− ∂F
∂yti

htj , 0). (7)

3.5. Smoothing of update

To prevent over-training of parameters that cannot be esti-
mated robustly, a modification is made as follows. Let the
“count” cij be

∑T
t=1 htj , which is similar to the number of

nonzero points available in estimating the differential ∂F
∂Mij

.
This formula only makes sense if the high dimensional fea-
tures htj are generally either zero or not far from one; an-
other way to set cij is (

∑T
t=1 |dij(t)|)

2/
∑T

t=1 dij(t)
2 where

dij(t) = ∂F
∂yti

htj , which is the number of points that would
have the same expected ratio of squared sum of absolute val-
ues to sum-of-squares if it were Gaussian distributed with
zero mean. These approaches gives similar counts. The
count cij is used to work out the typical magnitude of a
nonzero differential which is (pij +nij)/cij . This is used to
“pad” the differentials pij and nij with a number τ of typi-
cal imaginary observations prior to update, so nij := nij +
0.5τ(pij + nij)/cij , and pij := pij + 0.5τ(pij + nij)/cij .
This slows down the learning rate (Equation 4) for parame-
ters that have too few observations. Smoothing may slightly
improve results, on the order of 0.1% absolute; generally
this is done with τ � 100.

Some experiments reported here pad the two statistics
with imaginary counts that are not equal, but have the same
ratio as the overall statistics for the relevant cluster of Gaus-
sians. However this does not make any clear difference to
the WER so it is not described further.

4. CALCULATING THE DIFFERENTIAL

4.1. Direct differential
As mentioned in Section 3.4, a key quantity in fMPE train-
ing is ∂F

∂yti

which is the differential of the MPE function
w.r.t. the i’th dimension of the transformed feature vector
on time t.

Directly differentiating the MPE objective function can
be done via the following equation. Defining the log likeli-
hood of Gaussian m of state s on time t as lsmt,

∂F
∂yti

direct
=

∑S
s=1

∑Ms

m=1
∂F

∂lsmt

∂lsmt

∂yti

. (8)

The first factor ∂F
∂lsmt

is already calculated in normal MPE

training [1, 2]; it equals
∑Q

q=1 κγMPE
q γqsm(t) where κ is

the probability scale, κγMPE
q is the differential of F w.r.t.

the log likelihood of the q’th phone arc, and γqsm(t) is the
Gaussian occupation probability within the phone arc. The
second factor ∂lsmt

∂yti

equals µsmi−yti

σ2

smi

. Note that the posi-

tive and negative γMPE
q (and the positive and negative lsmt)

should sum to zero on each time t, and if for numerical or
pruning reasons they do not it may be wise to re-balance the
statistics arising from the positive and negative parts.

4.2. Indirect differential
Equation 8 is unsatisfactory because it takes no account of
the fact that the same features are used to train as well as test
the model, and the features will affect the HMM parameters.
When using Equation 8 for the differential, it was found that
much of the WER improvementwas lost as soon as the same
features were used to to retrain the models (with ML train-
ing). For this reason, the differential is augmented with a
term that reflects changes in the models. The statistics used
for normal MPE training are used to calculate ∂F

∂µsmi

and
∂F

∂σ2

smi

, i.e. the differential of the objective function w.r.t. the
model means and variances (see Section 4.3). This allows
us to calculate the part of the differential that is mediated by
changes in the Gaussians:

∂F
∂yti

indirect
= (9)

∑S
s=1

∑Ms

m=1
γsm(t)
γsm

(
∂F

∂µsmi

+ 2 ∂F
∂σ2

smi

(yti − µsmi)
)

where γsm(t) is the ML occupation probability as used in
standard forward-backward training; γsm is the same thing
summed over all the training data. The final differential that
is used is:

∂F
∂yti

= ∂F
∂yti

direct
+ ∂F

∂yti

indirect
. (10)

Note that Equation 9 is based on assumptions that are not
quite met. The fMPE differential of Equation 8 and the
MPE differentials ∂F

∂µsmi

etc are the differentials around the
current acoustic parameters and features. The current acous-
tic parameters λ were generated from statistics obtained by
aligning previous models, say λprev. Ideally, Equation 9
should refer to these previously obtained occupation prob-
abilities γsm(t)prev and γprev

sm . For convenience this is not
done.
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4.3. Model parameter differentials
In order to calculate the indirect differential, the quantities

∂F
∂µsmi

and ∂F
∂σ2

smi

are are obtained from normal MPE statis-
tics [1, 2] as follows:

∂F
∂µsmi

= κ
σ2

smi

(
θnum

smi (O) − θden
smi(O) − µsmi(γ

num
sm − γden

sm )
)
,

(11)
where µsmi and σ2

smi are the mean and variance in the Gaus-
sians used for the alignment, and θnum

smi (O) and γnum
smi etc are

the sum-of-data and count MPE statistics.
For the variance, let us first define the quantities Snum

smi

and Sden
smi which are the variance of the numerator and de-

nominator statistics around the current mean, so e.g.

Snum
smi = (θnum

smi (O2)− 2θnum
smi (O)µsmi + γnum

sm µ2
smi)/γnum

sm ,
(12)

where θnum
smi (O2) are the sum-of-squared-data statistics. The

differential w.r.t the variance is then

∂F
∂σ2

smi

=
κγnum

sm

2 (Snum
smi σ−4

smi−σ−2
smi)−

κγden

sm

2 (Sden
smiσ

−4
smi−σ−2

smi).

(13)
4.4. Checks
A useful check that no implementation errors have been made
is that adding a small quantity to all the features in some di-
mension should not affect the MPE objective function, as
long as it is done in both training and test. This implies that

∑T
t=1

∂F
∂yti

direct
+ ∂F

∂yti

indirect
= 0, (14)

where the summation
∑T

t=1 is over all training data. The
two terms in the above equation generally cancel out to within
a margin of, say 1% of the absolute values of the two terms.
Discrepancies are due to the assumptions made in Equa-
tion 9 not being met. A similar metric relating to a linear
scaling of each dimension can be more sensitive to problems
but should cancel to within a few percent:

∑T
t=1 yti

∂F
∂yti

direct
+ yti

∂F
∂yti

indirect
= 0. (15)

5. OVERVIEW AND GENERAL CONSIDERATIONS
IN FMPE TRAINING

5.1. Overview
Procedurally, each iteration of fMPE training involves three
passes over the data: one to accumulate normal MPE statis-
tics; a second to accumulate fMPE statistics (chiefly the
quantities nij and pij), and a third pass to do an ML update
with the newly transformed data. All three passes start with
the same HMMs; for simplicity, in these experiments the
third pass aligns with the newly transformed features rather
than doing single-pass retraining from the old to the new fea-
tures. Naturally, on the n+1’th iteration the updated HMMs
from the n’th iteration will be used to align the data and
the first two passes will use the transformed features from
the n’th iteration. Convergence speed is similar to MPE, so
three or four iterations may give the best performance.

5.2. Dimension of high-dimensional features
Experiments on call center data suggest that it is probably
good to use as high a dimension as possible until there is
insufficient data for each parameter and data-learning be-
comes an issue. This is why the very high dimension of
100,000× 7 contexts was used in CTS experiments reported
here. The overhead in testing is very small - about 0.1 to
0.2xRT. Much of the improvement in WER can be obtained
with a smaller dimension and no acoustic context. Early
experiments used state posteriors rather than Gaussian pos-
teriors; no clear evidence is available as to their relative use-
fulness but Gaussian posteriors are more convenient.

5.3. Typical criterion improvements
In fMPE, the improvement in MPE criterion (expressed rel-
ative to the number of phones in the correct transcription)
tends to be smaller than in MPE training: around 2-3% ab-
solute, e.g. rising from 0.70 to 0.725, compared with per-
haps 6% in MPE training. However the observed WER im-
provements on test data are not much smaller than the crite-
rion improvement (say, around 2%); also in fMPE training
a greater proportion of the training data criterion improve-
ment is seen when the MPE criterion is measured on unseen
data, as compared with MPE training. Note that the MPE
criterion is a kind of smoothed error rate so the comparison
with WER makes sense.

5.4. Typical learning rates, and acoustic scaling
The values of E used in the CTS experiments reported here
are 0.96 for the speaker independent system, and 1.44 for
the speaker adapted system (which had 7 acoustic contexts
in the high dimensional features, vs. 5 in the speaker inde-
pendent (SI) system). The call-center experiments also use
7 contexts and E = 1.44. For the best values of E (in terms
of WER on test data), the proportion of parameters Mij that
changes sign seems to be around 10-15% on the second iter-
ation, decreasing to around 5-10% on subsequent iterations;
the average absolute values of the Mij that change sign is
around 1/4 that of those that do not. The predicted MPE cri-
terion improvement based on ∂F

∂Mij

and the change in Mij

tends to be around 6% to 12% (0.06 to 0.12) on the first
iteration, decreasing to half that or less on the second.

To prevent the fMPE transform from attempting to gen-
erally strengthen or weaken the acoustic model relative to
the LM, the differential of the MPE criterion w.r.t a scaling
of all the acoustic likelihoods was calculated and the LM
weight was tuned until this was close to zero. The speaker
adapted CTS system, for example, had k = 0.1 (acoustic
weight) and an LM weight of 1.25.

6. CONVERSATIONAL TELEPHONE SPEECH
(CTS) EXPERIMENTS

The setup for MPE is largely as described in [1]; however
a fourth set of statistics (corresponding to the denomina-
tor statistics in MMI training) is also accumulated so that
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Fig. 1. MPE and fMPE results

I-smoothing can back off to an MMI rather than an ML es-
timate. The lattices for the speaker independent (SI) experi-
ments use a unigram LM; those for the adapted experiments
use a highly pruned bigram LM (150k bigrams). In adapted
experiments the statistics are averaged over several acoustic
and LM scales (0.10 and 0.16 acoustic, and 1.0 and 1.6 LM;
four combinations); there is weak evidence that this works
well when combined with a bigram language model. Vari-
ances are floored to the 20th percentile of the cumulative
distribution of variances in each dimension [2].

In Figure 1(a) and (b), results for MPE training and fMPE
followed by MPE are shown on the NIST conversational
telephone speech (CTS) task in both SI and adapted condi-
tions; these experiments were done in preparation for IBM’s
submission to the NIST RT-04 (Rich Transcription 2004)
evaluation [4]. Training is on 2300h of telephone speech
data. Both systems used cross-word phonetic context, and
PLP features with LDA+MLLT projections to 40 dimen-
sions (SI) and 39 (adapted). Testing is on RT-03.

The SI system is a quinphone system with 8k states and
150k Gaussians. The high-dimensional features are poste-
riors of 64k clustered Gaussians with five contexts (a sub-
set of the contexts described in Section 3.2). The transform
is trained with 1/5 of the training data. As shown in Fig-
ure 1(a), fMPE+MPE is better by 1.0% than MPE alone.

The adapted system has 7-phone context, 22k states and
850k Gaussians, training and testing on VTLN+fMLLR fea-
tures. The ht are posteriors of 100k Gaussians, with seven
contexts (700k dimensions total). The transform is trained
on all the data. In this case fMPE alone is better than MPE
alone, perhaps because MPE does not work well with very

large acoustic models. The final fMPE+MPE number, at
19.1%, is better by 1.3% than MPE alone.

For the RT-04 evaluation, a system with 0.4% better WER
than the final fMPE+MPE number was obtained. Do do this,
the fMPE features were used to train from scratch a small
5-phone context system. Then, a second layer of fMPE
transform (“iterated fMPE”) was trained on the small sys-
tem using 1/4 the data, with 25k Gaussians × 7 contexts.
This doubly transformed data was used to further train the
original 7-phone context fMPE models (20.2% → 19.4%),
after which MPE training was done (→ 18.7%). This is
1.7% better than the best models with MPE alone. The fi-
nal transcriptions submitted included other features such as
cross-adaptation, MLLR, LM rescoring and consensus. The
10xRT system had 13.0% WER on Dev-04, and 16.1% on
RT-03 with 12.4% on the Fisher portion only.

7. CALL CENTER EXPERIMENTS

Figure 1(c) shows experiments on data recorded from an
IBM computer support call center. No adaptation is used.
Training is on 300h of speech; the models have 11-phone
left phonetic context, 4k states and 97k Gaussians. Test data
is 6 hours long. Features are PLP projectedwith LDA+MLLT
to 40 dimensions. High dimensional features are 32k Gaus-
sian posteriors with 7 contexts (224,000 dimensions). MPE
is with backoff to MMI as above. The fMPE+MPE results
on call-center data are an impressive 5.1% better than the
ML baseline and 1.7% better than MPE alone.

8. CONCLUSION
fMPE is a novel and effective way to apply discriminative
training to features rather than models. This makes possi-
ble things that are not possible with normal discriminative
training, such as building a system on the new features and
iterating the process. It made a significant contribution to
IBM’s submission to the RT-04 evaluation.
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