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RESEARCH Open Access

FMR1 CGG allele size and prevalence ascertained
through newborn screening in the United States
Flora Tassone1,2*, Ka Pou Iong1, Tzu-Han Tong1, Joyce Lo1, Louise W Gane2, Elizabeth Berry-Kravis3, Danh Nguyen4,
Lisa Y Mu4, Jennifer Laffin5, Don B Bailey6 and Randi J Hagerman2,7

Abstract

Background: Population screening for FMR1 mutations has been a topic of considerable discussion since the FMR1
gene was identified in 1991. Advances in understanding the molecular basis of fragile X syndrome (FXS) and in
genetic testing methods have led to new, less expensive methodology to use for large screening endeavors.
A core criterion for newborn screening is an accurate understanding of the public health burden of a disease,
considering both disease severity and prevalence rate. This article addresses this need by reporting prevalence
rates observed in a pilot newborn screening study for FXS in the US.

Methods: Blood spot screening of 14,207 newborns (7,312 males and 6,895 females) was conducted in three
birthing hospitals across the United States beginning in November 2008, using a PCR-based approach.

Results: The prevalence of gray zone alleles was 1:66 females and 1:112 males, while the prevalence of a
premutation was 1:209 females and 1:430 males. Differences in prevalence rates were observed among the various
ethnic groups; specifically higher frequency for gray zone alleles in males was observed in the White group
compared to the Hispanic and African-American groups. One full mutation male was identified (>200 CGG repeats).

Conclusions: The presented pilot study shows that newborn screening in fragile X is technically feasible and
provides overall prevalence of the premutation and gray zone alleles in the USA, suggesting that the prevalence of
the premutation, particularly in males, is higher than has been previously reported.

Background
Fragile X syndrome (FXS), the most common single
gene cause of inherited intellectual disabilities and aut-
ism, is characterized by a CGG-repeat expansion (>200
CGG repeats, full mutation) in the portion of the first
exon of the fragile X mental retardation 1 gene (FMR1),
which encodes the 5’ UTR of the FMR1 mRNA. When
the full mutation is present, epigenetic modification of
the CGG rich region turns off the gene, which results in
absence or deficit of the encoded product, FMRP, lead-
ing to defects in synaptic plasticity. FMR1 premutation
carriers have an unstable expansion containing 55 to
200 CGG repeats and gray zone or intermediate allele
carriers have small expansions of 45 to 54 repeats [1].
The FMR1 full mutation can cause a broad spectrum of

involvement, including intellectual disability, behavior

problems, social deficits and autism spectrum disorders
(ASD) [2-4]. Significant clinical involvement has also been
reported in some premutation carriers, including medical,
neurological and psychiatric problems such as ASD, atten-
tion deficit-hyperactivity disorder (ADHD), depression and
anxiety [5-12]. Moreover, fragile X-associated primary ovar-
ian insufficiency (FXPOI) occurs in approximately 20% of
female carriers [13,14] and fragile X-associated tremor
ataxia syndrome (FXTAS) affects approximately 40% of
older male carriers, and approximately 8 to 16% of older
female carriers [8,15-17]. Risks associated with gray zone or
intermediate alleles still need to be verified, but these alleles
may be associated with an increased risk for FXTAS and
FXPOI, and can be unstable when transmitted across
generations [18-21].
The reported prevalence of the full mutation in the

general population ranges from 1:2,500 to 1:8,000 in
females and approximately 1:4,000 to 1:5,000 in males
[22-28]. Premutation carriers (55 to 200 CGG repeats)
are more common, with estimates ranging between 1:130
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and 1:256 for females and 1:250 and 1:813 for males
[27,29-34]. Several studies suggest that FXS prevalence
rates may differ across ethnic groups and countries based
on studies of populations in the United Kingdom [25],
Spain [30], Finland [35], Asia (Taiwan [36,37], Japan
[38]), Israel [26,39-41], and North America [29,42,43].
However, discerning the ‘true’ incidence rate has been
challenging, due primarily to small sample sizes and
some design limitations, such as selection bias in studies
that focus on specialized populations (for example, chil-
dren in special education settings [44], pregnant volun-
teer adults with no history of mental retardation [41] or
adults with no major health problems [38]). Further com-
plicating this picture is the varying definition of CGG size
ranges for intermediate/gray alleles and premutation
alleles. A summary of the studies estimating prevalence
since 1995 in various populations, designs, and settings
is shown in Table 1, while the prevalence of FMR1
expanded alleles from newborn screening studies con-
ducted in different countries is summarized in Table 2.
A large-scale population-based screening for FXS, in

both males and females across the entire spectrum of fra-
gile X mutations, has not been conducted in the United
States. One problem has been the lack of a molecular test
capable of identifying FMR1 alleles throughout the range
(from normal to the full mutation) in both males and
females. In recent years, several methodologies have been
published and claimed to be suitable for large population
screening [22,30,45-50], although all have presented some
technical and non-technical problems, including the
amount of DNA template required, degradation due to the
use of bisulfite, inclusion of females, and failure to detect
unmethylated expanded alleles. Importantly, no study in
both genders, across all the mutation ranges, has been
conducted on blood spot cards, a central requirement for
newborn screening. The few large studies that have been
conducted on blood spot cards include a study of 36,154
de-identified blood spot cards from male newborns, tar-
geting only those with a methylated full mutation [22] and
reports on newborns from Spain and from Taiwan that
also included only males (Table 2) [30,36,37,51].
Traditionally, Southern blot analysis has been consid-

ered the most accurate method to size the full mutation
and to determine the methylation status of the expanded
alleles for all mutation sizes. However, it is laborious,
expensive and requires a large amount of DNA, making
it poorly suitable for screening purposes. Screening of
blood spot cards by a PCR-based method is the best
approach currently available for screening large popula-
tions. However, because PCR testing can report CGG
repeat lengths for all size ranges, clinicians and policy
makers associated with newborn screening will need to
consider which categories of FMR1 expansions to report.
In part this decision will be determined by the clinical

utility of the information and associated ethical issues.
However, more accurate estimates of prevalence are
essential so that the public health burden (for example,
counseling and treatment costs, patient education before
screening) can be assessed more accurately.
To help answer this question, we report here the out-

comes of a large fragile X newborn screening study con-
ducted in the United States, consisting of 14,207
newborn blood spot samples (7,312 males and 6,895
females). The screening method utilized allowed for pre-
cise quantification of CGG allele size, distribution of
allele sizes within different ethnic groups and determina-
tion of the prevalence of gray zone and premutation
alleles in both males and females. The advantages of the
screening approach used in the present study, in addition
to its high throughput ability, are the ability to detect
expanded alleles throughout the range in both genders,
the use of blood spot cards for the screening, and the
relatively unbiased population sample that should yield
representative allele frequencies for different ethnic
groups in the USA. The sample size is too small to pro-
vide an estimate of full mutation prevalence, and thus the
paper is focused on gray zone and premutation alleles.
These alleles are much more common than full mutation
alleles and their disclosure complicates the counseling
burden that would result. We also report the prevalence
for an expanded gray zone allele range, from 40 to 54
CGG repeats for comparison with other studies that have
reported allele frequencies using this expanded size range
[52,53].

Materials and methods
Study subjects
Bloodspots from newborns at UC Davis Medical Center
(UCDMC, Sacramento, CA, USA), Rush University Med-
ical Center (RUMC, Chicago, IL, USA) and the University
of North Carolina (UNC) Hospital (Chapel Hill, NC,
USA) were made from extra blood at the time of the
state-mandated heel stick. Babies did not receive an extra
heel stick if there was not enough blood from the man-
dated state newborn screen heel stick already available to
obtain the extra card. At all three sites a research assis-
tant reviewed the newborn nursery admittance record
daily, approached parents to obtain consent for the new-
born to participate in the fragile X screening program,
which was separate from the state newborn screening
programs. They entered the patient’s room and asked for
permission to speak with the family. If the parents
decided not to speak to the research assistant, their refu-
sal was noted. When permission was given by the parents
for the research assistant to speak with them, a prepared
script, institutional review board (IRB) approved, was
used to briefly introduce the purpose of the study. The
parents were asked if they had any questions and if they
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Table 1 Prevalence data in general population.

Reference Location Number tested Gender Genotype CGG range Prevalence

[42] Canada 10,624 Female Pre 55-101 1/259

[81] USA 3,345 Pregnant/non-pregnant women Gray 40-49 1/52 (no fhx)

1/107 (fhx)

50-59 0/474 (no fhx)

0/214 (fhx)

Pre 60-200 1/158 (no fhx)

0/214 (fhx)

Full >200 0/474 (no fhx)

0/214 (fhx)

[25] UK, 11-16 years 347 Fragile X 1/2,720

[35] Finland 1,738 Pregnant women Pre 60-200 1/246

Full >200 0/1,477

[40] Israel 10,587 Female Gray/Pre 51-200 1/77

[82] Israel 9,660 Pregnant/non-pregnant women Pre 50-199 1/114

Full >200 0/9,660

[26] Israel 9,459 Pregnant/non-pregnant women Pre 52-199 1/73

Full >200 1/2,365

[83] UK 3,738 Male FRAXA full ≥200 1/187

[84] Finland 239 Pregnant women Pre 61-200 1/220

Full >200 0/220

[41] Israel 14,334 Pregnant/non-pregnant women Pre 55-200 1/113

Full >200 1/4,778

[29] Canada 10,572 Male Pre 55 to <230 1/813

Full >230 1/155

[24] USA 2,250 Male Full ≥200 1/353

Intermediate 41-60 1/27

1,089 Female Pre 61-199 1/531

Intermediate 41-60 1/19

[85] Taiwan 1,002 Pregnant women Gray 40-52 1/46

Pre >52 0/1,002

[33] USA 29,103 Pregnant women Gray 45-54 1/143

Pre 55-200 1/382

Full >200 0/2,292

[39] Israel 40,079 Pregnant/non-pregnant women Pre 55-199 1/158 (no fhx)

1/150 (fhx*)

Full >200 1/36,483 (no fhx)

1/899 (fhx)

[86] Australia 338 Non-pregnant women Gray 45-54 1/22

Pre 55-200 1/65

Full >200 0/65

[34] Canada 21,411 Female Gray 45-54 1/86

Pre 55-200 1/241

[38] Japanese 576 Female Intermediate 40-50 1/324

370 Male Intermediate 40-50 1/103

[32] USA 11,759 Female from cystic fibrosis screening Pre 55-200 1/245

2,011 Ashkenazi Jewish women Pre 55-200 1/134

[74] USA 3,273 Male Gray 45-54 1/42

Pre 55-200 1/468

3,474 Female Gray 45-54 1/35

Pre 55-200 1/151

fhx, family history of FXS.

* Family history of individuals with intellectual disability, developmental problems, or autism in extended family but without relatives who were fragile X carriers.

Tassone et al. Genome Medicine 2012, 4:100
http://genomemedicine.com/content/4/12/100

Page 3 of 13



would like to participate in the formal consenting pro-
cess. The reason(s) as to why a family did or did not
choose to participate were recorded when possible.
University of North Carolina Hospital
At the UNC site, consent was obtained prior to the heel
stick for the state screening and collection of the extra
blood spot card for fragile X screening. Only blood spot
cards from consented newborns were included in the
study. Cards were shipped in the initial period of this
project, to the UCD MIND Institute Molecular Labora-
tory in Sacramento and later to the Wisconsin State
Health Department Cytogenetics and Molecular Labora-
tory for CGG allele size analysis. Only families of infants
in the regular care nursery were approached. The screen-
ing involved an informed consent under a protocol
approved by the UNC IRB. A description of the screening
process, participation rates, and reasons for accepting or
declining screening has been previously reported [54].
Rush University Medical Center (Chicago, IL)
At RUMC it was not possible to obtain the state screening
after consent due to the phlebotomy schedule. Conse-
quently, the extra spot was obtained when the state
screening heel stick was done and consenting was done
afterwards to request use of the blood spot for the
research project. This avoided the need to do a second
heel stick on the babies. Consent forms used were

approved by the RUMC IRB. For consenting families,
demographic information was obtained from the family
after the consent was signed. The bloodspot was identified
by the newborn’s last name, gender and date of birth. All
data were recorded in computer files at RUMC, and then
the blood spots were shipped to the UCD MIND Institute
Molecular Laboratory in Sacramento for the CGG allele
size analysis. The blood spots collected from families who
chose not to participate in the newborn screening study
but did not object to anonymous screening, were de-iden-
tified and sent to the UCD MIND Institute Molecular
Laboratory. Specifically, non-consenting parents were told
verbally that the blood spot would be used for anonymous
population screening to obtain information on allele pre-
valence; if the parent objected, the sample was discarded.
Families of infants from both regular care and special care
nurseries were approached to participate in the study.
UC Davis Medical Center (Sacramento, CA)
A similar procedure was followed at the UCDMC site. An
additional spot was obtained when the state screening heel
stick was done and consenting was carried out with a UC
Davis IRB approved consent form. Only families of infants
in the regular care nursery were approached. Blood spot
cards from consented newborns were included; however a
previous anonymous screening was allowed by the UC
Davis IRB using a different funding source and before

Table 2 Prevalence data from newborn screening studies

Reference Location Ethnicity Number tested Gender Genotype CGG range Number positive Prevalence

[23] Georgia, USA 45% Caucasian 36,124 Male Full >200 7 -

30% African-American

15% Hispanic

2% Asian

2% Multicultural

1% American Indian

5% Unknown

[37] Taiwan Asian 4,843 Male Gray 40-54 90 -

Pre 55-200 2 -

Full >200 2a -

[87] Canada Canadian 1,000 Male Gray 40-60 51b -

1,000 Female Pre >60 1c -

[30] Spain Hispanic 5,267 Male Gray 45-54 199 1/26

Pre 55-200 21 1/251

Full >200 2 1/2633

[51] Catalan, Spain Hispanic 5,000 Male Gray 53-55 11 1/449

Pre 56-200 4 1/1233

Full >200 2 1/2466

[43] South Carolina, USA NAd 1,459 Male Pre 55-200 2 1/730

Full >200 2 1/730

[36] Taiwan Asian 10,046 Male Gray 45-54 70 1/143

Pre 55-200 6 1/1674

Full >200 1e -
aNeed Southern blot confirmation. bNumber positive includes both genders. cGender of the positive premutation is male. dRacial data not collected for this study.
eNot confirmed.
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funding for consented screening was obtained; thus, the
anonymous screening was also included at the UCDMC
site for the prevalence figures described below. For those
who did not sign consent, but allowed anonymous screen-
ing, or for those who were not approached, bloodspots
were assayed as anonymous screening. These latter blood-
spots were stripped of all identifiers and patient codes,
preserving only stated gender and ethnicity of the donor,
to ensure that the samples were not traceable to the new-
born. Those who specifically denied consent were not
included in this study. To each bloodspot card a local
accession number was assigned and underwent genotyping
analysis.

Follow up for infants carrying an expanded allele
At each site the family was contacted by phone following
the identification of a consented newborn with the premu-
tation or full mutation. The results were conveyed and
explained to the parents, questions answered, and a visit
was scheduled for the child to be seen for further medical
follow-up and a genetic counseling session. The expanded
allele was confirmed by standard FMR1 diagnostic testing
(including Southern blot analysis) on a confirmatory blood
sample from the infant, in a Clinical Laboratory Improve-
ment Accreditation (CLIA) College of American Patholo-
gists (CAP) certified clinical diagnostic laboratory at
UCDMC, RUMC, or UNC. In all cases, expanded premu-
tation alleles identified through newborn screening were
confirmed by standard FMR1 diagnostic testing.

Bloodspot screening: CGG sizing
Most of the samples were collected on FTA cards (What-
man Inc., Piscataway, NJ, USA); however, blood spots col-
lected between January and May 2012 were collected on
903 paper (Whatman Inc.) at RUMC and at UCDMC.
Blood spot cards were used directly in the PCR mixtures
after being washed with FTA purification reagents (Qia-
gen, Valencia, CA, USA) as previously described [50] or
DNA was isolated from two to three punches using either
a QIAxtractor (Qiagen) or a Biomek NX workstation
(Beckman Coulter Inc., Brea, CA, USA) as described
below. No differences were obtained in terms of DNA
quality or yield from either FTA or 903 cards.

DNA isolation from bloodspot punches
Isolation of DNA was performed using the Agencourt
Genfind v2 DNA Isolation Kit (Beckman Coulter Inc.) on
the Biomek NX workstation (Beckman Coulter Inc.) fol-
lowing the manufacturer’s instructions. Briefly, each blood
spot sample was lysed with 150 µl of lysis buffer with 3 µl
of proteinase K followed by incubation with 75 µl of bind-
ing buffer. Samples were then washed twice and eluted
with 30 µl of nuclease-free water. The isolation procedure

followed Agencourt Genfind v2 FTA Cards software
(Beckman Coulter Inc.) with a minor change of replacing
Wash 2 solution with 70% ethanol. Isolated DNA was
stored at -20°C. Isolation of DNA was also performed
using the QIAxtractor Reagent Pack (Qiagen) on the
QIAxtractor (Qiagen) following the manufacturer’s
instructions. Each blood spot sample was lysed with 280 µl
lysis buffer with 20 µl of proteinase K followed by incuba-
tion with 600 µl of binding buffer. Samples were then
washed twice with wash solution (DXW) and final wash
solution (DXF) and eluted with 60 µl of nuclease-free
water. The isolation procedure followed the QIAxtractor
software (Qiagen). The isolated bloodspot DNA was
stored at -20°C.

PCR analysis
The bloodspot PCR screening approach was as follows:
first round PCR screening was used to size all normal,
intermediate and/or premutation alleles using c and f
primers (by Fast Start approach, CGG rich or Expand
Long PCR; Roche Diagnostics, Indianapolis, IN, USA).
Male samples with no band on the first round or female
samples with a single band underwent a second PCR
screening assay using a CCG chimeric primer [50,55].
Genomic DNA was amplified using Fast Start PCR

protocol (Roche Diagnostics). Master mix containing
primers c and f was prepared and used according to the
manufacturer’s instructions; primers c and f yield ampli-
cons of 221+ (CGG)n bp. PCR reactions were run in the
Applied Biosystems 9700 thermocycler with PCR condi-
tions as previously described [30]. The PCR products
were analyzed using the ABI 3730 Capillary Electrophor-
esis (CE) Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA). Unpurified PCR product (2 μl) was
mixed with 12 μl of Hi-Di Formamide (Applied Biosys-
tems) and 2 μl of a ROX 1000 Size Ladder (Asuragen
Inc., Austin, TX, USA). Samples were heat-denatured at
95°C for 2 minutes followed by cooling on ice before
being transferred to the CE instrument. Samples that
did not yield a band for males and yielded only one
band for females after the first PCR round were sub-
jected to a secondary CGG-primer-based PCR screening
[50,55]. Samples were prepared for the PCR with a mas-
ter mix from AmplideX FMR1 reagent kit (Asuragen
Inc.) containing FMR1 For, Rev FAM primers and
FMR1 CGG primer or by using the CGG rich approach
(Roche Diagnostics). PCR conditions were as indicated
by the manufacturer (Asuragen Inc.) and were as pre-
viously described [50,55]. The PCR products were run
on CE for detection as previously described [45]. Serial
peaks were visualized on CE with the CGG-chimeric
primer when an expanded allele was present. CE data
were analyzed by the ABI Genescan analysis software.
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Statistical analysis
Student’s t-test and ANOVA were used to compare
CGG distribution for gender and ethnicity. Exact confi-
dence intervals were obtained for overall prevalence esti-
mates, as well as among ethnicity groups across gender.
Comparisons of prevalence were based on Fisher’s exact
test. Association between ethnicity and consenting status
was analyzed using logistical regression. SAS version 9.2
(Cary, NC) was utilized for the analysis.

Results
Study population
A total of 14,207 blood spot samples, 7,312 males and
6,895 females, from newborns were collected across the
three sites from November 2008 through May 2012.
The study population included five ethnic groups (based
on mother’s ethnicity): White/Caucasian (White; N =
4,161, 29.4%), Hispanic/Latino (Hispanic; N = 3,493,
24.6%), African American/Black (Black; N = 3,069,
21.6%), Asian/Indian (Asian; N = 796, 5.6%), and
Others, including Native American (Others; N = 1,286,
9.1%). There were 1,374 subjects (9.7%) from whom eth-
nicity could be not ascertained.

CGG allele size distribution
The CGG screening was conducted following the work-
flow previously described in Tassone et al. [50]. Briefly,
male and female newborns that generated, respectively,
a single or two bands (two alleles) after the first PCR
FMR1 specific screening (using primers c and f) were
not analyzed further. Blood spots were run twice if
they failed to amplify the first time. All samples
included in the analysis generated clear amplified
FMR1 specific products. Females with only one ampli-
fied band and males without a clear amplified PCR
band (one case of a full mutation male newborn identi-
fied in this study) underwent the second screening
PCR using a CGG primer as previously described
[50,55]. Of the remaining 20,930 alleles, 20,710 had a
CGG repeat number within the normal range (CGG
range 6 to 44); 170 (105 females and 65 males) were
gray zone alleles (mean CGG = 48 in both genders,
CGG range 45 to 54); 50 (33 females and 17 males)
harbored a premutation allele (mean CGG = 70 in
both females and males, CGG range was 55 to 130).
Additionally, 21 males generated 2 bands after the first
PCR screening and 6 females were not definitely geno-
typed and therefore were excluded from the analysis.
Although some of those samples may have been misla-
beled with respect to the sex of the newborn, some
could have been subjects with Klinefelter Syndrome,
but they were not studied further because of study and
IRB constraints. Among the 14,207 newborns screened,
one male (7,312 total males screened) was identified as

having a full mutation allele at UCDMC. This subject
was not included in the subsequent prevalence analysis.
There was no gender difference in CGG distribution

for either gray (female: N = 105, mean 48, standard
deviation (SD) 3; male: N = 65, mean 48, SD 3; P =
0.3829) or premutation alleles (female: N = 33, mean 70,
SD 21; male: N = 17, mean 70, SD 17; P = 0.9453).
Results are shown in Table 3. CGG allele size distribu-
tion is represented in Figure 1a for N = 20,710 alleles
(7,208 from male, 13,502 from both female alleles); the
observed CGG range is from 6 to 44, with a median of
29 (SD ± 4) and mode of 30. For the 170 gray zone
alleles in the 45 to 54 range (65 males and 105 females;
median 48; SD ± 3) CGG size distribution is shown in
Figure 1b. Because some studies have reported the 40 to
54 CGG range as an expanded gray zone range [52,53],
we also examined the CGG allele distribution in the 614
alleles in this range (383 were females, 4 of which had
both alleles with a CGG repeat number between 40 and
54; 227 were males; median 42; SD ± 3; Figure 1c). For
premutation carriers (CGG 55 to 200), Figure 1d dis-
plays CGG repeats for 50 individuals with observed
CGG repeat length ranging from 55 to 130 (17 males
and 33 females; median 62; SD ± 20) with the majority
of the subjects (n = 35, 70%) carrying an allele with
repeat number <70 CGG.
We determined the CGG size distribution of gray

zone and premutation alleles across different ethnic
groups. Results show that, among premutation carriers,
Whites tended to have slightly higher CGG repeat size
(mean 76, SD ± 24, N = 16) than other ethnicity groups
(mean ranging from 62 to 75), although the difference
did not reach statistical significance. It should be noted
that these observed differences should be considered
descriptive due to the small sample size (Table 4).

Prevalence
Across the three sites, the prevalence for gray zone
alleles was 1:66 in females (95% confidence interval (CI)

Table 3 Summary of CGG distribution across gender in
the three categories (normal, gray zone, premutation)

Gender N Mean SD Median

Normal

F 13,502a 29 4 30

M 7,208 29 4 29

Gray

F 105 48 3 47

M 65 48 3 48

Pre

F 33 70 21 60

M 17 70 17 68
aBoth alleles from normal female subjects are included. F, female; M, male.
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1:80 to 1:54); and 1:112 (95% CI 1:145 to 1:88) in males.
In the 40 to 54 expanded gray zone CGG range, the
prevalence was 1:18 (95% CI 1:20 to 1:16) in females
and 1:32 (95% CI 1:37 to 1:28) in males. The prevalence
for premutation alleles was 1:209 (95% CI 1:303 to
1:149) in females and 1:430 (95% CI 1:736 to 1:268) in
males, which translates into a male to female prevalence
rate of 1 to 2.05. The prevalence for both gray zone and
premutation alleles for each site is reported in Table 5.
We also obtained estimates of the prevalence of gray

zone alleles in different ethnic groups. Although the sam-
ple size was small, we also report the observed premuta-
tion allele prevalence within ethnicity groups. The
observed premutation prevalence in females who were
Black (1:168) was higher compared to females who were
Hispanic (1:570, P = 0.0785) but this was not a significant
difference. The observed premutation prevalence in
males who were Black (1:780) was lower compared to
those who were White (1:358) and those who were His-
panic (1:595). The observed prevalence of gray zone
alleles in White males (1:61) was significantly higher than
in black males (1:142, P = 0.0153), and Hispanic/Latino
males (1: 198, P = 0.0007). The observed prevalence of
gray zone alleles was similar across White (1:58), Black
(1:75) and Hispanic groups (1:59) in females. We did not

compare the prevalence among other ethnic groups
because the sample size was too small (Tables 6 and 7).

Discussion
In the United States, newborn screening is an important
state-based public health program that began over 40
years ago with the development of a screening test for
phenylketonuria using newborn bloodspots dried onto a
filter paper card [56,57]. Many factors could influence a
decision to include a given condition in a newborn
screening program, such as the severity of the condition,
the availability of effective treatment, the age of onset,
and the complexity, availability or cost of the test [58].
Fragile X screening has captured increasing attention
lately for both potential benefits and concerns that affect
the development of a screening program. Fragile X
screening was not recommended for newborn screening
in the American College of Medical Genetics report of
2006 [59] primarily because of the lack of an accurate
screening test and the absence of data on benefits at that
time. In the past few years the advent of clinical trials of
targeted treatments for FXS and indications of positive
outcomes in early phase studies [60-64] have been excit-
ing developments that promote the need for newborn
screening for FXS. Some of the targeted treatments and

Figure 1 CGG repeat allele size distribution. Histograms display the CGG repeat length observed in the newborn screening by allele category.
A) FMR1 alleles in the normal range (<45 CGG repeats, n = 20710 alleles). B) FMR1 alleles in the gray zone range (45-54 CGG repeats, n = 170
alleles). C) FMR1 alleles in the expanded gray zone range (40-54 CGG repeats, n = 614 alleles). D) FMR1 alleles in the premutation range (55-200
CGG repeats, n = 50).
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additional interventions are being studied in children in
the toddler period and these interventions will likely
enhance the developmental/behavioral interventions for
young children [65]. In addition, the development of a
new PCR-based screening approach utilized here has
further stimulated the discussion around newborn
screening in fragile X.

Accurate estimates of frequency of FMR1 mutations in
the general population are needed to better estimate fra-
gile X allele frequencies for all racial and ethnic groups
and to determine the ramifications of any population
screening program in terms of numbers of identified
cases. The increasing number of disorders attributed to
the premutation has also encouraged better epidemiol-
ogy data. Indeed, great interest has been focused on pre-
mutation carrier detection, since premutation alleles
have been found to be associated with FXPOI [13,14,66]
and FXTAS [67-69] and sometimes with neurodevelop-
mental disorders, such as ASDs and ADHD [5,9,70],
which can respond to treatments [71].
Here, we report allele frequency distributions found in

a pilot newborn screening study from three sites in the
US, using a novel PCR-based approach to demonstrate
the feasibility of screening for FMR1 mutations in a large
sample size and with samples collected on blood spot
cards. This is the largest newborn sample size screened
in the US for both males and females and for the detec-
tion of expanded alleles throughout the normal to full
mutation range. We found that the most common alleles
were those containing 29 and 30 CGG repeats, regardless
of ethnicity, in agreement with previous reports. The
screening identified 170 newborns carrying a gray zone
allele (45 to 54 CGG repeats) with a prevalence of 1:66 in
females and 1:112 in males. Some studies [52,53] have
advocated for expanding the gray zone to 40 to 54 CGG
repeats because there is an elevation in the FMR1 mRNA
expression levels in this range and there may be evidence
of risk of clinical involvement, including an increased
rate of primary ovarian insufficiency (POI) compared to
the general population [18,19]. In addition, an increased
prevalence of gray zone alleles has also been recently
reported in subjects with parkinsonism [52,72] and sev-
eral cases of FXTAS have been reported in gray zone
[20,73]. Thus, we also report the prevalence in this
expanded gray zone range as 1:32 in males and 1:18 in
females based on the total number of newborns screened.
Our findings regarding the prevalence of the premutation
alleles (1:209 in females and 1:430 in males) are within
the range of what was previously reported in females
[29], but in males we observed a prevalence almost two-
fold higher than that in the Canadian study (1:813) [29],
lower than in the Spanish population [30] but in line
with a recent population-based screening study of older
adults in Wisconsin, US (1:468 in males) [74]. It is inter-
esting to note that from our study the female to male
prevalence rate for the premutation is 2.05, in agreement
with the predicted ratio described by Hagerman [31].
Although the size of the premutation alleles varied
between 55 and 130 CGG repeats in females and between
56 and 125 CGG repeats in males, it is interesting to note
that 70% of the premutation alleles contained <70 CGG

Table 4 Summary of CGG distribution across ethnicity
groups in the three categories

N Mean SD

Combine

Normala 20,710 29 4

Gray 170 48 3

Pre 50 70 20

White/Caucasian

Normala 6,044 29 4

Gray 70 48 3

Pre 16 76 24

African-American/Black

Normala 4,506 29 4

Gray 31 48 2

Pre 11 71 21

Hispanic/Latino

Normala 5,126 29 4

Gray 38 48 3

Pre 6 75 26

Asian, including Indian

Normala 1,147 30 3

Gray 5 47 1

Pre 4 62 9

Other, including Native American

Normala 1,864 29 4

Gray 14 48 3

Pre 9 63 6

Unknown

Normala 2,023 29 4

Gray 12 50 3

Pre 4 57 1
aBoth alleles from normal female subjects are included.

Table 5 Summary of prevalence across and over all sites

Gray Pre

Site Gender Total N Prevalence N Prevalence

CH F 3,140 45 1 : 70 12 1 : 262

M 3,279 25 1 : 131 4 1 : 820

NC F 1,754 29 1 : 60 11 1 : 159

M 1,861 23 1 : 81 4 1 : 465

SAC F 1,995 31 1 : 64 10 1 : 200

M 2,150 17 1 : 126 9 1 : 239

Overall F 6,889 105 1:66 33 1:209

M 7,290 65 1:112 17 1:430

CH, Chicago, RUMC; F, female; M, male; NC, North Carolina, UNC; SAC,
Sacramento, UCDMC.
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repeats, in agreement with a recent report [32]. This may
be of relevance for estimating the frequency of FMR1
related disorders in the general population since indivi-
duals with >70 repeats are more likely to have premuta-
tion disorders [75]. If we consider that the prevalence of
a premutation allele in males is approximately 1:400 and
if FXTAS is affecting approximately 40% of the premuta-
tion male carriers, then we would expect that 1.6 males
out of 2,000 in the general population would develop the
neurodegenerative syndrome. As was described in a
recent study [76], FXTAS is far less likely in patients with
<70 repeats. Thus, despite rare reports of FXTAS in the
gray zone [52] and in the low end of the premutation
range, it is likely the frequency of FXTAS in the general
population is lower than 1.6/2,000. However, mild neuro-
logical problems, such as neuropathy or balance pro-
blems associated with the premutation, are likely to be
close to this prevalence and more common than in those
with a definitive diagnosis of FXTAS.
Only one male newborn, out of the total 7,312 males

screened, was found to have a full mutation at the
UCDMC site. A large screening of newborns (n =
36,154) reported a prevalence of 1:5,161 in males [23];
however, our sample size is too small to be confident of
a prevalence estimate for the full mutation. Indeed, one
would need in excess of 70,000 samples to estimate a
prevalence of 1:5,000 and 95% CI within a 50% margin
of error.

Although the CGG size distribution did not show a
difference between the two genders and among different
ethnic groups, differences were detected in the preva-
lence of expanded alleles. Specifically, the prevalence of
gray zone alleles was higher in White males compared
to Black and Hispanic males. Differences in the preva-
lence between the different ethnic groups were also
observed for the premutation alleles; however, they did
not reach statistical significance likely due to the small
number. It is important to consider the potential differ-
ence in prevalence of premutation alleles in different
populations as this could explain both the differences in
premutation prevalence and the incidence of FXS
among different studies.
Identifying and reporting babies with a premutation is

somewhat controversial, with important arguments on
both sides of the equation. One argument in favor of
disclosure is the potential benefit for extended family
members, in terms of genetic and reproductive counsel-
ing. Some of these family members may be suffering
from clinical problems related to the premutation or full
mutation segregating in the family, and can benefit from
knowledge of their condition to help direct treatment
[77]. Identification of babies with the premutation can
also lead to early intervention or treatment when needed
with appropriate follow-up [71]. Although premutation
babies are far less likely to show developmental pro-
blems than full mutation babies, some are at risk for
learning problems, ASD, or seizures, and early interven-
tion will be important to implement if developmental
problems emerge in follow-up [5,9,70,71].
On the negative side of identifying FMR1 premutation

carriers at the time of birth is that the family is told of
possible future problems related to the premutation
that may or may not develop, including FXTAS, and this
may cause excessive worries for the family, especially

Table 6 Prevalence of grayzone and premutation alleles in females and males across ethnic groups

Overall White Black Hispanic Asian Other Unknown

Group* N = 14,179 N = 4,161 N = 3069 N = 3493 N = 796 N = 1286 N = 1374

Females (N) 6,889 2,014 1,508 1,709 368 614 676

Normal (count) 6,751 1969 1,479 1,677 360 601 665

Gray Count (rate) 105 (1:66) 35 (1:58) 20 (1:75) 29 (1:59) 5 (1:74) 8 (1:77) 8 (1:84)

(95% CI**) Gray 1:80-1:54 1:82-1:42 1:123-1:49 1:88-1:41 1:226-1:32 1:177-1:39 1:195-1:43

Premutation Count (rate) 33 (1:209) 10 (1:201) 9 (1:168) 3 (1:570) 3 (1:123) 5 (1:123) 3 (1:225)

(95% CI) Pre 1:303-1:149 1:420-1:110 1:366-1:89 1:2761-1:195 1:594-1:42 1:377-1:53 1:1092-1:77

Males (N) 7,290 2,147 1,561 1,784 428 672 698

Normal (count) 7,208 2,106 1,548 1,772 427 662 693

Gray Count (rate) 65 (1:112) 35 (1:61) 11 (1:142) 9 (1:198) 0 (N/A) 6 (1:112) 4 (1:174)

(95% CI) Gray 1:145-1:88 1:88-1:44 1:284-1:80 1:433-1:105 N/A 1:305-1:52 1:640-1:68

Premutation Count (rate) 17 (1:429) 6 (1:358) 2 (1:780) 3 (1:595) 1 (1:428) 4 (1:168) 1 (1:698)

(95% CI) Pre 1:736-1:268 1:974-1:165 1:6443-1:216 1:2882-1:204 1:16906-1:77 1:616-1:66 1:27570-1:126

Group* refers to the total number of males and females for all ethnicities. CI** refers to Confidence Interval.

Table 7 P-value based on Fisher exact test (2 by 2 table)

Female Male

Gray Pre Gray Pre

White versus Black 0.3409 0.817 0.0153 0.4805

White versus Hispanic 1 0.161 0.0007 0.5239

Black versus Hispanic 0.4712 0.0785 0.5051 1
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since the certainty of problems will be unknown. Many
families may not want to know about carrier status, and a
robust consent process is needed to assure that families
understand the kind of information that could be learned
from FX screening. The high rate of carrier detection
makes clear the burden that screening would place on
genetic counseling.
The identification of a newborn with the premutation

or the full mutation can create the need for cascade
testing throughout the family. Some family members
will be interested in knowing if they are carriers, espe-
cially if they have medical problems that may relate to
premutation involvement. These types of problems
include depression, anxiety [12,78,79], autoimmune pro-
blems, such as fibromyalgia or hypothyroidism [8,11],
hypertension [80], sleep apnea [10], neuropathy, FXPOI
and FXTAS. In our study, the largest family so far iden-
tified through cascade testing after the newborn was
identified as a carrier had 16 additional carriers identi-
fied, including a great grandmother with probable
FXTAS [77], several great aunts with neurological pro-
blems, others with emotional difficulties and female car-
riers with significant needs for reproductive counseling.
Although it is unclear whether all of these problems are
a direct result of the premutation alone, it is clear that
there is a need to test extended family members in rela-
tion to premutation and full mutation disorders. How-
ever, the time and energy of the counseling and health
care professionals for cascade testing of identified
families may be a limiting factor on how many indivi-
duals in one family tree can be identified.

Conclusions
This study demonstrates that newborn screening is tech-
nically feasible, and advances our understanding of the
overall prevalence of the premutation and gray zone
alleles in the USA and their prevalence in different ethnic
groups. It also suggests that the prevalence of the premu-
tation in both males and females is higher than was
found in a previous large study in North America [29]. In
addition, this study provides the expected approximately
2:1 ratio of female to male carriers [31]. Clearly, newborn
screening using a methodology that detects CGG repeats
will result in the identification of many more premuta-
tion than full mutation babies. Before newborn screening
for fragile X mutations is expanded nationally, further
work is needed to understand the impact that identifica-
tion of the premutation has on families; the developmen-
tal trajectories of children with the premutation; the
possible need for a robust consent process; and ulti-
mately whether the nation’s public health system has the
capacity to address the counseling and educational needs
that inevitably will arise.
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